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Abstract

In this paper we study first passage times of (reflected) Ornstein–Uhlenbeck processes
over compound Poisson-type boundaries. In fact, we extend the results of first rendezvous
times of (reflected) Brownian motion and compound Poisson-type processes in Perry,
Stadje and Zacks (2004) to the (reflected) Ornstein–Uhlenbeck case.
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1. Introduction

First passage problems of (reflected) Ornstein–Uhlenbeck (OU) processes on a constant
hitting level have been extensively investigated in Bo et al. (2006), (2010a), (2010b), (2011),
Borovkov and Novikov (2008), Hadjiev (1985), Loeffen and Patie (2010), Patie (2005), and
Alili et al. (2005). However, as far as we know, there is little literature on the study of first
passage problems for (reflected) OU processes with respect to random hitting levels.

Recently, Perry et al. (2004) explored first passage times (FPTs) of (reflected) Brownian
motion (BM) over compound Poisson-type boundaries. They found that the probability density
function of the FPT admits an integral equation, and gave the probability density of the FPT for
BM. Furthermore, the authors proved an explicit representation of the joint Laplace transform
(LT) of the FPT and BM stopped at the FPT. In this paper we consider counterparts for (reflected)
OU processes. We mainly extend all the results of first rendezvous times for the case of BM
studied in Perry et al. (2004) to the (reflected) OU case. As in Perry et al. (2004), in order to
obtain the joint LT for the (reflected) OU case, we have to calculate improper LTs of FPTs for
(reflected) OU processes with constant boundaries and LTs evaluated at an exponential time (see
Section 2 and Section 3 of the current paper). We find that the computations used in Perry et
al. (2004) cannot be applied to the (reflected) OU case directly. To derive the abovementioned
quantities, we need some other knowledge related to (reflected) OU processes, such as the
transition density, the local time representation, and the density of the FPT with constant
hitting levels, etc.
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In Section 2 we consider the FPT of OU processes over a one-jump boundary. In Section 3
we examine analogues for reflected OU (ROU) processes. The density of the FPT with a
drifted-compound Poisson hitting level is discussed in Section 4.

2. FPT of OU processes over a one-jump boundary

It is known that the OU process satisfies the stochastic differential equation (SDE)

dXt = (µ− rXt ) dt + σ dWt,

where the parameters µ ∈ R and r, σ > 0. Here W = {Wt ; t ≥ 0} is a standard Brownian
motion on a complete filtered probability space (�,F ,Ft ,P) with the filtration Ft satisfying
the usual conditions. Moreover, the process X = {Xt ; t ≥ 0} is a strong Markov process with
the following infinitesimal generator defined on C2

b (R):

Af (x) = σ 2

2
f ′′(x)+ (µ− rx)f ′(x). (2.1)

We consider a random jump boundary C1 = {C1(t); t ≥ 0} given by (see, e.g. Perry et al.
(2004))

C1(t) = b + Y1 1{T1≤t}, (2.2)

where the constant b > 0 and the random variable T1 admits an exponential law with parameter
q > 0, which is independent of the Brownian motion W . In addition, the random variable Y1
is independent of (T ,W), which admits a distribution function given by F(dy).

In this section we are concerned with the FPT defined by

τ0,b = inf{t ≥ 0 : Xt = 0 or Xt = C1(t)},
where we set inf ∅ = ∞ by convention. As usual, it is difficult to obtain an explicit expression
for the joint distribution of the random vector (Xτ0,b , τ0,b). Instead, we use the joint LT of the
random vector (Xτ0,b , τ0,b) to characterize the joint distribution. Let α, θ > 0. Then we define
the joint LT of the random vector (Xτ0,b , τ0,b) by

ψ(α, θ; x) = Ex[e−αXτ0,b−θτ0,b ], (2.3)

where Ex[·] = E[· | X0 = x] for 0 < x < b, as usual. As in Perry et al. (2004), in order to
obtain an explicit form for the joint LT (2.3), we have to compute the following quantities.

