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Abstract

In this paper we consider small essential spectral radius perturbations of operators with topological
uniform descent—small essential spectral radius perturbations which cover compact, quasinilpotent and
Riesz perturbations.
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1. Introduction

In [9] Grabiner studied the structure and perturbation theory of operators with
topological uniform descent. This class of operators contains the semi-Fredholm
operators, most of the generalizations of Fredholm operators which appear in the
literature, and various classes of operators defined by means of kernels and ranges
(see [2–6, 16, 19]). For a bounded linear operator T with topological uniform descent,
Grabiner’s study focuses on the sequences of ranges, {R(T n)}, and of kernels, {N(T n)},
and on the analogous sequences for sufficiently small or compact perturbations of T .
The present paper is concerned with small essential spectral radius perturbations
(that is, the essential spectral radius of the perturbation is small) of operators with
topological uniform descent—small essential spectral radius perturbations which
cover compact, quasinilpotent and Riesz perturbations. As seen in Remark 4.5,
our perturbational results extend all compact perturbational results of Grabiner [9],
and some sufficiently small perturbational results of Grabiner [9]. Most of our
perturbational results seem to be new even for Fredholm operators.

Throughout this paper, B(X) (respectively,K(X)) will denote the set of all bounded
(respectively, compact) linear operators on an infinite-dimensional complex Banach
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space X. For an operator T ∈ B(X), let T ∗ denote its dual, N(T ) its kernel, α(T ) its
nullity, R(T ) its range and β(T ) its defect. Recall that the descent and the ascent of
T ∈ B(X) are given by dsc(T ) = inf{n ∈ N : R(T n) = R(T n+1)} and asc(T ) = inf{n ∈ N :
N(T n) = N(T n+1)}, respectively. If the range R(T ) of T ∈ B(X) is closed and α(T ) <∞
(respectively, β(T ) <∞), then T is said to be upper semi-Fredholm (respectively,
lower semi-Fredholm). If T ∈ B(X) is both upper and lower semi-Fredholm, then T
is said to be Fredholm. If T ∈ B(X) is either upper or lower semi-Fredholm, then T is
said to be semi-Fredholm, and its index is defined by ind(T ) = α(T ) − β(T ). We call
T ∈ B(X) upper semi-Browder (respectively, lower semi-Browder) if T is upper semi-
Fredholm (respectively, lower semi-Fredholm) and has finite ascent (respectively,
descent). Also, the hyperrange and hyperkernel of T ∈ B(X) are the subspaces of
X defined by R(T∞) =

⋂∞
n=1 R(T n) and N(T∞) =

⋃∞
n=1 N(T n), respectively. Recall that

T ∈ B(X) is called bounded below if T is injective and has closed range R(T ). We
call T ∈ B(X) semi-regular if R(T ) is closed and N(T ) ⊆ R(T∞). Further, T ∈ B(X) is
called essentially semi-regular if R(T ) is closed and there exists a finite-dimensional
subspace F ⊆ X such that N(T ) ⊆ R(T∞) + F.

If T ∈ B(X), for each nonnegative integer n, T induces a linear transformation from
the vector space R(T n)/R(T n+1) to the space R(T n+1)/R(T n+2). We will let kn(T ) be the
dimension of the null space of the induced map and let k(T ) =

∑∞
n=0 kn(T ). Further,

denote k(T∞) = supn∈N k(T n). It follows easily from [9, Theorem 3.7] that T ∈ B(X) is
essentially semi-regular if and only if R(T ) is closed and k(T ) is finite. Moreover,
from [9, Lemma 3.11], we know that k(T ) is finite if and only if k(T∞) is finite,
and that k(T∞) is the dimension of (R(T∞) + N(T∞))/R(T∞). We also set cn(T ) =

dim R(T n)/R(T n+1) and c′n(T ) = dim N(T n+1)/N(T n). Recall that the essential descent
and the essential ascent of T ∈ B(X) are given by dsce(T ) = inf{n ∈ N : cn(T ) <∞} and
asce(T ) = inf{n ∈ N : c′n(T ) <∞}, respectively. The following definition, which was
introduced by Grabiner in [9], describes the classes of operators we will study in this
paper.

D 1.1. Let T ∈ B(X) and let d ∈ N. Then T has uniform descent for n ≥ d if
kn(T ) = 0 for all n ≥ d. If, in addition, R(T n) is closed in the operator range topology
of R(T d) for all n ≥ d, then we say that T has topological uniform descent, and, more
precisely, that T has topological uniform descent for n ≥ d.

The Calkin algebra over a Banach space X is the quotient algebra C(X) =

B(X)/K(X), and π : B(X)→C(X) denotes the natural homomorphism. Let re(T )
denote the spectral radius of the element π(T ) in C(X), T ∈ B(X), that is, re(T ) =

limn→∞ ‖π(T n)‖1/n; this is called the essential spectral radius of T . An operator
T ∈ B(X) is Riesz if {λ ∈ C : T − λI is not Fredholm} = {0}, that is re(T ) = 0.

For T ∈ B(X), the reduced minimum modulus, the injection modulus and the
surjection modulus of T are defined by γ(T ) = infx<N(T )(‖T x‖/dist(x, N(T ))) (if T = 0
then we set γ(T ) =∞), m(T ) = inf{‖T x‖ : x ∈ X, ‖x‖ = 1} and q(T ) = sup{ε ≥ 0 : TU ⊇
εU}, respectively. Note that γ(T ) = γ(T ∗) for every T ∈ B(X); γ(T ) > 0 if and
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only if R(T ) is closed [1, Theorem 1.13]; the injection modulus m(T ) (respectively,
surjection modulus q(T )) of an operator T which is bounded below (respectively, onto)
is a special case of the reduced minimum modulus γ(T ). For a detailed discussion of
the injection modulus and the surjection modulus of T , we refer the reader to [17,
pp. 26–28].

If T ∈ B(X) is semi-Fredholm, then there exists ε > 0 such that both α(T − λI) and
β(T − λI) are constant for all 0 < |λ| < ε (one of the two constants may be infinite).
In [20], Zemánek has defined the stability radius δ(T ) to be the supremum of all ε > 0
with the property described above. That is,

δ(T ) = sup{ε > 0 : α(T − λI) and β(T − λI) are constant for all 0 < |λ| < ε}.

For T ∈ B(X), let us define the injectivity radius, the surjectivity radius, and the
semi-regular radius of T as follows respectively:

sinj(T ) = sup{ε ≥ 0 : T − λI is bounded below for all |λ| < ε};

ssur(T ) = sup{ε ≥ 0 : T − λI is onto for all |λ| < ε};

sse(T ) = sup{ε > 0 : T − λI is semi-regular for all |λ| < ε}.

The semi-Fredholm radii of T are

r+(T ) = sup{ε ≥ 0 : T − λI is upper semi-Fredholm for all |λ| < ε};

r−(T ) = sup{ε ≥ 0 : T − λI is lower semi-Fredholm for all |λ| < ε}.

