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THE COVER ASSOCIATED TO A (1,3)-POLARIZED BIELLIPTIC
ABELIAN SURFACE AND ITS BRANCH LOCUS

by GIANFRANCO CASNATI*

(Received 30th June 1997)

Let A be an abelian surface and let \D\ be a polarization of type (1,3) on A. If (A, \D\) is not a product of
elliptic curves, such a polarization induces a finite morphism Q: A -* WQ of degree 6. In this paper we describe
the branch locus of Q when A is bielliptic in the sense of K. Hulek and S. H. Weintraub (see [13]),
generalizing the results proved by Ch. Birkenhake and H. Lange in [4].

1991 Mathematics subject classification: 14K.

0. Introduction

Let (A, \D\) be a (1, d)-polarized abelian surface. Here abelian surface means a
surface A with a>MC = OA and q(A) = 2 over C and \D\ is an ample linear system of type
(1, d) up to translation in A. It is known (see e.g. [14, Lemma 10.1.1]) that if

(P) (A, \D\) ¥ (£, x E2, p;£,® pj£2) where £, is an elliptic curve, p,: £, x E2 -*• E,
is the projection and £, e Pic(£,), i — 1, 2,

then |D| is free from base components. Therefore it induces a quasi-finite rational
map Q: A —»P£~' such that 2d = D2 = deg(g) deg(g(/l)). Since C2 > 0 for each irreducible
curve C on A, Q is also finite.

There are many results about the behaviour of Q with respect to d. If d = 2 then
\D\ has four base points and the map Q has been studied in this case by W. Barth in [1].
If d > 3 then \D\ is base-point-free. When d — AC Birkenhake, H. Lange, D. van
Straten in [5] and F. Tovena in [22] have dealt with the morphism Q. Finally the case
d > 5 has been described by S. Ramanan in [18].

In the case d = 3 the map Q is surjective and, since both A and Pc are smooth, it is
also flat (see [11, Exercise III 10.9]), i.e. a cover in the sense of [9]. In [4] a family HBL

of dimension 1 of such kind of surfaces is studied in details. In particular the branch
locus Be of Q: A -> We is described for each such A.

Really the main property of the surfaces A corresponding to points in HBL is the
existence of a non-trivial involution jA: A -»• A. Hence they are bielliptic in the sense of
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[13]. Therefore there exists a double cover x: A -*• S onto a ruled surface S with
invariant e(S) = — 1 over an elliptic curve E, and the cover Q: A -» Fc factors as
Q = a ox where a:S -*• P^ is a cover of degree 3.

The aim of this paper is to generalize to bielliptic abelian surfaces A the mentioned
results of [4] about the branch locus Be of the cover Q := a o x: A ->• Pc induced by \D\,
using the theory of covers developed in [15, 21 and 9].

In Section 1 we study such a kind of cover a, dealing with its branch locus and
remification divisor. Moreover we describe the branch locus of the cover x. Finally we
show how to recover the family HBL as a particular case. Section 2 is devoted to the
proof of the following theorem.

Theorem 0.1. There is a decomposition Ba = 2C" + C" into irreducible sextic curves
birationally isomorphic to E.

The singularities of C are nine cusps of type A2. The singularities of C" are nine points
of type Ai {possibly three by three infinitely near, i.e. three points of type D4), lying on
the cuspidal tangent lines at C'.

In [9] a structure theorem for covers of degree d between smooth varieties has been
proved. Such a result has been used in order to give a complete characterization of
covers of low degree d, namely 3 < d < 5 (see [9, 7, 8]).

More precisely if Q: X -* Y is a cover of degree d > 3 and both X and Y are smooth,
Theorem 2.1 of [9] asserts the existence of a locally free Oy-sheaf £ of rank d — 1,
natural splittings

Q.oixlY a OY ® £,

and an embedding i: X <->• P :— P(£) such that Q = n o i (n: P -*• Y is the projection) and
0P(l)|Jf ^ (oX[Y- Following R. Miranda, £ is called the Tschirnhausen module ofo (see [15]).

If in addition, d > 4, there also exists a locally free CV-sheaf T fitting into a sequence
of the form

0 —• T - % S2£ - % Qtco2
XiY —• 0. (0.3)

Notice that T has rank Nd := .
If d > 4 (resp. rf = 3), via <D,,: H°(Y, T ® S2£) -^ H°(P, n'F(2)) (resp. <D3: fl^y, S3£®

det^"1) ^>- H°(P, OP(3) ® 7t* det£~')) we obtain a morphism 5 := ®d(n): n'T(-2) -+ Ov

(resp. 5 := <D3(r/): OP(-3) ® n" detf ^ - C?P) and X = £>0(<5) c P. If d > 5 such a section n
cannot be general since codimP(X) = d — 2 < Nd. If d = 5, it can be proved (see [7] for
the details) that such n's belong to the image of a natural quadratic map

H°(Y, A2F ® £ <g> d e t £ " ' ) - • «°(Y, f ® S2£).

