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ABSTRACT. We address the usefulness of the unstable manifold correction (UMC) in a Picard iteration
for the solution of the velocity field in higher-order ice-flow models. We explain under- and overshooting
and how one can remedy them. We then discuss the rationale behind the UMC, initially developed
to remedy overshooting, and how it was previously introduced in a Picard iteration to calculate the
velocity field in higher-order models. Using a laminar-flow experiment with two higher-order model
implementations, we demonstrate that it is not overshooting, but undershooting, that is the main problem
when using a proper implementation for the calculation of the velocity field in higher-order models. We
also consider a variant of the original UMC algorithm that often enables a relatively fast solution, but
is theoretically less sound. Therefore, neither the variant nor the original algorithm is suited for these
problems. We present a more appropriate, stable and simple relaxed Picard algorithm and demonstrate
that, compared to the true Picard iteration and the variant of the original UMC algorithm, it results in
a faster solution of the velocity field in higher-order models for problems with real data.

INTRODUCTION
Non-linear iteration schemes are essential for a fast and
stable solution of higher-order ice-flow models (HOIFMs).
HOIFMs incorporate mechanical effects not present in the
zeroth-order shallow-ice approximation of the governing
equations (e.g. Hutter, 1983). Mostly, this implies the
inclusion of longitudinal deviatoric-stress gradients (e.g.
Hindmarsh, 2004). The topic of non-linear iteration schemes
for HOIFMs is gaining attention as more and more numerical
ice-sheet models include (or are planned to include) higher-
order mechanics. Hindmarsh and Payne (1996) proposed
the unstable manifold correction (UMC) as a way to
stabilize the numerical solution of implicit finite-difference
discretizations of the time-dependent thickness-evolution
equation for ice flow. Since 2002, Pattyn (e.g. 2002,
2003) has used the UMC in a Picard iteration to facilitate
the solution of the velocity field in HOIFMs. In more
recent work, a variant of the original UMC algorithm has
been used (e.g. Pattyn and others, 2004; Pattyn, 2008).
Below, we demonstrate that, when using a proper HOIFM
implementation, neither the original algorithm nor its variant
should be used. Instead, we present a new, more appropriate,
stable and simple algorithm that speeds up the iterative
solution of the velocity field in HOIFMs for problems with
real data.

UNDER- AND OVERSHOOTING
The UMC is a relaxation-scheme feature for the numerical
solution of a set of non-linear equations. Below, we use
a model which, after discretization, results in the matrix
form A(U)U = B. The common approach for solving such
a model is to iteratively update a first guess U0. This type
of iterative update procedure is called a relaxation scheme.
The simplest relaxation scheme is the true Picard iteration

and consists of solving A(Uγ−1)Uγ = B for γ = 1, 2, . . .
until convergence. Relaxation schemes like the true Picard
iteration can have several drawbacks (Fig. 1). On the one
hand, when successive correction vectors, Cγ−1 = Uγ −
Uγ−1 and Cγ = Uγ+1 − Uγ , are in roughly the same
direction, the scheme is undershooting. This means Cγ−1

could have been taken larger, so that fewer iterations and less
computing time would be required to solve the equations.
In such a case, one may obtain a faster convergence by
overrelaxation, i.e. taking instead of Cγ a larger step μCγ

with μ > 1. On the other hand, if Cγ is in roughly the
opposite direction to Cγ−1, the scheme is overshooting
the solution. At best, overshooting only slows down the
solution process. At worst, an endless sequence of correction
vectors shooting back and forth over the actual solution may
arise. Overshooting can be remedied by underrelaxation, i.e.
taking a smaller step, μCγ with 0 < μ < 1.

