The Lives and Death-Throes of Massive Stars Proceedings IAU Symposium No. 329, 2016 J.J. Eldridge, J.C. Bray, L.A.S. McClelland & L. Xiao, eds.

A multi-wavelength view of NGC 1624-2

A. David-Uraz^{1,2}, V. Petit^{1,2}, R. MacInnis¹, C. Erba¹, S. P. Owocki¹, A. W. Fullerton³, N. R. Walborn³ and D. H. Cohen⁴

¹Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL 32904, USA

²Department of Physics and Astronomy, Bartol Research Institute, University of Delaware, Newark, DE 19716, USA

³Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA

⁴Department of Physics and Astronomy, Swarthmore College, 500 College Ave., Swarthmore, PA 19081, USA

Abstract. Large magnetometric surveys have contributed to the detection of an increasing number of magnetic massive stars, and to the recognition of a population of magnetic massive stellar objects with distinct properties. Among these, NGC 1624-2 possesses the largest magnetic field of any O-type star; such a field confines the stellar wind into a circumstellar magnetosphere, which can be probed using observations at different wavelength regimes. Recent optical and X-ray observations suggest that NGC 1624-2's magnetosphere is much larger than that of any other magnetic O star. By modeling the variations of UV resonance lines, we can constrain its velocity structure. Furthermore, recent spectropolarimetric observations raise the possibility of a more complex field topology than previously expected. Putting all of these multi-wavelength constraints together will allow us to paint a consistent picture of NGC 1624-2 and its surprising behavior, giving us valuable insight into the very nature of massive star magnetospheres.

Keywords. stars: mass loss, stars: magnetic fields, ultraviolet: stars, X-rays: stars

Figure 1. HST/STIS observations of NGC 1624-2 show a remarkable variation of the UV resonance lines between the pole-on and equator-on views (top line); as a means of comparison, high/low state spectra of other magnetic O stars are shown below (David-Uraz *et al.*, in prep.). Ongoing efforts (Erba *et al.*, these proceedings) aim to account for these changes using the Analytical Dynamical Magnetosphere model (ADM; Owocki *et al.*, 2016, *MNRAS*, 462, 3830) rather than full-scale 3D MHD simulations.