Unfortunately for d > 6 there is not such a satisfactory theory.
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Anyhow, given an arbitrary (l,3)-polarized abelian surface (A, \D\), it is interesting
to compute the sheaves £ and 7 of the associated cover Q: A -*• P| . In Section 3 we
prove the following theorem.

Theorem 0.4. Let (A, \D\) be a (I, 2)-polarized abelian surface satisfying (P). Then
the sheaves £ and T corresponding to the cover Q: A -> JP| are

c ^ ( 3 ) « (0.4.1)

T ~ 52n^|C(6)93. (0.4.2)

Finally, in Section 4, we will give a complete description of the structure of the
map Q for bielliptic surfaces.

Theorem 0.5. Let Q.A -> ffc a (1, 3)-polarized abelian surface and let i:Ae-*-W the
embedding above. Then A is bielliptic if and only if the restriction to A of the projection
S: P(CVc(3) © 0 ^ ( 3 ) © Q^|C(3)) -* F(O^iC(3)) from P(CVc(3) © Q^|C(3)) induced by the
decomposition 0.4.1 is a morphism whose image is smooth.

For all the notations and definitions used in the paper we refer to [11].

1. (1,3)-Polarized bielliptic abelian surfaces

Let E be an elliptic curve and consider the unique ruled surface S over E with
invariant e(S) = — 1. Then there exists an indecomposable locally free OE-sheaf H of
rank 2, fitting into the sequence

0 ^ O E ^ H - > OE(P) -> 0

such that S 2< P(H) -A- £. Fixing such an isomorphism, let {Co} = |Os0)l- Notice that
Co = 1 and Pic(S) ^ ZC0 © e*Pic(£).

Proposition 1.1. IfQeE, then \C0 + e*Q\ induces a cover a: S -*• W^ of degree 3 with
Tschirnhausen module Q̂ 2 |C.

Proof. If D 6 \C0 + Qf\ then D2 = 3 and dim \C0 + e'Q\ = 2. Moreover \C0 + e*Q\
is ample and base-point-free (see [10, Proposition 3.4 and 3.5]).

If r e Pc and C :— ff"'(r) is smooth then the branch locus of a^c has degree 6 by the
theorem of Hurwitz. Thus the branch locus Ba of a has degree 6, hence c,(£) = —3 for
the Tschirnhausen module £ of a. On the other hand computing x(Os) for the triple
cover a (seeJ17, Section 8 or 15, Section 10]) one obtains c2(£) = 3. Normalizing £ we
then get c , ^ ^ ) = - 1 , c2(£nonn) = 1. On the other hand

3 = h\E, H(Q)) = h\S,
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therefore £norm is stable. We then conclude that £norm as Q^|C(1) (see [16, p. 246]). •

Proposition 1.2. The set H of sections of //°(lPc, 53Q^|C(6)) inducing covers (as
explained in the introduction) o:S-*Wc of degree 3 with a smooth S is open and dense.

Each such cover a is non-cyclic and there is an elliptic curve E, and a point Q e E such
that S is the unique ruled surface over E with invariant e(S) = —1 and the pull back to S
of the linear system of lines is \CQ + e*Q\.

Proof. The first statement follows from [9, Theorem 3.6], since £^f2^|C(3).
Moreover a is not cyclic since its Tschirnhausen module does not split.

Notice that xiPs) = K2
s = 0 (see [17, Section 8] or [15, Section 10]) hence S is

minimal. Thus S is either a ruled surface P(H) over an elliptic curve £ or a surface with
Kodaira dimension K(D) > 0.

Let D e |ff*O,2(l)|. In the second case one would have Ks • D > 0. On the other hand,
using projection formula and the isomorphism ota>\c a* 52Q^2 |C (see [17, Section 8 or
9, formula 5.1.2]), one has

2KS D = X(OS) - z K c ) - X(OS(D)) + z(o>!IC(D)) = - 6 . (1.2.1)

Thus S = P(W) for some locally free 0B-sheaf H of rank 2 on an elliptic curve E.
Let Co c S be a section of minimal self-intersection Cl = —e(S). Then D e \aC0 + e*b\
where a > 1 and b is a divisor on E. Moreover

3 = a2C2
0 + 2ab (1.2.2)

where b = deg(b). It follows that e(S) is odd. If e(S) > 0, since D is ample then
b + aC\ > 0 ([10, Proposition 3.4]), hence 3 + a2C2

0 > 0. It follows C\ = - 1 , a = 1 and
b = 2, which is absurd since then D would not be free from base points.