THE UNSTABLE MANIFOLD CORRECTION
Hindmarsh and Payne (1996) proposed the UMC as a way to
remedy the overshooting nature of relaxation schemes used
to solve the non-linear thickness-evolution problem. Here
we present a rigorous description of their method (as we
understand it).
Consider an iterative solution method for a set of non-

linear equations which generates a sequence of approximate
solutions, . . . ,Uγ−2 = Uγ−3 + Cγ−3,Uγ−1 = Uγ−2 +
Cγ−2, . . . Let Uγ

∗ be a preliminary (e.g. true Picard) iterate
computed from Uγ−1 and let Cγ−1

∗ = Uγ
∗ − Uγ−1 be

the corresponding preliminary correction vector. Hindmarsh
and Payne (1996) observed that, if this preliminary iterate is
accepted as the new iterate Uγ , once the time-step used
in their calculations exceeds a certain threshold, after a
few iterations, an endless sequence of overshooting along
the same line in correction space occurs. Here they make
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Fig. 1. Illustration of (a) undershooting and (b) overshooting for a sequence of iterates, Uγ−1, Uγ and Uγ+1, and corresponding correction
vectors, Cγ−1 and Cγ .

the arguable assumption that the true solution lies on the
overshooting line, which leads to

Cγ−2 = Eγ−2 − Eγ−1, (1)

with Eγ−2 and Eγ−1 the true errors in approximations Uγ−2

and Uγ−1, respectively (Fig. 2). Moreover, Hindmarsh and
Payne use the (again arguable) assumption that the last
accepted and the preliminary next correction step along the
overshooting line are proportional to the true error (with
equal proportionality) so that

μγCγ−2 = Eγ−2, μγCγ−1
∗ = Eγ−1. (2)

From Equations (1) and (2), it follows that

||Cγ−2||
μγ

=

∣∣∣∣∣
∣∣∣∣∣E

γ−2

μγ
− Eγ−1

μγ

∣∣∣∣∣
∣∣∣∣∣ = ||Cγ−2 − Cγ−1

∗ ||. (3)

Hence,

μγ =
||Cγ−2||

||Cγ−2 − Cγ−1
∗ ||

. (4)

(For all norm calculations in this paper, we use the square
root of the sum of squares.) This allows us to compute a
modified correction vector

Cγ−1 = μγCγ−1
∗ ≈ Eγ−1, (5)

called the UMC. The corrected approximationUγ = Uγ−1+
Cγ−1. As soon as the angle θ between successive correction
vectors becomes≥5π/6, Hindmarsh and Payne (1996) apply
theUMC. Note, however, that themore θ deviates from π, the
poorer the validity of Equations (1) and (2). When θ < 5π/6
or γ = 1, Uγ = Uγ

∗ , which implies Cγ−1 = Cγ−1
∗ . θγ can

be calculated from

θγ = arccos

⎛
⎜⎝

(
Cγ−1
∗

)T · Cγ−2

||Cγ−1
∗ || · ||Cγ−2||

⎞
⎟⎠ . (6)

LESSONS FROM A LAMINAR-FLOW EXPERIMENT
By adding the UMC to a true Picard iteration in a two-
dimensional (2-D; Pattyn, 2002) and a three-dimensional
(3-D; Pattyn, 2003) HOIFM implementation, a slightly
stabilizing effect on the numerical solution of the velocity
field was obtained. This is because, when using only a true
Picard iteration, the successive approximations from these
implementations show an overshooting of the actual solution
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Fig. 2. Illustration of overshooting along the same line in correction
space for a sequence of approximate solutions, Uγ−2, Uγ−1 and
Uγ , the true solution, U true, the true error vectors, Eγ−2 and Eγ−1,
and the correction vectors, Cγ−2 and Cγ−1. Here it is assumed
that U true lies on the overshooting line.

(e.g. see Fig. 3a). We illustrate this for an infinite parallel-
sided slab of isothermal ice on a uniform slope, α. We
consider the ice frozen to the bed and take the x axis along
the slope (positive downwards) and the z axis perpendicular
to the slope (positive upwards). For this set-up and under the
assumption of a steady flow, flow should be laminar, with
velocity in the direction of the x axis given by (e.g. Paterson,
1994)

u(z) =
A
2

(
ρg sinα

)3 [H4 − (s − z)4] , (7)

where we take the flow-rate factor A = 10−16 Pa−3 a−1,
the ice density ρ = 900 kgm−3, the gravity constant g =
9.81ms−2, the slope α = 5◦, and the ice thickness H =
200m; s is the z coordinate of the surface. In Figure 3 we
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Fig. 3. Successive true Picard approximations of the surface velocity
for an infinite parallel-sided slab of isothermal ice on a sloping
bed (see text for details). Results are given for (a) a finite-
difference implementation (Pattyn, 2002) and (b) a finite-element
implementation. Numbers on the curves correspond to iteration
numbers. The thick grey line gives the exact solution.
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show successive approximations to the surface velocity for
two 2-D HOIFM implementations and compare them to the
exact solution (Equation (7)). Both implementations use the
same LMLa (multilayer longitudinal stresses) flowline model
(Hindmarsh, 2004)