Improper LTs of FPTs for OU processes:

ϕ1(θ; b, x) := Ex[e−θσ0 1{σ0<σb}],
ϕ2(θ; b, x) := Ex[e−θσb 1{σ0>σb}],

where the stopping time σc denotes the FPT of the OU process X = {Xt ; t ≥ 0} over a
constant boundary c ∈ R. That is, σc = inf{t ≥ 0 : Xt = c}.

LTs evaluated at exponential time T1:

φ0(α, θ; x) := Ex[e−αXT1−θT1 ],
φ1(α, θ; x) := Ex[e−αXT1−θT1 1{τ0,b<T1}].
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Before calculating the above quantities, we first present the following result concerning the
LT of the FPT σc. For convenience, we define

γ (θ; c, x) = Ex[e−θσc ],
where θ > 0 and c, x ∈ R. Clearly, γ (0; c, x) = γ (θ; c, c) = 1. From Itô and McKean (1996,
p. 130), we have (see also Alili et al. (2005)) the following result.

Lemma 2.1. For x < c, the LT (evaluated at θ > 0) of the FPT σc is given by

γ (θ; c, x) = fθ (x)

fθ (c)
,

where fθ (x) is the unique (up to a multiplicative constant) increasing positive solution of the
equation

Af (x) = θf (x), (2.4)

with A given by (2.1).

Similarly as in Proposition 2.1 of Alili et al. (2005), the desired function fθ (x) is

fθ (x) = H−θ/r
(

−
√
r

σ

(
x − µ

r

))
, (2.5)

with Hv(x) being the Hermite function. Thus, by the symmetry of the process with respect to
the long-run mean µ/r , we have the following result.

Remark 2.1. The LT (evaluated at θ > 0) of the FPT σc is given by

γ (θ; c, x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H−θ/r (−√
r(x − µ/r)/σ )

H−θ/r (−√
r(c − µ/r)/σ )

for x < c,

H−θ/r (
√
r(x − µ/r)/σ )

H−θ/r (
√
r(c − µ/r)/σ )

for x > c.

(2.6)

Now we can present the expressions for the improper LTs.

Lemma 2.2. Let 0 < x < b. The improper LTs are given by

ϕ1(θ; b, x) = fθ (x)γ (θ; 0, b)− fθ (b)γ (θ; 0, x)

fθ (0)γ (θ; 0, b)− fθ (b)

and

ϕ2(θ; b, x) = fθ (0)γ (θ; 0, x)− fθ (x)

fθ (0)γ (θ; 0, b)− fθ (b)
,

where the functions fθ (x) and γ (θ; b, x) are given in (2.5) and (2.6).

Proof. Since the function fθ (x) is a solution to the ordinary differential equation (ODE)
(2.4), we use Itô’s formula and the optional time theorem to conclude that

Ex[e−θ(σ0∧σb)fθ (Xσ0∧σb )] = fθ (x).

Hence, we have
fθ (x) = fθ (0)ϕ1(θ; b, x)+ fθ (b)ϕ2(θ; b, x), (2.7)
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by employing the fact that Xσc = c for all c ∈ R. For the LT of the FPT σ0, it holds that

γ (θ; 0, x) = ϕ1(θ; b, x)+ Ex[e−θσ0 1{σb<σ0}].
For the second term on the right-hand side, using the strong Markov property of the OU process
X and the equality σ0 = σb + σ0 ◦ ζσb on the event {ω; σb(ω) < σ0(ω)}, where ζ· is the shift
operator, we obtain

Ex[e−θσ0 1{σb<σ0}] = Ex[Ex[e−θσ0 1{σb<σ0} | Fσb ]]
= Ex[e−θσb 1{σb<σ0} Ex[e−θ(σ0◦ζσb ) | Fσb ]]
= Ex[e−θσb 1{σb<σ0} EXσb [e−θσ0 ]]
= Ex[e−θσb 1{σb<σ0} Eb[e−θσ0 ]]
= γ (θ; 0, b)ϕ2(θ; b, x).

This yields the equality

γ (θ; 0, x) = ϕ1(θ; b, x)+ γ (θ; 0, b)ϕ2(θ; b, x). (2.8)

Solving for ϕ1(θ; b, x) and ϕ2(θ; b, x) in (2.7) and (2.8), we arrive at the desired expressions
for ϕ1(θ; b, x) and ϕ2(θ; b, x).