We remark that r+(T ) ≥ sinj(T ) and r−(T ) ≥ ssur(T ).
This paper is organized as follows. In Section 2 we gather together some

preliminary results which we will need repeatedly later. Section 3 is devoted to the
study of small essential spectral radius perturbations of operators with topological
uniform descent. Our study proceeds in two steps. Suppose that T has topological
uniform descent for n ≥ d. First, using some technical lemmas, we research, in
Theorem 3.8, small essential spectral radius perturbations of the restriction T |R(T d),
or (what amounts to the same thing) small essential spectral radius commuting
perturbations of semi-regular operators. Second, we consider small essential spectral
radius perturbations of operators with topological uniform descent. The final
perturbational results are obtained by determining properties of the perturbed operators
from properties of their restrictions to R(T d). In Section 4 we give some comments
on small essential spectral radius perturbations. Specifically, we show, as we stated
at the beginning of this paper, that small essential spectral radius perturbations cover
compact, quasinilpotent and Riesz perturbations (see Remark 4.5).

Henceforth, for a subspace M of a Banach space X, M means the closure of M in X.
If M is an invariant subspace of an operator T ∈ B(X), the symbols T |M and TM mean
the restriction of T to M and the map induced by T on X/M.
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2. Preliminary results

In this section we gather together some preliminary results which we will need
repeatedly later. The following propositions can be found in [9, Lemmas 2.2, 3.6 and
4.5, Theorem 3.4], [18, Theorem 1] and [14, Lemma 15], respectively.

P 2.1. Suppose that T is a bounded linear operator with closed range from
the Banach space X to the Banach space Y. If E and F are linear subspaces of X
and Y, respectively, and if E ⊇ N(T ) and F ⊆ R(T ), then:

(a) T (E) = T (E);
(b) T−1(F) = T−1(F).

P 2.2. If T ∈ B(X) has topological uniform descent for n ≥ d, then:

(a) the restriction of T to R(T∞) is onto;
(b) the map induced by T on R(T d)/R(T∞) is bounded below;
(c) the restriction of T to R(T d) ∩ N(T∞) is onto;
(d) the map induced by T on X/N(T∞) is bounded below.

P 2.3. If T ∈ B(X) has topological uniform descent for n ≥ d, then:

(a) R(T∞) + N(T d) = R(T∞) + N(T∞) = R(T∞) + N(T∞);
(b) R(T d) ∩ N(T∞) = R(T∞) ∩ N(T∞);
(c) R(T d) ∩ N(T∞) = R(T∞) ∩ N(T∞);

(d) R(T∞) ∩ N(T∞) = R(T∞) ∩ N(T∞).

P 2.4. If T and V are commuting linear transformations on the vector space
X, and n and d are nonnegative integers, then:

(a) the map induced by T d from R(Vn)/R(Vn+1) to R(VnT d)/R(Vn+1T d) is onto and
has kernel naturally isomorphic to (R(Vn) ∩ N(T d))/(R(Vn+1) ∩ N(T d));

(b) the map induced by the identity on X from (N(Vn+1) ∩ R(T d))/(N(Vn) ∩ R(T d))
to N(Vn+1)/N(Vn) is one-to-one and has cokernel naturally isomorphic to
(N(Vn+1) + R(T d))/(N(Vn) + R(T d));

(c) T d induces an isomorphism from N(T d+n+1)/N(T d+n) onto (N(T n+1) ∩
R(T d))/(N(T n) ∩ R(T d)).

P 2.5. Suppose that T and S are commuting bounded operators on the
Banach space X, and that V = S + T. Then:

(a) if T is an upper semi-Browder operator and re(S ) < r+(T ), then V is an upper
semi-Browder operator;

(b) if T is a lower semi-Browder operator and re(S ) < r−(T ), then V is a lower semi-
Browder operator.

P 2.6. Let T ∈ B(X) and let M be its closed invariant subspace. Then
re(T |M) ≤ re(T ) and re(TM) ≤ re(T ).

Next, we recall some classical results.
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Makai and Zemánek proved [15, Theorems 1, 3] the following elegant formulas on
the asymptotic behavior of m and q:

sinj(T ) = lim
n→∞

m(T n)1/n, (2.1)

ssur(T ) = lim
n→∞

q(T n)1/n, (2.2)

for any T ∈ B(X). Zemánek proved [20, Theorem 1] the following elegant formula:

δ(T ) = lim
n→∞

γ(T n)1/n,

for any semi-Fredholm operator T . Kordula and Müller proved [13, Theorems 3, 4]
that similar formulas hold for semi-regular operators and essentially semi-regular
operators. Specifically, if T is semi-regular then

sse(T ) = lim
n→∞

γ(T n)1/n,

while if T is essentially semi-regular then

sup{ε > 0 : T − λI is semi-regular for all 0 < |λ| < ε} = lim
n→∞

γ(T n)1/n.

By (2.1) and (2.2), we know that if T is bounded below then

sinj(T ) = lim
n→∞

γ(T n)1/n, (2.3)

while if T is onto then
ssur(T ) = lim

n→∞
γ(T n)1/n. (2.4)

For the latest discussions of various operator quantities, we refer the reader to [21].

3. Small essential spectral radius perturbations of operators with topological
uniform descent

Let T ∈ B(X). For every d ∈ N, to study the topological properties of the maps
induced by T , we will always assume that R(T d) is given the ‘unique’ operator range
topology under which it becomes a Banach space continuously imbedded in X. Using
the isomorphism X/N(T d) ≈ R(T d) and following [9], we define a topology on R(T d)
as follows.

D 3.1. Let T ∈ B(X). For every d ∈ N, the operator range topology on R(T d)
is defined by the norm ‖ · ‖R(T d) such that for all y ∈ R(T d),

‖y‖R(T d) = inf{‖x‖ : x ∈ X, y = T d x}.

For a detailed discussion of operator ranges and their topologies, we refer the reader
to [7, 8]. For convenience, when we refer to the operator range topology on R(T d),
we always mean the topology described above. If S , T ∈ B(X) and ST = TS, then the
norm of the restriction S|R(T ) : (R(T ), ‖ · ‖R(T ))→ (R(T ), ‖ · ‖R(T )) will be denoted by
||S |R(T )||R(T ). The next result shows that ||S |R(T )||R(T ) is no greater than ‖S ‖.
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P 3.2. If S , T ∈ B(X), ST = TS, then for every n ∈ N, the restriction Sn|R(T ) :
(R(T ), ‖ · ‖R(T ))→ (R(T ), ‖ · ‖R(T )) is bounded, and ‖Sn|R(T )‖R(T ) ≤ ‖Sn‖.

P. For arbitrary ε > 0 and y ∈ R(T ) such that ‖y‖R(T ) = 1, there exists x ∈ X
satisfying ‖x‖ = 1 + ε and y = T x. Hence Sny = SnT x = TSnx, and then

‖Sny‖R(T ) = inf{‖x0‖ : Sny = T x0} ≤ ‖S
nx‖ ≤ ‖Sn‖ · ‖x‖ ≤ ‖Sn‖ · (1 + ε).