∂

∂x

(
4η

∂u
∂x

)
+

∂

∂z

(
η
∂u
∂z

)
= ρg sinα, (8)

with effective viscosity

η =
1
2
A−1/n

[(
∂u
∂x

)2
+
1
4

(
∂u
∂z

)2](1−n)/2n
(9)

andGlen flow-law exponent n = 3. The boundary conditions
are a traction-free surface, a no-slip condition at the base
and, to enforce infinity of the slab, periodic boundary
conditions (with an initial guess of zero velocity) at the
left and right side of the domain. The slab is modelled
over a 10 km domain length. The first implementation (I1)
is based on a finite-difference discretization (Pattyn, 2002).
The second implementation (I2), which is being prepared
for publication, is based on a finite-element discretization.
We repeat the experiment using I2 since (in contrast to
I1) it does not suffer from convergence problems, so it
is properly suitable for evaluating the usefulness of the
UMC in a Picard iteration for the numerical solution of
the HOIFM. Moreover, its results match the exact solution
given by Equation (7), as shown in Figure 3, are in line with
theory when longitudinal deviatoric-stress gradients play a
role and are internally consistent. I1 and I2 participated in the
Ice-Sheet Model Intercomparison Project–Higher-Order ice-
sheet Model (ISMIP-HOM) benchmark experiments (Pattyn
and others, 2008) with a variant of Equation (8) (i.e. the
HOIFM Equations (11) and (9) for which the x axis (z axis)
is chosen horizontal (vertically upwards). For the parallel-
sided slab experiment, I1 and I2 use the true Picard iteration
and 101 evenly spaced gridpoints in the x direction to
solve the linearized model equations. As for all experiments
in this paper, the computational domain is rectangular
with 41 gridpoints in the z direction (irregularly spaced
with decreasing grid distance towards the bed), the initial
guess for the effective viscosity η0 = 106 Pa a over the
whole domain, the initial correction vector C 0 = U1

(which implies U0 = 0ma−1 over the whole domain)
and we use a preconditioned conjugate-gradient solver (e.g.
Barrett and others, 1994) for the linear system. For I2, the
norm of the residual of the preconditioned linear system is
always <10−5 for each non-linear iteration, which shows
the preconditioned conjugate-gradient solver is capable of
finding the actual solution for the linearized model and does
not diverge.
For I1 and I2, we see a gradual update of the surface

velocity, with the left and right sides of the domain lagging
somewhat due to the periodic boundary conditions and the
zero-velocity initial guess at the left and right boundaries
(Fig. 3). Note that the successive approximations from I1
exhibit oscillations, causing the true Picard iteration to
shoot back and forth over the exact solution. A future
paper will address the causes of these oscillations and
implications for the robustness of I1. Preliminary findings
suggest the oscillations are due to the discretization scheme
(e.g. the use of a non-staggered grid). Another explanation
may be found in the unphysical smoothness and the
lack of spatial variability in the experiment described

above. No inhomogeneities are present whose (random)
local oscillations could prevent or delay the onset of
global instabilities (compare the speed-enhancing micro-
scale roughnesses of shark’s hide, champion swimsuits and
golf balls). In an attempt to stabilize the numerical solution of
I1, and a largely similar implementation of a 3-D HOIFM, the
UMC was introduced in a true Picard iteration and applied
when θ ≥ 5π/6 (Pattyn, 2002, 2003). This offered only some
slight stabilization and could not remove the oscillations in
the successive velocity approximations.
The successive approximations of I2 contain no oscil-

lations and converge steadily towards the exact solution
(Fig. 3b). From the successive-approximation sequence, it is
clear that the true Picard iteration is always undershooting
(with θ always ≤π/10). This undershooting tendency of
the true Picard iteration is confirmed by a wide range of
other experiments (some of which are listed in Table 1).
In only a few of these experiments, and mostly only in
few iterations, do we observe an overshooting (θ ≥ 5π/6).
Picasso and others (2004), who also used a 2-D finite-
element LMLa model and a true Picard iteration to model
glacier flow, found that no underrelaxation was necessary to
obtain convergence. Moreover, Colinge and Rappaz (1999),
using a similar model for 2-D flow in an infinite parallel-sided
slab of ice, found that overrelaxation reduces the number of
non-linear iterations by ∼30% for n = 3. These findings
show that the main problem is undershooting and that the
original UMC is of limited use in a Picard iteration for the
numerical solution of the velocity field in this HOIFM, and
presumably in others.