In Proposition 2.1 below we compute the LTs evaluated at the exponential time T1. Note
that we use the fact that, by l’Hôpital’s rule,

lim
α↓0

φ0(α, θ; x) = q

r
lim
α↓0

∫ α
0 (e

−xz−w(z)/z) dz

e−w(α)
= −q

r
lim
α↓0

e−xα

αw′(α)
= q

q + θ
.

Proposition 2.1. Let x ∈ R. We have, for α > 0,

φ0(α, θ; x) = q

r

∫ α

0

ew(α)−xz−w(z)

z
dz,

with

w(α) = −αµ
r

+ α2σ 2

4r
− q + θ

r
ln α.

Moreover, for 0 < x < b, we have

φ1(α, θ; x) = φ0(α, θ; 0)ϕ1(q + θ; b, x)+ φ0(α, θ; b)ϕ2(q + θ; b, x),
where ϕ1(q + θ; b, x) and ϕ2(q + θ; b, x) were given in Lemma 2.2.

Proof. By virtue of Itô’s formula,

Mt := e−αXt−θt − e−αX0 +
(
αµ+ θ − 1

2
σ 2α2

) ∫ t

0
e−αXs−θs ds − αr

∫ t

0
Xse

−αXs−θs ds

is a martingale with mean 0. As a consequence,

φ0(α, θ; x)+
(
αµ+ θ − 1

2
σ 2α2

)
Ex

∫ T1

0
e−αXs−θs ds − αrEx

∫ T1

0
Xse

−αXs−θs ds

= e−αx.
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Since the random variableT1 has an exponential law with parameterq > 0, which is independent
of the OU process X, we have

Ex

∫ T1

0
e−αXs−θs ds = Ex

∫ ∞

0

(∫ ∞

s

qe−qt dt

)
e−αXs−θs ds = 1

q
φ0(α, θ; x).

Similarly, we obtain

Ex

∫ T1

0
Xse

−αXs−θs ds = − 1

q

∂φ0(α, θ; x)
∂α

.

Thus, φ0(α, θ; x) solves the ODE

∂φ0(α, θ; x)
∂α

= −q + θ + αµ− σ 2α2/2

αr
φ0(α, θ; x)+ q

αr
e−αx, (2.9)

and is subject to the boundary condition

lim
α↓0

φ0(α, θ; x) = q

q + θ
. (2.10)

We solve (2.9) with boundary condition (2.10) and arrive at the expression of φ0(α, θ; x) given
in the proposition.

Next we derive the expression for φ1(α, θ; x). Using the strong Markov property of the OU
process X and the memoryless property of the exponential distribution, we obtain

Ex[e−αXT1−θT1 1{τ0,b<T1, Xτ0,b=0}]
= Ex[Ex[e−αXT1−θT1 1{τ0,b<T1, Xτ0,b=0} | Fτ0,b ]]
= Ex[1{τ0,b<T1, Xτ0,b=0} Ex[e−αXT1−θT1 | Fτ0,b ]]
= Ex[e−θτ0,b 1{τ0,b<T1, Xτ0,b=0} Exe−αXT1◦ζτ0,b−θT1◦ζτ0,b | Fτ0,b ]]
= φ0(α, θ; 0)Ex[e−θτ0,b 1{τ0,b<T1, Xτ0,b=0}]. (2.11)

In addition, the expectation in the last line of (2.11) is given by

Ex[e−θτ0,b 1{τ0,b<T1,Xτ0,b=0}] = Ex[e−θ(σ0∧σb) 1{Xσ0∧σb=0} P(T1 > σ0 ∧ σb | X)]
= Ex[e−(θ+q)(σ0∧σb) 1{Xσ0∧σb=0}]
= ϕ1(q + θ; b, x),

since the random variable T1 has an exponential law with parameter q, which is independent of
the OU process X, and the event {ω;Xσ0(ω)∧σb(ω)(ω) = 0} is identical to {ω; σ0(ω) < σb(ω)}.

