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RINGS ISOMORPHIC TO THEIR
UNBOUNDED LEFT IDEALS

SHALOM FEIGELSTOCK

A complete description is given of rings isomorpliic to their unbounded left (right) ideals.
The same problem for 2-sided ideals remains open.

Let i? be a ring, and let R+ denote the additive group of R. If R+ is a bounded
group then R is said to be bounded or have finite characteristic. In [1] Hill classified
the rings that are isomorpliic to each of their unbounded subrings. He also proved the
following:

PROPOSITION 1. Let R be a ring isomorphic to each of its unbounded ideals. Then
R satisfies one of the following conditions:

1) R has finite characteristic;
2) R is the zeroring on Z(p°°), p a prime;
3) R2 = R, R is a prime ring, and R+ is a divisible torsion-free group;
4) R is the zeroring on Z, with Z = the additive group of the ring of

integers.

PROOF: [1, Proposition 3.1, Lemma 3.3, Lemma 3.4 and Lemma 3.7.] |

The object of this note is to use Proposition 1 to prove:

THEOREM 2. A ring R is isomorphic to each of its unbounded left (right) ideals
if and only if R satisfies one of the following conditions:

1) R has finite characteristic;
2) R is the zeroring on Z(p°°), p a prime;
3) R is a division ring;
4) R is the zeroring on Z .

PROOF: Clearly if R satisfies one of conditions l)-4) then R is isomorphic to each
of its unbounded left (right) ideals. Conversely, suppose that R is isomorphic to each
of its unbounded left ideals. By Proposition 1 it may be assumed that R2 = R, R is
prime, and that R+ is a divisible torsion-free group.
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CLAIM 1. The left annihilator, £(R), and the right annihilator, r(R), of R are
trivial.

PROOF: i(R) is an ideal in R. If t(R) ^ 0, then R ~ t(R). Since {((R)}2 = 0 it
follows that R2 = 0, a contradiction. By the same argument, r(R) = 0 . |

CLAIM 2. Let a,b £ R. If ab = 0 then ba = 0.

PROOF: It may be assumed that a ^ 0. By Claim 1 it follows that R ~ fia.
Therefore the right annihilator of Ra in Ra is trivial. However, 6a belongs to the
right annihilator of Ra in Ra, and so ba — 0. |

CLAIM 3. Let a,b £ R. If ab = 0 then a = 0 or 6 = 0.

PROOF: afeiZ = 0, so by Claim 2, frifa = 0. Since R is prime, either a = 0 or
6 = 0. |

CLAIM 4. For aii a £ R, a £ Ra.

PROOF: It may be assumed that o ^ 0. Suppose that a £ Ra. Since (Ra) is
divisible it follows that na £ Ra for every positive integer n. Let A = (a) © Ra with
(a) = the cyclic group generated by a. Then A is a left ideal in R, but A+ is not
divisible, a contradiction. |

Let a £ R, a ^ 0. By Claim 4 there exists e 6 R such that eo = a. Similarly,
e € iJe, so there exists e' € R such that e = e'e. Now e'o = e'ea = ea, and so
(e' — e)a = 0. By Claim 3 it follows that e' = e, and so e2 = e. Therefore e € iZe and
is a right identity in Re. For x £ R the fact that e is a right identity in Re yields that
(xe)e(xe) = (xe) and so xe[e(xe) — (xe)] = 0. Claim 3 yields that e(xe) = xe, that is,
e is an identity in jRe. Since R ~ Re it follows that R is a ring with identity 1. Since
Ra ~ R there exists c £ R such that ca is an identity in Ra. However a £ Ra and
so o = aca — a • 1, that is, a(ca — 1) = 0. It follows from Claim 3 that ca — 1. Since
every nonzero element in R has a left inverse, it is readily seen that R is a division
ring.

The proof for right ideals follows similarly.
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