A VARIANT OF THE ORIGINAL UNSTABLE
MANIFOLD CORRECTION ALGORITHM
In more recent work, the UMC was applied only when
θ ≤ 5π/6 (e.g. Pattyn and others, 2004; Pattyn, 2008).
Note that this comes down to a violation of the reasoning
behind the UMC. Nevertheless, the variant results in a
considerably faster solution process (fewer iterations needed)
than when using the true Picard iteration although, just like
the original algorithm, it cannot remove the oscillations in the
approximations. The variant reduces the amount of iterations
since, provided ||Cγ−2|| �= 0, ||Cγ−1

∗ || �= 0 and Cγ−2 �=
Cγ−1
∗ , then, first, when 3π/4 ≤ θ ≤ 5π/6, Equation (4)
will result in an underrelaxation step and, secondly, when
θ ≤ π/4, provided ||Cγ−2|| > ||Cγ−1

∗ ||/√2, Equation (4)
will result in an overrelaxation step. In these cases, the variant
makes sense. However, in most other cases Equation (4)
will result in an undesirable over- or underrelaxation step.
Moreover, a potentially beneficial underrelaxation step is
missed when θ > 5π/6. Finally, problems with too large
a multiplier μ may occur if the denominator in Equation (4)
is too small (or, worse, zero).

A NEW RELAXATION SCHEME
Instead of the UMC and its variant, we propose a simple
and (for all our experiments) stable relaxed Picard iteration
Uγ = Uγ−1 + γ 1μγC − , where∗

2
μ =

⎧
.5 if θγ ≤ π

γ
⎪⎨
⎪⎩

8

1 if π 19< θγ < π
8 20

0.5 if θγ ≥ 19π
(10)

.20
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Table 1. Number of non-linear iterations needed for the numerical solution of HOIFMs given by Equations (8) and (9) and Equations (11) and
(9) with a traction-free surface boundary condition ηs

(
−4∂us∂x

∂s
∂x +

∂us
∂z

)
= 0 and a basal boundary condition τb = ηb

(
−4∂ub∂x

∂b
∂x +

∂ub
∂z

)
,

with τb the basal drag and b the basal elevation using a finite-element implementation. Results are given for the true Picard iteration (TPI),
the relaxed Picard iteration proposed in this study (RPI) and the variant on the original UMC algorithm (Hindmarsh and Payne, 1996)
used by Pattyn in a Picard iteration (UMP). Calculations were performed along a flowline for a parallel-sided slab (PSS) (see text for details);
ISMIP–HOM (I-H) experiments B, D, E1 (no sliding) and E2 (sliding spot) (Pattyn and others, 2008); Sofiyskiy glacier (SFG), Russia; Pine Island
Glacier (PIG), West Antarctica; McCall Glacier (MCG), Alaska, USA; Storglaciären (STG), Sweden; John Evans Glacier (JEG), Canada and
Hintereisferner (HEF), Austria. Given also are the number of gridpoints (evenly spaced) in the x direction,m, the numerical domain length, L,
the flow-rate factor, A, the ice density, ρ, the type of basal boundary condition (BBC), the use of periodic boundary conditions (PBC) and the
data source. ‘l.s.l.’ denotes the use of a linear sliding law: τb = ubβ

2 with ub the basal velocity and β
2(x) a positive basal-friction coefficient.