Similarly, it holds that

Ex[e−αXT1−θT1 1{τ0,b<T1, Xτ0,b=b}] = φ0(α, θ; b)ϕ2(q + θ; b, x). (2.12)

Then the desired expression for φ1(α, θ; x) follows from the equality

φ1(α, θ; x) = Ex[e−αXT1−θT1 1{τ0,b<T1, Xτ0,b=0}] + Ex[e−αXT1−θT1 1{τ0,b<T1, Xτ0,b=b}].
This completes the proof.
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Remark 2.2. Clearly, the quantities φ0(α, θ; x) and φ1(α, θ; x) obtained in Proposition 2.1
together determine the joint distribution of the random vector (XT1 , T1, 1{T1<τ0,b}) (see the
illustration on page 1064 of Perry et al. (2004)).

Note that the definition of f (θ; y, x) in Equation (3.11) of Perry et al. (2004) should be

f (θ; y, x) = Ex[e−αX(R(a+b+y))−θR(a+b+y)]
= ψ∗

0 (θ, x, a + b + y − x)+ e−α(a+b+y)ψ∗
1 (θ, x, a + b + y − x).

Theorem 2.1. Let 0 < x < b. Then the joint LT of (Xτ0,b , τ0,b) is given by

ψ(α, θ; x) = ϕ1(q + θ; b, x)+ e−αbϕ2(q + θ; b, x)+ Ex[e−θT1h(θ;XT1 , Y1) 1{τ0,b>T1}],
where the function h(θ; x, y) = ϕ1(θ; b + y, x) + e−α(b+y)ϕ2(θ; b + y, x) for y > 0. The
third term on the right-hand side can be determined from Proposition 2.1.

3. FPT of ROU processes over a one-jump boundary

It is known that the ROU process on the state space [0,∞) satisfies the SDE

dX̂t = (µ− rX̂t ) dt + σ dWt + dLt , (3.1)

where the parameters µ ∈ R and r, σ > 0. The process L = {Lt ; t ≥ 0} is called a regulator
at boundary 0 of the ROU process X̂ = {X̂t ; t ≥ 0} (see, e.g. Ata et al. (2005) for details). The
regulator L is continuous, nondecreasing, and satisfies the property that

Lt =
∫ t

0
1{X̂s=0} dLs for all t ≥ 0. (3.2)

It holds that X̂t ≥ 0 for all t ≥ 0 if the initial date X̂0 ≥ 0 (see, e.g. Ata et al. (2005) or Harrison
(1985, p. 20) for details). In fact, the regulator L is closely related to the local time at 0 of the
ROU process X̂, which will be stated in the following lemma.

Lemma 3.1. The regulator L in (3.1) has the following two representations.

• Skorohod representation:

Lt = sup
0≤s≤t

(
X̂0 +

∫ s

0
(µ− rX̂u) du+ σWs

)−
, (3.3)

where x− := max{−x, 0} for x ∈ R (see Karatzas and Shreve (1991, p. 210)).

• Local time representation:

Lt = lim
ε→0

σ 2

2ε

∫ t

0
1{0≤X̂s≤ε} ds. (3.4)

Proof. Since the validity of (3.3) is clear, we only prove (3.4). Let �a = {�at ; t ≥ 0} denote
the local time process of the ROU process X̂ at point a ≥ 0. Then, by virtue of Protter (2004,
p. 225), the local time �a has the representation

�at = lim
ε→0

1

ε

∫ t

0
1{0≤X̂s−a≤ε} d[X̂, X̂]cs = lim

ε→0

σ 2

ε

∫ t

0
1{0≤X̂s−a≤ε} ds. (3.5)
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On the other hand, using Meyer–Tanaka’s formula (see, e.g. Protter (2004, p. 216)) for the ROU
process X̂ yields

X̂t = X̂0 +
∫ t

0
1{X̂s>0} dX̂s −

∫ t

0
1{X̂s=0} dX̂s + �0

t

= X̂t − 2
∫ t

0
1{X̂s=0} dX̂s + �0

t

= X̂t − 2
∫ t

0
1{X̂s=0}(µ− rX̂s) ds − 2σ

∫ t

0
1{X̂s=0} dWs − 2

∫ t

0
1{X̂s=0} dLs + �0

t

= X̂t − 2µ
∫ t

0
1{X̂s=0} ds − 2σ

∫ t

0
1{X̂s=0} dWs − 2Lt + �0

t ,

where we have used the fact that X̂t ≥ 0 for all t ≥ 0 and property (3.2). As a consequence,

Lt = −µ
∫ t

0
1{X̂s=0} ds − σ

∫ t

0
1{X̂s=0} dWs + 1

2
�0
t .