From the arbitrariness of y ∈ R(T ) (‖y‖R(T ) = 1) and of ε > 0, we get ||Sn|R(T )||R(T ) ≤

||Sn||. �

From Definition 1.1 we see easily that T ∈ B(X) is semi-regular if and only if T
has topological uniform descent for n ≥ 0. Suppose that T ∈ B(X) has topological
uniform descent for n ≥ d. By Proposition 3.2, we know that the restriction T |R(T d) :
(R(T d), ‖ · ‖R(T d))→ (R(T d), ‖ · ‖R(T d)) of T to R(T d) is bounded. Moreover, it is easy
to see that the restriction T |R(T d) is semi-regular, and by Proposition 2.2, T |R(T∞) :
(R(T∞), ‖ · ‖R(T d))→ (R(T∞), ‖ · ‖R(T d)) is onto and TN(T∞) is bounded below. Since
Td := T |R(T d) is semi-regular, by Proposition 2.2 again, the map

(Td)|R((Td)∞) : (R((Td)∞), ‖ · ‖R(T d))→ (R((Td)∞), ‖ · ‖R(T d))

is onto, and the map

(Td)
N((Td)∞)

‖·‖
R(Td )

: R(T d)/N((Td)∞)
‖·‖R(Td )

→ R(T d)/N((Td)∞)
‖·‖R(Td )

is bounded below.
From the above observation, we introduce the following notation for operators

which have topological uniform descent for n ≥ d. This notation will be used
repeatedly later in this paper.

D 3.3. Suppose that T ∈ B(X) has topological uniform descent for n ≥ d.
Then we will denote T |R(T d), T |R(T∞) and TN(T∞) by Td, T̂ and T̃ , respectively.

Furthermore, we will denote (Td)|R((Td)∞) and (Td)
N((Td)∞)

‖·‖
R(Td )

by T̂d and T̃d,
respectively.

Just as in Grabiner’s study of sufficiently small or compact perturbations of
operators with topological uniform descent (see [9]), we start with the special case
where T is semi-regular. We treat this case by applying results on perturbations of
operators which are bounded below or onto to various maps induced by T . We start
with the following lemma (see Proposition 2.5) concerning small essential spectral
radius perturbations of operators which are bounded below or onto.

L 3.4. Suppose that T and S are commuting bounded operators on the Banach
space X, and that V = S + T. Then:

(a) if T is bounded below and re(S ) < r+(T ), then V is upper semi-Browder, ind(V) =

ind(T ), and T (N(Vk)) = N(Vk) for all k ∈ N;
(b) if T is onto and re(S ) < r−(T ), then V is lower semi-Browder, ind(V) = ind(T ),

and T−1(R(Vk)) = R(Vk) for all k ∈ N.
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P. (a) For each 0 ≤ λ ≤ 1, let Tλ = T + λS . It follows from Proposition 2.5 that
Tλ is upper semi-Browder, for every 0 ≤ λ ≤ 1. In particular, V = S + T is upper semi-
Browder. From the continuity of the index and the connectedness of the interval [0, 1]
we then infer that ind(V) = ind(T + S ) = ind(T ). For all k ∈ N, since V is upper semi-
Browder, Vk is upper semi-Browder, and hence N(Vk) is finite-dimensional. From the
commutativity of T and S , we know that N(Vk) is an invariant subspace of T . Since T
is one-to-one, T |N(Vk) is also one-to-one, and hence T (N(Vk)) = N(Vk).

(b) For each 0 ≤ λ ≤ 1, let Tλ = T + λS . It follows from Proposition 2.5 that Tλ
is lower semi-Browder, for every 0 ≤ λ ≤ 1. In particular, V = S + T is lower semi-
Browder. From the continuity of the index and the connectedness of the interval [0,1]
we then infer that ind(V) = ind(T + S ) = ind(T ). For all k ∈ N, since V is lower semi-
Browder, Vk is lower semi-Browder, and hence R(Vk) has finite codimension in X.
From the commutativity of T and S , we know that R(Vk) is an invariant subspace
of T . Since T is onto, TR(Vk) : X/R(Vk)→ X/R(Vk) induced by T is onto, and hence
T−1(R(Vk)) = R(Vk). �

By Lemma 3.4, we have the following result.

L 3.5. Suppose that T ∈ B(X) is semi-regular. If S ∈ B(X), ST = TS and V =

S + T, then:

(a) if re(S ) < r−(T̂ ), then there exists an integer p such that the subspace M =

V p(R(T∞)) is closed in X,

M = V(M) = T−1(M) = T (M), (3.1)

and M has finite codimension in R(T∞);
(b) if re(S ) < r+(T̃ ), then there exists an integer q such that N(T∞) has finite

codimension in the closed subspace L = V−q(N(T∞)) and

L = V−1(L) = T (L) = T−1(L); (3.2)

(c) if re(S ) < r−(T̂ ), then

dim(R(T∞) + R(V∞))/R(V∞) <∞;

if re(S ) < r+(T̃ ), then

dim(N(T∞) + N(V∞))/N(T∞) <∞;

and if re(S ) < min(r−(T̂ ), r+(T̃ )), then, for all n ∈ N,

dim(N(Vn) + R(V))/R(V) = dim N(V)/(N(V) ∩ R(Vn)) <∞.

P. (a) Since T is semi-regular, from Proposition 2.2 we know that T̂ = T |R(T∞) is
onto. By Proposition 2.6 and Lemma 3.4(b), it follows that V̂ := V |R(T∞) is lower semi-
Browder, and that T̂−1(R(V̂k)) = R(V̂k) for all k ∈ N. Hence there exists an integer p
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such that the subspace M := V̂ p(R(T∞)) = V p(R(T∞)) satisfies V(M) = V̂(M) = M =

T̂−1(M) = T−1(M) = T (M). The fourth equality above can be inferred from the
argument below.

The inclusion T̂−1(M) ⊆ T−1(M) is clear. To prove the opposite inclusion it is
enough to show that for every y ∈ T−1(M), then y ∈ R(T∞). Assume that y ∈ T−1(M).
Then Ty ∈ M = V p(R(T∞)) ⊆ R(T∞) and, since T is semi-regular, then y ∈ R(T∞)
(see [1, Theorems 1.23 and 1.24]).

Since V̂ is lower semi-Browder, V̂ p is lower semi-Browder, and hence M =

V̂ p(R(T∞)) has finite codimension in R(T∞). Then M is closed in R(T∞) so, since
R(T∞) is closed in X, we can infer that M is closed in X.