m L A ρ BBC PBC TPI RPI UMP Source

km Pa−3 a−1 kgm3

PSS 101 10 10−16 900 no slip yes 214 198 195 none
I-H B 102 5 10−16 910 no slip yes 604 590 596 Pattyn and others (2008)
I-H B 102 160 10−16 910 no slip yes 32 22 25 Pattyn and others (2008)
I-H D 102 5 10−16 910 l.s.l. yes 13 219 12633 12 220 Pattyn and others (2008)
I-H D 102 160 10−16 910 l.s.l. yes 32 28 27 Pattyn and others (2008)
I-H E1 51 5 10−16 910 no slip no 35 15 17 Pattyn and others (2008)
I-H E2 51 5 10−16 910 l.s.l. no 35 15 17 Pattyn and others (2008)
SFG 71 7 8×10−17 900 l.s.l. no 34 16 19 De Smedt and Pattyn (2003),

Pattyn and others (2003)
PIG 51 250 7.6×10−17 910 l.s.l. no 25 13 16 Corr and others (2001),

Vaughan and others (2001)
MCG 150 7.45 6×10−17 900 no slip no 31 15 18 Nolan and others (2005),

Pattyn and others (2009)
STGwi 50 3.45 3×10−17 900 l.s.l. no 26 15 16 Herzfeld and others (1993), Holmlund (1996)
STGsu 50 3.45 3×10−17 900 l.s.l. no 26 15 16 Herzfeld and others (1993), Holmlund (1996)
STGan 50 3.45 3×10−17 900 l.s.l. no 28 15 17 Herzfeld and others (1993), Holmlund (1996)
JEGwi 78 15.2 3×10−17 910 l.s.l. no 35 19 19 Copland and Sharp (2001)
JEGsu 78 15.2 3×10−17 910 l.s.l. no 35 15 18 Copland and Sharp (2001)
JEGsp 78 15.2 3×10−17 910 l.s.l. no 32 16 25 Copland and Sharp (2001)
HEF 39 7.6 6×10−17 900 l.s.l. no 30 15 16 Greuell (1989)

Notes: For PIG, we use a flight-line profile from 250km inland to the grounding line (‘profile A’ of Vieli and Payne, 2003). At the up- and downstream
ends of this profile we apply the observed surface velocity. For all experiments using a linear sliding law, we use a simple stepwise β2 profile. Except
for PSS and the I-H experiments, β2 and A were tuned to roughly fit the observed surface velocity (Greuell, 1989; Pohjola, 1996; Jansson, 1997;
Shepherd and others, 2001; Pattyn and others, 2003; Nolan and others, 2005; Bingham and others, 2008). For PIG, a value of A corresponding to an
ice temperature of −2◦C (Paterson, 1994) was used. For STG, a winter (STGwi), a summer peak (STGsu) and an annual (STGan) basal-friction profile
were tuned. For JEG, a winter (JEGwi), a summer (JEGsu) and a spring (JEGsp) basal-friction profile were tuned. For HEF, we artifically extended the
glacier length with 100m at the glacier head as compared to Greuell (1989) to facilitate the use of the original data in our implementation. The
effect on the computation is negligible. For I-H B and D, following Pattyn and others (2008), L = (m − 2)dx , with dx the horizontal grid size. For all
other experiments, L = (m − 1)dx .

The range of θ for which we apply over- and underrelaxation
and the corresponding value of μ were determined experi-
mentally to minimize the number of iterations. We observed
that taking a larger over- or a smaller underrelaxation step
(e.g. μ = 4 or 1/3) may result in a divergence. Although it
rarely happens that θ ≥ 19π/20, it is beneficial to take an
underrelaxation step in such a case. We also experimented
with an overshooting correction following the original UMC,
but results were slightly less satisfying (more iterations
needed) than when using Equation (10). This new scheme is
very likely to also work for other HOIFM implementations,
given the similar (elliptic) nature of the governing equations,
and we encourage its application.
The proposed scheme substantially reduces the number of

iterations required as compared to the true Picard iteration,
especially for experiments with real data (Table 1; all
experiments without periodic boundary conditions use real
data). The same, however, is true for the variant of the
UMC added to the true Picard iteration. Although the variant
is theoretically less sound, it performs almost as well as,
and in some cases even better than, the proposed scheme.
However, the latter performs faster in almost all cases with

real data. For these cases, a series of extra experiments
(results not shown) with no slip (A = Atuned, β