The above equality shows that
∫ t

0 1{X̂s=0} dWs = 0, since a continuous local martingale of finite
variation is equal to the initial value. So

Lt = −µ
∫ t

0
1{X̂s=0} ds + 1

2
�0
t .

To complete the proof, we employ (3.5) with a = 0 and note that
∫ t

0 1{X̂s=0} ds = 0 a.s.

We here point out that the explicit expression for the transition density p(t; x, y) of the
ROU process X̂ has been obtained in Linetsky (2005) (see Section 5.2 therein). Moreover, the
explicit expression for the LT

γ̂ (θ; b, x) := Ex[e−θσ̂b ] (3.6)

of the FPT σ̂c = inf{t ≥ 0 : X̂t = c} has been obtained in Theorem 2.1 of Bo et al. (2006)
and Remark 4 of Bo et al. (2011). Hereafter, we will treat p(t; x, y) and γ̂ (θ; b, x) as known
functions.

In this section we are concerned with the following FPT of ROU process (3.1) over the
one-jump boundary C1 given by (2.2):

τ̂b = inf{t ≥ 0 : X̂t = C1(t)}.
Here we set inf ∅ = ∞ by convention. As in Perry et al. (2004), in order to derive an explicit
form for the joint LT

ψ̂(α, θ; x) = Ex[e−αXτ̂b−θ τ̂b ],
we have to compute the LTs evaluated at the exponential time T1:

φ̂0(α, θ; x) := Ex[e−αX̂T1−θT1 ],
φ̂1(α, θ; x) := Ex[e−αX̂T1−θT1 1{τ̂b<T1}].

In fact, we have the following proposition.
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Proposition 3.1. Let 0 < x < b. We have

φ̂0(α, θ; x) = q

r

∫ α

0

ew(α)−xz−w(z)

z
dz+ σ 2

2r
ĝL(θ; x)

∫ α

0
ew(α)−w(z) dz for α > 0,

with w(α) defined in Proposition 2.1. Here the function ĝL(θ; x) = Ex[e−θT1p(T1; x, 0)],
where p(t; x, 0) is the transition density at y = 0 of the ROU process X̂. Moreover,

φ̂1(α, θ; x) = φ̂0(α, θ; b)γ̂ (q + θ; b, x),
where the LT γ̂ (q + θ; b, x) is defined in (3.6).

Proof. By virtue of Itô’s formula,

M̂t := e−αX̂t−θt − e−αX̂0 +
(
αµ+ θ − 1

2
σ 2α2

) ∫ t

0
e−αX̂s−θs ds

− αr

∫ t

0
X̂se

−αX̂s−θs ds + α

∫ t

0
e−αX̂s−θs dLs (3.7)

is a martingale with mean 0. Using (3.2), we obtain

φ̂0(α, θ; x)+
(
αµ+ θ − 1

2
σ 2α2

)
Ex

∫ T1

0
e−αX̂s−θs ds − αrEx

∫ t

0
X̂se

−αX̂s−θs ds

+ αEx

∫ t

0
e−θs dLs = e−αx.

Similarly as the proof of Proposition 2.1, φ̂0(α, θ; x) admits the ODE

∂φ̂0(α, θ; x)
∂α

= −q + θ + αµ− σ 2α2/2

αr
φ̂0(α, θ; x)+ q

αr
e−αx + q

r
gL(θ; x) (3.8)

with the boundary condition limα↓0 φ̂0(α, θ; x) = q/(q + θ), where the function gL(θ; x) is
defined by

gL(θ; x) = Ex

∫ T1

0
e−θs dLs.