(b) Since T is semi-regular, from Proposition 2.2 we know that T̃ = TN(T∞) :

X/N(T∞)→ X/N(T∞) is bounded below. By Proposition 2.6 and Lemma 3.4(a),
it follows that Ṽ := VN(T∞) : X/N(T∞)→ X/N(T∞) is upper semi-Browder, and that

T̃ (N(Ṽk)) = N(Ṽk) for all k ∈ N. Hence there exists an integer q such that the
subspace L′ := Ṽ−q(N(T∞)) = V−q(N(T∞))/N(T∞) satisfies Ṽ−1(L′) = L′ = T̃ (L′). Let
L = V−q(N(T∞)). Thus V−1(L)/N(T∞) = L/N(T∞) = (T (L) + N(T∞))/N(T∞). Since
T is semi-regular, then N(T∞) ⊆ R(T ), and hence, for each y ∈ N(T∞), there exists
x ∈ X such that y = T x, so x ∈ T−1(N(T∞)). From Proposition 2.2 we can obtain
that T−1(N(T∞)) = N(T∞), and then N(T∞) ⊆ T (N(T∞)) ⊆ T (L), hence L = V−1(L) =

T (L). Since T−1(N(T∞)) = N(T∞), then L = T−1(L). Since Ṽ is upper semi-Browder,
Ṽq is upper semi-Browder, thus the subspace Ṽ−q(N(T∞)) = V−q(N(T∞))/N(T∞) is
finite-dimensional, that is, N(T∞) has finite codimension in L = V−q(N(T∞)).

(c) If re(S ) < r−(T̂ ), by (a), we know that there exists a closed subspace M of X
such that M = V(M) = T−1(M) = T (M). Then we have

M ⊆ R(V∞) ∩ R(T∞) ⊆ R(V) ∩ R(T∞) ⊆ R(T∞), (3.3)

and, for all n ∈ N, we can get

N(V) ∩ N(T∞) ⊆ N(V) ∩ R(Vn) ⊆ N(V). (3.4)

From (a) we know that M has finite codimension in R(T∞). Hence by (3.3)
we have

dim(R(T∞) + R(V∞))/R(V∞) = dim R(T∞)/(R(V∞) ∩ R(T∞)) <∞.

If re(S ) < r+(T̃ ), by (b), we know that there exists a closed subspace L of X such
that L = V−1(L) = T (L) = T−1(L). Then we have

N(T∞) ⊆ N(T∞) + N(V) ⊆ N(T∞) + N(V∞) ⊆ L, (3.5)

and, for all n ∈ N, we can get

R(V) ⊆ N(Vn) + R(V) ⊆ R(T∞) + R(V). (3.6)
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From (b) we know that N(T∞) has finite codimension in L. Hence by (3.5)
we have

dim(N(T∞) + N(V∞))/N(T∞) <∞.

If re(S ) < min(r−(T̂ ), r+(T̃ )), then by (3.4) and (3.6), it is easy to see that for all
n ∈ N,

dim(N(Vn) + R(V))/R(V) ≤ dim(R(T∞) + R(V))/R(V)

= dim R(T∞)/R(T∞) ∩ R(V) <∞,

dim N(V)/(N(V) ∩ R(Vn)) ≤ dim N(V)/(N(V) ∩ N(T∞))

= dim(N(V) + N(T∞))/N(T∞) <∞.

And from [12, Lemmas 3.5 and 2.2], we have the equality

dim(N(Vn) + R(V))/R(V) = dim N(V)/(N(V) ∩ R(Vn)). �

From the proof of the above lemma, we get the following result.

L 3.6. Suppose that T ∈ B(X) has topological uniform descent for n ≥ d. If
S ∈ B(X), ST = TS and V = S + T, then:

(a) if re(S ) < r−(T̂ ), then there exists an integer p such that the subspace M =

V p(R(T∞)) is closed in the operator range topology on R(T d), T (M) = M =

V(M) ⊆ T−1(M), and M has finite codimension in R(T∞);
(b) if re(S ) < r+(T̃ ), then there exists an integer q such that the closed subspace

L = V−q(N(T∞)) satisfies L = V−1(L) = T (L) + N(T∞) = T−1(L) and N(T∞) has
finite codimension in L;

(c) if re(S ) < r−(T̂ ), then

dim(R(T∞) + R(V∞))/R(V∞) <∞,

and if re(S ) < r+(T̃ ), then

dim(N(T∞) + N(V∞))/N(T∞) <∞.

For a subspace A of a Banach space X, let A⊥ denote the annihilator of A. For any
Banach spaces X and Y , let B(X, Y) denote the set of all bounded linear operators from
X to Y . From the definition of the reduced minimum modulus, it is easy to verify that
if J ∈ B(X, Y) is isometric and invertible and T ∈ B(X), then γ(T ) = γ(JT J−1).

L 3.7. Suppose that T ∈ B(X) is semi-regular. For M in (3.1) and L in (3.2), the
operator T induces T |M , TM , T |L and TL. Then:

(a) sinj(T̃ ) ≤ sinj(TM), sinj(T̃ ) ≤ sinj(TL);
(b) ssur(T̂ ) ≤ ssur(T |L), ssur(T̂ ) ≤ ssur(T |M).

P. Here, we need only prove the first inequality of (a) (respectively, (b)). The
proof of the second inequality of (a) (respectively, (b)) is similar, and will be omitted.
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(a) Since both T̃ = TN(T∞) and TM are bounded below, then it follows from (2.3)
that

sinj(T̃ ) = lim
n→∞

γ(T̃ n)1/n,

sinj(TM) = lim
n→∞

γ(T n
M)1/n.

Hence, in order to show that sinj(T̃ ) ≤ sinj(TM), it is enough to show that

lim
n→∞

γ(T̃ n)1/n ≤ lim
n→∞

γ(T n
M)1/n.

We now do this. For all n ∈ N,

γ(T n
M) = γ((T n

M)∗) = γ(J(T n)∗|M⊥ J−1) = γ((T n)∗|M⊥),

γ(T̃ n) = γ((T̃ n)∗) = γ(Q(T n)∗|
N(T∞)

⊥Q−1) = γ((T n)∗|
N(T∞)

⊥),

where J : M⊥ −→ (X/M)∗ and Q : N(T∞)
⊥
−→ (X/N(T∞))∗ are isometric and

invertible. By the definition of the reduced minimum modulus,

γ((T n)∗|M⊥) = inf
f∈M⊥, f<N((T n)∗)∩M⊥

‖(T n)∗ f ‖
dist( f , N((T n)∗) ∩ M⊥)

, (3.7)

γ((T n)∗|N⊥) = inf
f∈N⊥, f<N((T n)∗)∩N⊥

‖(T n)∗ f ‖
dist( f , N((T n)∗) ∩ N⊥)

, (3.8)

where N = N(T∞). By (3.1), M ⊆ R(T n), hence N((T n)∗) = R(T n)⊥ ⊆ M⊥. Since
T is semi-regular, then N(T∞) ⊆ R(T n), and hence N((T n)∗) = R(T n)⊥ ⊆ N(T∞)

⊥
.

