RINGS ISOMORPHIC TO THEIR UNBOUNDED LEFT IDEALS

SHALOM FEIGELSTOCK

A complete description is given of rings isomorphic to their unbounded left (right) ideals. The same problem for 2-sided ideals remains open.

Let R be a ring, and let R^+ denote the additive group of R. If R^+ is a bounded group then R is said to be bounded or have finite characteristic. In [1] Hill classified the rings that are isomorphic to each of their unbounded subrings. He also proved the following:

PROPOSITION 1. Let R be a ring isomorphic to each of its unbounded ideals. Then R satisfies one of the following conditions:

- 1) R has finite characteristic;
- 2) R is the zeroring on $Z(p^{\infty})$, p a prime;
- 3) $R^2 = R$, R is a prime ring, and R^+ is a divisible torsion-free group;
- 4) R is the zeroring on \mathbb{Z} , with \mathbb{Z} = the additive group of the ring of integers.

PROOF: [1, Proposition 3.1, Lemma 3.3, Lemma 3.4 and Lemma 3.7.]

The object of this note is to use Proposition 1 to prove:

THEOREM 2. A ring R is isomorphic to each of its unbounded left (right) ideals if and only if R satisfies one of the following conditions:

- 1) R has finite characteristic;
- 2) R is the zeroring on $Z(p^{\infty})$, p a prime;
- 3) R is a division ring;
- 4) R is the zeroring on Z.

PROOF: Clearly if R satisfies one of conditions 1)-4) then R is isomorphic to each of its unbounded left (right) ideals. Conversely, suppose that R is isomorphic to each of its unbounded left ideals. By Proposition 1 it may be assumed that $R^2 = R$, R is prime, and that R^+ is a divisible torsion-free group.

Received 14 August, 1987

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/88 \$A2.00+0.00.

CLAIM 1. The left annihilator, $\ell(R)$, and the right annihilator, r(R), of R are trivial.

PROOF: $\ell(R)$ is an ideal in R. If $\ell(R) \neq 0$, then $R \simeq \ell(R)$. Since $[\ell(R)]^2 = 0$ it follows that $R^2 = 0$, a contradiction. By the same argument, r(R) = 0.

CLAIM 2. Let $a, b \in R$. If ab = 0 then ba = 0.

PROOF: It may be assumed that $a \neq 0$. By Claim 1 it follows that $R \simeq Ra$. Therefore the right annihilator of Ra in Ra is trivial. However, ba belongs to the right annihilator of Ra in Ra, and so ba = 0.

CLAIM 3. Let $a, b \in R$. If ab = 0 then a = 0 or b = 0.

PROOF: abR = 0, so by Claim 2, bRa = 0. Since R is prime, either a = 0 or b = 0.

CLAIM 4. For all $a \in R$, $a \in Ra$.

PROOF: It may be assumed that $a \neq 0$. Suppose that $a \notin Ra$. Since $(Ra)^+$ is divisible it follows that $na \notin Ra$ for every positive integer n. Let $A = (a) \oplus Ra$ with (a) = the cyclic group generated by a. Then A is a left ideal in R, but A^+ is not divisible, a contradiction.

Let $a \in R$, $a \neq 0$. By Claim 4 there exists $e \in R$ such that ea = a. Similarly, $e \in Re$, so there exists $e' \in R$ such that e = e'e. Now e'a = e'ea = ea, and so (e'-e)a = 0. By Claim 3 it follows that e' = e, and so $e^2 = e$. Therefore $e \in Re$ and is a right identity in Re. For $x \in R$ the fact that e is a right identity in Re yields that $(xe)e(xe) = (xe)^2$ and so xe[e(xe) - (xe)] = 0. Claim 3 yields that e(xe) = xe, that is, e is an identity in Re. Since $R \simeq Re$ it follows that R is a ring with identity 1. Since $Ra \simeq R$ there exists $c \in R$ such that ca is an identity in Ra. However $a \in Ra$ and so $a = aca = a \cdot 1$, that is, a(ca - 1) = 0. It follows from Claim 3 that ca = 1. Since ring.

The proof for right ideals follows similarly.

REFERENCES

[1] P. Hill, 'Some almost simple rings', Canad. J. Math. 25 (1973), 290-302.

Department of Mathematics and Computer Science Bar Ilan University 52100 Ramat Gan Israel