2 = ∞)
and high slip (A = Atuned, β

2=min( 13β
2
tuned, 10

4 Pa am−1)),
low deformation (A = 1

3Atuned, β2 = β2tuned) and high
deformation (A = 3Atuned, β

2 = β2tuned), indicate that these
conclusions are fairly robust with respect to the tuning
parameters β2 and A. For all experiments in Table 1, except
for the parallel-sided slab experiment, we used a variant of
Equation (8) for which the x axis (z axis) is chosen horizontal
(vertically upwards). This results in the HOIFM

∂

∂x

(
4η

∂u
∂x

)
+

∂

∂z

(
η
∂u
∂z

)
= ρg

∂s
∂x

. (11)

For all experiments in Table 1, the iteration procedure was
stopped when

||Uγ
∗ −Uγ−1|| tol

|| γ < φ . (12)
U∗ ||

We use a small tolerance, tolφ = 10−6, to allow for a larger
number of iterations and, thus, a better comparison between
different relaxation algorithms. In general, a tolerance of
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10−4 suffices to keep the associated truncation error below
the discretization error, (propagated) measurement errors and
the likely model error. Using φtol = 10−4 would not alter the
conclusions that can be drawn from Table 1.

CONCLUSIONS
The above analysis demonstrates that neither the UMC nor
its variant should be used in a Picard iteration to solve the
velocity field in HOIFMs. The original UMC algorithm is
not useful since it corrects only for overshooting, whereas
undershooting is the main problem in the solution of the
velocity field in HOIFMs. Although the variant of the original
algorithm performs rather well in our experiments, it is
theoretically less sound and can potentially lead to unnatural
under- or overrelaxation steps. Instead, we propose a new
simple and stable Picard-relaxation scheme that results in a
fast solution of the velocity field in HOIFMs, especially for
problems with real data. Given the similar (elliptic) nature
of HOIFMs, the new scheme should perform well in other
HOIFM implementations and we encourage its application.
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monitoring studies. Geogr. Ann., 78A(2–3), 193–196.

Hutter, K. 1983. Theoretical glaciology; material science of ice
and the mechanics of glaciers and ice sheets. Dordrecht, etc.,
D. Reidel Publishing Co./Tokyo, Terra Scientific Publishing Co.

Jansson, P. 1997. Longitudinal coupling in ice flow across a
subglacial ridge. Ann. Glaciol., 24, 169–174.

Nolan, M., A. Arendt, B. Rabus and L. Hinzman. 2005. Volume
change of McCall Glacier, Arctic Alaska, USA, 1956–2003. Ann.
Glaciol., 42, 409–416.

Paterson, W.S.B. 1994. The physics of glaciers. Third edition.
Oxford, etc., Elsevier.

Pattyn, F. 2002. Transient glacier response with a higher-order
numerical ice-flow model. J. Glaciol., 48(162), 467–477.

Pattyn, F. 2003. A new three-dimensional higher-order thermomech-
anical ice-sheet model: basic sensitivity, ice stream development,
and ice flow across subglacial lakes. J. Geophys. Res., 108(B8),
2382.

Pattyn, F. 2008. Investigating the stability of subglacial lakes with a
full Stokes ice-sheet model. J. Glaciol., 54(185), 353–361.

Pattyn, F. and 6 others. 2003. Ice dynamics and basal properties of
Sofiyskiy glacier, Altai mountains, Russia, based on DGPS and
radio-echo sounding surveys. Ann. Glaciol., 37, 286–292.

Pattyn, F., B. De Smedt and R. Souchez. 2004. Influence of
subglacial Vostok lake on the regional ice dynamics of
the Antarctic ice sheet: a model study. J. Glaciol., 50(171),
583–589.

Pattyn, F. and 20 others. 2008. Benchmark experiments for
higher-order and full-Stokes ice sheet models (ISMIP-HOM).
Cryosphere, 2(1), 95–108.

Pattyn, F., C. Delcourt, D. Samyn, B. De Smedt and M. Nolan. 2009.
Bed properties and hydrological conditions underneath McCall
Glacier, Alaska, USA. Ann. Glaciol., 50(51), 80–84.

Picasso, M., J. Rappaz, A. Reist, M. Funk and H. Blatter. 2004.
Numerical simulation of the motion of a two-dimensional
glacier. Int. J. Num. Meth. Eng., 60(5), 995–1009.

Pohjola, V.A. 1996. Simulation of particle paths and deformation of
ice structures along a flow-line on Storglaciären, Sweden. Geogr.
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