Consequently,

N((T n)∗) ∩ M⊥ = N((T n)∗) = N((T n)∗) ∩ N(T∞)
⊥
. (3.9)

By (3.1) again, N(T∞) ⊆ M, hence

M⊥ ⊆ N(T∞)
⊥
. (3.10)

From (3.7)–(3.10) we get γ((T n)∗|
N(T∞)

⊥) ≤ γ((T n)∗|M⊥) for all n ∈ N, then γ(T̃ n) ≤

γ(T n
M) for all n ∈ N, and hence limn→∞ γ(T̃ n)1/n ≤ limn→∞ γ(T n

M)1/n.
(b) Since both T̂ = T |R(T∞) and T |L are onto, it follows from (2.4) that

ssur(T̂ ) = lim
n→∞

γ(T̂ n)1/n,

ssur(T |L) = lim
n→∞

γ(T n|L)1/n.

Hence, in order to show that ssur(T̂ ) ≤ ssur(T |L), it is enough to show that

lim
n→∞

γ(T̂ n)1/n ≤ lim
n→∞

γ(T n|L)1/n.
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We now do this. For all n ∈ N, by the definition of the reduced minimum modulus,

γ(T n|L) = inf
x∈L,x<N(T n)∩L

‖T nx‖
dist(x, N(T n) ∩ L)

, (3.11)

γ(T n|R(T∞)) = inf
x∈R(T∞),x<N(T n)∩R(T∞)

‖T nx‖
dist(x, N(T n) ∩ R(T∞))

. (3.12)

By (3.2), N(T n) ⊆ L. Since T is semi-regular, N(T n) ⊆ R(T∞). Consequently,

N(T n) ∩ L = N(T n) = N(T n) ∩ R(T∞). (3.13)

By (3.2) again,
L ⊆ R(T∞). (3.14)

From (3.11)–(3.14) we get γ(T̂ n) ≤ γ(T n|L) for all n ∈ N, and hence limn→∞ γ(T̂ n)1/n ≤

limn→∞ γ(T n|L)1/n. �

We recall that r+(T ) ≥ sinj(T ) and r−(T ) ≥ ssur(T ) for any T ∈ B(X); and that V ∈
B(X) is essentially semi-regular if and only if R(V) is closed and k(V∞) is finite.

From Lemmas 3.4, 3.5 and 3.7, we have the following theorem which describes
small essential spectral radius perturbations of semi-regular operators.

T 3.8. Suppose that T ∈ B(X) is semi-regular. If S ∈ B(X), ST = TS and V =

S + T, then:
(a) if re(S ) < r−(T̂ ), then

dim(R(T∞) + R(V∞))/R(V∞) <∞;

(b) if re(S ) < r+(T̃ ), then

dim(N(T∞) + N(V∞))/N(T∞) <∞.

If re(S ) < min(r−(T̂ ), r+(T̃ )), then:
(c) V is essentially semi-regular.
Further, if re(S ) < min(ssur(T̂ ), sinj(T̃ )), then:
(d) dim R(Vn)/R(Vn+1) = dim R(T m)/R(T m+1) for all m ≥ 0 and sufficiently large n;
(e) dim N(Vn+1)/N(Vn) = dim N(T m+1)/N(T m) for all m ≥ 0 and sufficiently large n.

P. (a), (b) By Lemma 3.5(c).
(c) Here we consider the map TN(T∞) and VN(T∞) induced by T and V on X/N(T∞),

respectively. By Proposition 2.2, TN(T∞) is bounded below, and by Proposition 2.6,
re(S N(T∞)) ≤ re(S ) < r+(TN(T∞)). Thus from Lemma 3.4(a) we know that VN(T∞)
is an upper semi-Browder operator, and hence the subspace R(VN(T∞)) = (R(V) +

N(T∞))/N(T∞) is closed. By (3.1), N(T∞) ⊆ R(V), so R(V) is closed.
By (3.2), N(V∞) ⊆ R(T∞), then from (a) we know that k(V∞) = dim(R(V∞) +

N(V∞))/R(V∞) ≤ dim(R(T∞) + R(V∞))/R(V∞) <∞. Consequently, V is essentially
semi-regular.
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(d) For M in (3.1), we consider the operators TM and VM induced by T and V on
X/M. From (3.1) and the semi-regularity of T , we can get that TM is bounded below.
It follows from the assumption and Proposition 2.6 that re(S M) ≤ re(S ) < sinj(T̃ ).
And by Lemma 3.7(a) we know that sinj(T̃ ) ≤ sinj(TM) ≤ r+(TM), then we have that
re(S M) < r+(TM).

Recall that dim R(T m)/R(T m+1) is constant for m ≥ 0, since T is semi-regular. To
complete the proof of (d), we consider the following two cases.

Case I. Suppose that dim(X/R(T )) <∞. Since ssur(T̂ ) ≤ r−(T̂ ), then by Lemma 3.5(a)
we have that for some integer p, the closed subspace M = V p(R(T∞)) satisfies
M = V(M) = T−1(M) = T (M). Since sinj(T̃ ) ≤ r+(T̃ ), then by Lemma 3.5(b) we have
N(Vn) ⊆ R(T∞). Thus, for all n ≥ p, V−n(M) = V−n(V p(R(T∞))) = V−n(Vn(R(T∞))) =

N(Vn) + R(T∞) = R(T∞). Hence from Lemma 3.4(a) it follows that dim(R(T∞)/M) −
dim(X/R(Vn)) = α(Vn

M) − β(Vn
M) = ind(Vn

M) = ind(T n
M) = (−n) · dim(X/R(T )) for all

n ≥ p. Then, we can conclude that dim R(Vn)/R(Vn+1) = ind(Vn
M) − ind(Vn+1

M ) =

ind(T n
M) − ind(T n+1

M ) = dim(X/R(T )) for all n ≥ p.

Case II. Suppose that dim(X/R(T )) =∞. By Lemma 3.4(a),

ind(VM) = ind(TM) = −β(TM) = −dim(X/R(T )) = −∞,

then β(VM) =∞, that is, X/R(V) is infinite-dimensional. For all n ∈ N, the map
induced by Vn from X/R(V) to R(Vn)/R(Vn+1) is onto, and its null space is (N(Vn) +

R(V))/R(V). From Lemma 3.5(c) we can infer that dim((N(Vn) + R(V))/R(V)) <∞,
and thus R(Vn)/R(Vn+1) is infinite-dimensional for all n ∈ N.

(e) For L in (3.2), we consider the restrictions T |L and V |L. From (3.2), we know
that T |L is onto. It follows from the assumption and Proposition 2.6 that re(S |L) ≤
re(S ) < ssur(T̂ ). And by Lemma 3.7(b) we know that ssur(T̂ ) ≤ ssur(T |L) ≤ r−(T |L), then
we have that re(S |L) < r−(T |L).

Recall that dim N(T m+1)/N(T m) is constant for m ≥ 0, since T is semi-regular. To
complete the proof of (e), we consider the following two cases.