Thanks to Lemma 3.1, we can conclude that

gL(θ; x) = q

2
σ 2

∫ ∞

0
e−qt

(∫ t

0
e−θs lim

ε→0

1

ε
Px(X̂s ≤ ε) ds

)
dt

= q

2
σ 2

∫ ∞

0
e−qt

(∫ t

0
e−θs lim

ε→0

1

ε

∫ ε

0
p(s; x, y) dy ds

)
dt

= q

2
σ 2

∫ ∞

0
e−qt

(∫ t

0
e−θsp(s; x, 0) ds

)
dt

= σ 2

2q
Ex[e−θT1p(T1; x, 0)]. (3.9)

Solving (3.8) yields the expression for φ̂0(α, θ; x) given in this proposition.

https://doi.org/10.1239/jap/1316796910 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1316796910


First passage times of ROU processes over random jump boundaries 731

Next we derive the expression for φ̂1(α, θ; x). Using the strong Markov property of the
ROU process X̂ and the memoryless property of the exponential distribution, we have

φ̂1(α, θ; x) = Ex[e−αX̂T1−θT1 1{τ̂b<T1}]
= Ex[Ex[e−αX̂T1−θT1 1{τ̂b<T1} | Fτ̂b ]]
= Ex[1{τ̂b<T1} Ex[e−αX̂T1−θT1 | Fτ̂b ]]
= Ex[e−θ τ̂b 1{τ̂b<T1} Ex[e−αX̂T1◦ζτ̂b−θT1◦ζτ̂b | Fτ̂b ]]
= φ̂0(α, θ; b)Ex[e−θ τ̂b 1{τ̂b<T1}]. (3.10)

In addition, the expectation in the last line of (3.10) is given by

Ex[e−θ τ̂b 1{τ̂b<T1}] = Ex[e−θσ̂bP(T1 > σ̂b | X̂)] = γ̂ (q + θ; b, x),
since the random variable T1 has an exponential law with parameter q, which is independent
of the ROU process X̂. This completes the proof.

Finally, we have the following result.

Theorem 3.1. Let 0 < x < b. Then the joint LT of (X̂τ̂b , τ̂b) is given by

ψ̂(α, θ; x) = e−αbγ̂ (q + θ; b, x)+ e−αbEx[e−αY1−θT1 γ̂ (θ; b + Y1, X̂T1) 1{τ̂b>T1}],
where the second term on the right-hand side can be determined from Proposition 3.1.

4. FPT density of ROU processes over a compound Poisson process

In this section we consider the following FPT of ROU process (3.1) over a boundary of
drifted-compound Poisson process:

τ̃b = inf{t ≥ 0 : X̂t = C(t)}.
Here X̂ = {X̂t ; t ≥ 0} is the ROU process (3.1) and the random boundary C = {C(t); t ≥ 0}
is given by

C(t) = b +
∞∑
k=1

Yk 1{Tk≤t},

where {Y1, Y2, . . . } are independent and identically distributed random variables with probabil-
ity density function (PDF) f (y) and T1 < T2 < · · · < Tn < · · · are jump times of the Poisson
process N = {Nt ; t ≥ 0} with parameter q > 0. In addition, {Y1, Y2, . . . }, {T1, T2, . . . }, and
BM W are mutually independent.

Similarly to that of Theorem 2.1 of Perry et al. (2004), if the PDF ρ̂(t; b) of the FPT σ̂b for
ROU process (3.1) is given, then the PDF ρ̃(t; b) of the FPT τ̃b is the unique solution to the
integral equation

ρ̃(t; b) = e−qt ρ̂(t; b)+
∞∑
n=1

∫ ∞

0

∫ t

0
e−qs (qs)n

n! f (n)(z)ρ̂(s; b)ρ̃(t − s; z) ds dz,

where f (n)(y) denotes the n-fold convolution of f with itself.
Finally, we mention that the PDF ρ̂(t; b) of the FPT σ̂b for ROU process (3.1) has been

obtained in terms of the spectral representation in Li et al. (2010, Proposition 2.1).
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