Case I. Suppose that dim N(T m+1)/N(T m) = dim N(T ) ∩ R(T m) = dim N(T ) <∞.
Since sinj(T̃ ) ≤ r+(T̃ ), then from Lemma 3.5(b) it follows that for some integer q,
the closed subspace L = V−q(N(T∞)) satisfies L = V−1(L) = T (L) = T−1(L). Since
ssur(T̂ ) ≤ r−(T̂ ), from Lemma 3.5(a), we have N(T∞) ⊆ R(Vn). Thus, for all n ≥ q,

Vn(L) = Vn(V−q(N(T∞))) = Vn(V−n(N(T∞))) = R(Vn) ∩ N(T∞) = N(T∞).

Hence, by Lemma 3.4(b),

dim N(Vn) − dim(L/N(T∞)) = dim(N(Vn) ∩ L) − dim(L/N(T∞))

= α(Vn|L) − β(Vn|L)

= ind(Vn|L) = ind(T n|L) = dim(N(T n) ∩ L)

= dim N(T n)
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for all n ≥ q. And then we can conclude that dim N(Vn+1)/N(Vn) = ind(Vn+1|L) −
ind(Vn|L) = ind(T n+1|L) − ind(T n|L) = dim(N(T )) for all n ≥ q.

Case II. Suppose that dim N(T m+1)/N(T m) =∞. By Lemma 3.4(b), ind(V |L) =

ind(T |L) = dim(N(T ) ∩ L) = dim N(T ) =∞, then α(V |L) =∞, that is, N(V) =

N(V) ∩ L is infinite-dimensional. For all n ∈ N, the map induced by Vn from
N(Vn+1)/N(Vn) to N(V) is one-to-one, and its cokernel is N(V)/(N(V) ∩ R(Vn)). From
Lemma 3.5(c) we can infer that N(V)/(N(V) ∩ R(Vn)) is finite-dimensional, and thus
N(Vn+1)/N(Vn) is infinite-dimensional for all n ∈ N. �

The next theorem describes arbitrary small essential spectral radius perturbations of
an operator with topological uniform descent.

T 3.9. Suppose that T ∈ B(X) has topological uniform descent for m ≥ d , 0.
If S ∈ B(X), ST = TS and V = S + T, then:

(a) if re(S ) < r−(T̂ ), then

dim(R(T∞) + R(V∞))/R(V∞) <∞;

(b) if re(S ) < r+(T̃ ), then

dim(N(T∞) + N(V∞))/N(T∞) <∞;

if re(S |R(T d)) < min(ssur(T̂d), sinj(T̃d)), then:
(c) dim R(Vn)/R(Vn+1) ≥ dim R(T m)/R(T m+1) for all m ≥ d and sufficiently large n;
(d) dim N(Vn+1)/N(Vn) ≥ dim N(T m+1)/N(T m) for all m ≥ d and sufficiently large n.

P. (a), (b) By Lemma 3.6(c).
(c), (d) Recall that dim R(T m)/R(T m+1) and dim N(T m+1)/N(T m) are constant for

m ≥ d, since T has uniform descent for m ≥ d. Hence part (c) follows directly
from Theorem 3.8(d) and Proposition 2.4(a); and part (d) follows directly from
Theorem 3.8(e) and Proposition 2.4(b). �

In order to replace the inequalities in parts (c) and (d) of Theorem 3.9 with
equalities, we need additional hypotheses on S or V . For a spectral analysis of T , the
most important case is when S = λI. Since the proof is no harder under the assumption
that S is invertible, rather than a scalar multiple of the identity, we use this assumption
as the added hypothesis on S .

T 3.10. Suppose that T ∈ B(X) has topological uniform descent for m ≥ d , 0.
If S ∈ B(X) is invertible, ST = TS, re(S |R(T d)) < min(ssur(T̂d), sinj(T̃d)) and V = S + T,
then:

(a) dim R(Vn)/R(Vn+1) = dim R(T m)/R(T m+1) for all m ≥ d and sufficiently large n;
(b) dim N(Vn+1)/N(Vn) = dim N(T m+1)/N(T m) for all m ≥ d and sufficiently large n.

P. Define by induction the following sequence: R1 = −S −1, Rn+1 = S −1VRn +

R1 (n ≥ 1). From the invertibility of S and TS = ST , we can infer that TRn = RnT ,
SRn = RnS and S −nVn = I − TRn for all n ∈ N.
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Indeed, when n = 1, then R1 = −S −1 satisfies TR1 = R1T , SR1 = R1S and S −1V =

S −1(S + T ) = I + S −1T = I − R1T = I − TR1. Suppose that TRk = RkT , SRk = RkS and
S −kVk = I − TRk hold. Then, when n = k + 1,

TRk+1 = T (S −1VRk + R1) = (S −1VRk + R1)T = Rk+1T,

SRk+1 = S (S −1VRk + R1) = (S −1VRk + R1)S = Rk+1S

and

S −(k+1)Vk+1 = S −1(S −kVk)V = S −1(I − TRk)V = S −1V − S −1TRkV

= (I − TR1) − TS−1VRk) = I − T (S −1VRk + R1)

= I − TRk+1.

Hence it follows that N(V∞) ⊆ R(T∞), and by interchanging the roles of V and
T we also have N(T∞) ⊆ R(V∞). Parts (a) and (b) now follow immediately from
Theorem 3.8(d) and (e) and Proposition 2.4(a) and (b). �

C 3.11. Suppose that T ∈ B(X) has topological uniform descent for m ≥
d , 0. If S ∈ B(X) is invertible, ST = TS, re(S |R(T d)) < min(ssur(T̂d), sinj(T̃d)) and
V = S + T, then:

(a) asc(V) <∞ ⇐⇒ asc(T ) <∞, asce(V) <∞ ⇐⇒ asce(T ) <∞;
(b) dsc(V) <∞ ⇐⇒ dsc(T ) <∞, dsce(V) <∞ ⇐⇒ dsce(T ) <∞.

We can improve Theorem 3.9(a), (b) and replace the inequalities in Theorem 3.9(c),
(d) with equalities if we assume that both T and V have topological uniform descent.
We do this in the following theorem.

T 3.12. Suppose that T ∈ B(X) has topological uniform descent for m ≥ d , 0.
If S ∈ B(X), ST = TS and V = S + T has topological uniform descent for n ≥ l, then:

(a) if re(S ) < min(r−(T̂ ), r−(V̂)), then

dim(R(T∞) + R(V∞))/(R(T∞) ∩ R(V∞)) <∞;

(b) if re(S ) < min(r+(T̃ ), r+(Ṽ)) then

dim(N(T∞) + N(V∞))/(N(T∞) ∩ N(V∞)) <∞;

if re(S |R(T d)) < min(ssur(T̂d), sinj(T̃d)) and re(S |R(V l)) < min(ssur(V̂l), sinj(Ṽl)),
then:

(c) dim R(Vn)/R(Vn+1) = dim R(T m)/R(T m+1) for sufficiently large m and n;
(d) dim N(Vn+1)/N(Vn) = dim N(T m+1)/N(T m) for sufficiently large m and n.

P. Note that if M and N are linear subspaces of X, then by [12, Lemma 2.2]
we have (M + N)/N ≈ M/(M ∩ N). Hence parts (a) and (b) follow directly from
Theorem 3.9(a) and (b).

Parts (c) and (d) are immediate consequences of Theorem 3.9(c) and (d). �

In order to have Theorem 3.12 apply to all commuting small essential spectral radius
perturbations of an operator T with topological uniform descent, we need to consider
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those T for which all small essential spectral radius perturbations have topological
uniform descent. That some restriction on T is necessary is clear from considering the
special cases in which T is the zero operator or is a projection of finite rank. We see
in the next theorem that when T is essentially semi-regular, then V is also essentially
semi-regular.

Let T ∈ B(X). Note that if kd(T ) = 0 for some d ∈ N, then kn(T ) = 0 for all n ≥ d.
In addition, if T is essentially semi-regular, then T n is essentially semi-regular, and
hence R(T n) is closed for all n ∈ N (see [1, Theorem 1.51]). Hence it is easy to verify
that if T ∈ B(X) is essentially semi-regular (d := k(T )), then T has topological uniform
descent for n ≥ d.

T 3.13. Suppose that T ∈ B(X) is essentially semi-regular (d := k(T )). If S ∈
B(X), ST = TS, re(S ) < min(r−(T̂ ), r+(T̃ )) and re(S |R(T d)) < min(r−(T̂d), r+(T̃d)), then
V = S + T is essentially semi-regular.

P. We first prove that k(V∞) <∞. Since T is essentially semi-regular, then T has
uniform descent for n ≥ d, where d = k(T ). Since re(S ) < r+(T̃ ), by Lemma 3.6(b),
there exists a closed subspace L satisfying L = V−1(L) = T (L) + N(T∞), and then we
have

N(V∞) ⊆ L = T (L) + N(T∞) = T (T (L) + N(T∞)) + N(T∞)

= T 2(L) + T (N(T∞)) + N(T∞) = T 2(L) + N(T∞)

= T 2(T (L) + N(T∞)) + N(T∞) = · · ·

= R((T |L)∞) + N(T∞) ⊆ R(T∞) + N(T∞).

By Proposition 2.3, R(T∞) + N(T∞) = R(T∞) + N(T∞). Since T is essentially semi-
regular, k(T∞) = dim(R(T∞) + N(T∞))/R(T∞) <∞, and hence there exists a finite-
dimensional subspace F of X such that N(T∞) ⊆ R(T∞) + F. Since re(S ) < r−(T̂ ), by
Lemma 3.6(c), then dim(R(T∞) + R(V∞))/R(V∞) <∞, and hence

k(V∞) = dim(N(V∞) + R(V∞))/R(V∞)

≤ dim(R(T∞) + N(T∞) + R(V∞))/R(V∞)

= dim(R(T∞) + N(T∞) + R(V∞))/R(V∞)

≤ dim(R(T∞) + R(V∞) + F)/R(V∞) <∞.

Next we show that R(V) is closed. Since Td = T |R(T d) is semi-regular and
re(S |R(T d)) < min(r−(T̂d), r+(T̃d)), then from Theorem 3.8(c) we know that R(VT d) is
closed in the operator range topology on R(T d). Since T d induces a bounded operator
from X to R(T d), with the operator range topology, then by Proposition 2.1(b) we
have that T−d(R(T dV)) is closed in X. From Proposition 2.4 we know that the map
induced by T d from X/R(V) to R(T d)/R(T dV) is onto, and its kernel is isomorphic to
N(T d)/(R(V) ∩ N(T d)). Since R(V) ⊇ R(V∞),

dim N(T d)/(R(V) ∩ N(T d)) ≤ dim N(T d)/(R(V∞) ∩ N(T d))

= dim(N(T d) + R(V∞))/R(V∞)
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≤ dim(N(T∞) + R(V∞))/R(V∞)

≤ dim(R(T∞) + R(V∞) + F)/R(V∞) <∞.

Hence R(V) has finite codimension in T−d(R(T dV)). By [1, Corollary 1.15], R(V) is
closed. �

R 3.14. Suppose that T ∈ B(X) is essentially semi-regular (d := k(T )), and
that S ∈ B(X) commutes with T . Note that T̂ = T̂d and that re(S |R(T d)) ≤ re(S )
(see Theorem 4.4 below). Then the condition that re(S ) < min(r−(T̂ ), r+(T̃ ))
and re(S |R(T d)) < min(r−(T̂d), r+(T̃d)) in Theorem 3.13 can be replaced by re(S ) <
min(r−(T̂ ), r+(T̃ ), r+(T̃d)).

A result similar to Theorem 3.13 was proved by Kordula et al. in [14, Theorem 16],
in which the condition is re(S ) < min(r−(T̂ ), r+(TR(T∞))).

By Theorems 3.12 and 3.13, we immediately have the following result.

T 3.15. Suppose that T ∈ B(X) is essentially semi-regular (d := k(T )). If S ∈
B(X), ST = TS, re(S ) < min(r−(T̂ ), r+(T̃ )), re(S |R(T d)) < min(r−(T̂d), r+(T̃d)) and V =

T + S , then:

(a) V is essentially semi-regular;
(b) if re(S ) < r−(V̂), then

dim(R(T∞) + R(V∞))/(R(T∞) ∩ R(V∞)) <∞;

(c) if re(S ) < r+(Ṽ), then

dim(N(T∞) + N(V∞))/(N(T∞) ∩ N(V∞)) <∞;

if re(S |R(T d)) < min(ssur(T̂d), sinj(T̃d)) and re(S |R(V l)) < min(ssur(V̂l), sinj(Ṽl)),
where l := k(V), then:

(d) dim R(Vn)/R(Vn+1) = dim R(T m)/R(T m+1) for sufficiently large m and n;
(e) dim N(Vn+1)/N(Vn) = dim N(T m+1)/N(T m) for sufficiently large m and n.

4. Some comments

In this section we show, as we stated at the beginning of this paper, that
small essential spectral radius perturbations cover compact, quasinilpotent and Riesz
perturbations.

T 4.1. Suppose that T ∈ B(X) is semi-regular. Then we have γ(T ) ≤
min(ssur(T̂ ), sinj(T̃ )).

P. Since T is semi-regular, by mimicking the proof of Lemma 3.7, γ(T ) ≤
min(γ(T̂ ), γ(T̃ )). Since T̂ is onto, by (2.4), ssur(T̂ ) = limn→∞ γ(T̂ n)1/n ≥ γ(T̂ ). Since
T̃ is bounded below, by (2.3), sinj(T̃ ) = limn→∞ γ(T̃ n)1/n ≥ γ(T̃ ). Hence γ(T ) ≤
min(ssur(T̂ ), sinj(T̃ )). �
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T 4.2. Suppose that T ∈ B(X) has topological uniform descent for n ≥ d. Then
γ(Td) ≤min(ssur(T̂ ), sinj(T̃ )).

P. Since T has topological uniform descent for n ≥ d, by [9, Theorem 3.1], we
have R(T d) ∩ N(T ) = R(T∞) ∩ N(T ) and N(T d) + R(T ) = N(T∞) ∩ R(T ). Note that
[T d]−1(T |R(T d))[T d] = TN(T d), where [T d] : X/N(T d)→ (R(T d), ‖ · ‖R(T d)) is isometric
and invertible. Recall that if M and N are linear subspaces of X, then (M + N)⊥ =

M⊥ ∩ N⊥. Now, by mimicking the proof of Lemma 3.7, we have that γ(Td) ≤ γ(T̂ )
and γ(Td) ≤ γ(T̃ ). Since T̂ is onto, by (2.4), we have ssur(T̂ ) = limn→∞ γ(T̂ n)1/n ≥ γ(T̂ ).
Since T̃ is bounded below, by (2.3), we have sinj(T̃ ) = limn→∞ γ(T̃ n)1/n ≥ γ(T̃ ). Hence
γ(Td) ≤min(ssur(T̂ ), sinj(T̃ )). �

T 4.3. Suppose that T and S are commuting bounded operators on the
Banach space X, and that S is lower semi-Fredholm, then S |R(T ) : (R(T ), ‖ · ‖R(T ))→
(R(T ), ‖ · ‖R(T )) is also lower semi-Fredholm.

P. Since S is lower semi-Fredholm, S ∗ is upper semi-Fredholm, and hence
S ∗|N(T )⊥ is also upper semi-Fredholm. It follows that (S N(T ))∗ = Q−1S ∗|N(T )⊥Q is
upper semi-Fredholm, where Q : (X/N(T ))∗→ N(T )⊥ is isometric and invertible.
Let [T ] : X/N(T )→ (R(T ), ‖ · ‖R(T )) be an isometric and invertible operator.
Since [T ]−1(S |R(T ))[T ] = S N(T ), then [T ]∗(S |R(T ))∗([T ]∗)−1 = (S N(T ))∗ is upper semi-
Fredholm, and hence [T ]−1(S |R(T ))[T ] = S N(T ) is lower semi-Fredholm. Thus S |R(T )
is also lower semi-Fredholm. �

Let T ∈ B(X). Denote the upper semi-Fredholm spectrum, lower semi-
Fredholm spectrum and the essential spectrum of T by σ+(T ) = {λ ∈ C : T − λI
is not upper semi-Fredholm}, σ−(T ) = {λ ∈ C : T − λI is not lower semi-Fredholm}
and σe(T ) = {λ ∈ C : T − λI is not Fredholm}, respectively. Note that re(T ) = max{|λ| :
λ ∈ σe(T )} and that the upper (respectively, lower) semi-Fredholm spectrum of T
contains the boundary of the essential spectrum of T (see [11, Theorem 3]).

Next, we present a useful result concerning operator ranges. The reader should
compare it with Proposition 2.6.

T 4.4. Suppose that T and S are commuting bounded operators on the Banach
space X. Then re(S |R(T )) ≤ re(S ).

P. For any T ∈ B(X), note that re(T ) = max{|λ| : λ ∈ σe(T )} and that the lower
semi-Fredholm spectrum of T contains the boundary of the essential spectrum of T .
Then the desired conclusion follows from Theorem 4.3. �

R 4.5. Suppose that T ∈ B(X) has topological uniform descent for n ≥ d, and
that S ∈ B(X) commutes with T . Then by Proposition 3.2 and Theorems 4.1, 4.2
and 4.4, we have the following inequalities:

||S |R(T d)||R(T d) ≤ ‖S ‖; (4.1)

γ(Td) ≤min(ssur(T̂d), sinj(T̃d)); (4.2)

γ(Td) ≤min(ssur(T̂ ), sinj(T̃ )); (4.3)
re(S |R(T d)) ≤ re(S ). (4.4)
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Inequality (4.1) seems to have been discovered by Grabiner in the fourth paragraph
of [9, Section 4], although he states that ‖S ‖ ≤ ||S |R(T d)||R(T d) (which, in general, is not
true). Recall that in [9], by sufficiently small Grabiner means that the norm of the
restriction of S to R(T d) is less than the reduced minimum modulus of the restriction
of T to R(T d). Hence by (4.2) and (4.3), one can readily see that our perturbational
results extend some sufficiently small perturbational results of Grabiner [9].

Note that S is Riesz if and only if re(S ) = 0. Hence by (4.4), one can readily
see that small essential spectrum radius perturbations cover Riesz perturbations. In
particular, small essential spectrum radius perturbations cover compact perturbations
in [9] and quasinilpotent perturbations. Consequently, our perturbational results
extend all compact perturbational results of Grabiner [9].

As far as we know, most of our perturbations results are new even for Fredholm
operators.

Finally, from the proof of Theorem 4.3, we get the following results concerning
operator ranges.

C 4.6. Suppose that T and S are commuting bounded operators on the
Banach space X. If S is quasi-nilpotent, compact, or Riesz, respectively, then S |R(T )

has the same property. If S has any one of the above properties and if T has infinite
rank, then R(ST) has infinite codimension in R(T ).

P. The first statement follows from the proof of Theorem 4.3, since the properties
described in Corollary 4.6 are conjugate invariance, similarity invariance and inherited
by the restrictions on closed invariant subspaces. Note that the lower semi-Fredholm
spectrum of an operator on an infinite-dimensional Banach space is nonempty. Then
the second statement follows immediately from the first statement. �

From the fact that the upper semi-Fredholm spectrum of an operator on an infinite-
dimensional Banach space is nonempty, we immediately have the following corollary,
which is the dual of Corollary 4.6 for kernels.

C 4.7. Suppose that T and S are commuting bounded operators on the
Banach space X. If S is Riesz, T has infinite rank, and R(ST) is closed in the operator
range topology on R(T ), then N(T ) has infinite codimension in N(ST).

P. By Corollary 4.6, S |R(T ) is Riesz. Note that the lower semi-Fredholm spectrum
of an operator on an infinite-dimensional Banach space is nonempty, and that
N(ST)/N(T ) is linearly isomorphic to N(S ) ∩ R(T ). The desired conclusion follows
immediately. �

R 4.8. Corollary 4.6 was proved by Grabiner in [8, Theorem 4.2], but our proof
uses a rather direct technique different from [8]. A result similar to Corollary 4.7
is also proved by Grabiner in [8, Corollary 4.3], in which the condition that R(ST)
is closed in the operator range topology on R(T ) is replaced by R(ST) being closed
in X. Here we note that, by [10, Theorem 1], the condition that R(ST) = R(TS) is
closed in X implies that N(T ) + R(S ) is closed in X. And by Proposition 2.1, this last
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condition is equivalent to R(ST) being closed in the operator range topology on R(T ).
In conclusion, the condition that R(ST) is closed in X implies that R(ST) is closed in
the operator range topology on R(T ). But the reverse is not true. We see this by taking
S = I and T with nonclosed range R(T ).
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