If e(S) = - 1 then U fits into

0 -+ OE - • U -> OE(P) -> 0.

Since 2b = 3/a - a2Co then a = 1, 3. If a = 3 then 2KS • D = - 6 - 4b = - 6 if and only
if b = 0, contradicting formula 1.2.2 again. We conclude that a = 1 and b = Qe E. •

Now we deal with the branch locus B, and the ramification divisor Ra of the cover
<T:S-*-WQ corresponding to a section 9 e /f°(P|,53n^|C(6)). We always refer to the
careful description of the branch locus of a triple cover due to R. Miranda (see [15]).

More precisely Ba is singular at x e Pc if and only if a is totally ramified over x
([15, Lemma 4.8]). If x e Sing(Bff) then it is a double point with one tangent, and if it is
also an isolated singularity, then x is a point of type AJk_t for some k > 1 (see [15,
Corollary 5.8 and its proof]).

Lemma 1.3. Assume that Ba is reduced. Then its singularities are a2 points of type
A2 and as points of type Ay Moreover 2a5 + a^ = 9.
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Proof. The first part of the statement follows from [15, Corollary 5.8], its proof
and the fact that deg(Bff) = 6.

Let 3 e H°(F|,S3n^|C(6)) correspond to ff:S-»-IP£. As shown in Proposition 3.9
and Lemma 10.1 of [1§] there is a natural map

a:

inducing as an exact sequence

where the support of T is the set of points of total ramification of a. A Chern class
computation shows that deg(T) = 9.

Locally a t x e T

3 r x = (a2 - bd, ad - be, d2 - ac)O,»,,,

where a, b,c,d e O^. x are the local functions around x defining the cover a (see
Sections 3 and 4 of [15]). Let 3tt be the maximal ideal of O^ x.

If b, c € 501 then also a, d e SOT, thus the fibre of a over x would be isomorphic to

C[z, wytf, zw, w2)

which is not Gorenstein, hence S could not be smooth over x.
Let b $ 2R. Locally the equation of S is z3 + #z + h = 0, where h := 3abd - 2a3 - b2c,

g:=3(bd-a2) (see [15, Remark 2.8.1]). In particular 3 T x = (g, /i)Op2 x and the local
equation of Bff around x is 27/i2 4- 4g3 = 0. Since /i e OR\5Dl2 (see [15, Lemma 5.7]), thus
x is of type A2 (resp. /15) if and only if g e 2R\9W2 (resp. g e 9W2) at x, that is if and only
if x has degree 1 (resp. 2) inside T. •

Theorem 1.4. Ba is an irreducible sextic curve birationally isomorphic to the curve
E. Its singularities are nine points of type A2.

Proof. Notice that each irreducible component C c Rff is mapped birationally onto
CT(C), since deg(cr) = 3.

Since Rc • (Co + e*g) = 6 then deg(B,) = 6. Assume that Ba is reducible. Then it must
be reduced, otherwise it would have at least a triple point, a contradiction by Lemma
4.8 and Corollary 5.8 of [15]. It follows that Ra e |C0+ e'(P +3Q)| is reducible too,
hence Ra contains a fibre e'S.

Since e'S • (Co + e'Q) = 1 then e'S is mapped on a line r c Ba. If Ba contains another
line r' then r ^ r hence Ba has a node, an absurd. It follows that the residual divisor
B:=BB — r must be irreducible.

The points of Bflr are simple on B and they are images of points of total
ramification of a. Since e'S • (Ra — e'S) = 1 it follows that r D B is exactly one point x.
Such a point is necessarily a flex on B and r is its inflectional tangent.
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The other singularities of Ba are also singularities of B, thus they must be points of
type A2. Since B is birationally isomorphic to E then Ba must have exactly a2 = 5
points of type A2 and as — 1 point of type As (namely x). We conclude that in this case
2a5 + a2 = 7 ^ 9.

Hence we have proved that Ba is irreducible. If it is not reduced, then a would be
totally ramified, whence cyclic ([21, Proposition 3.1]).

We conclude that Ba is irreducible and reduced, thus it is birationally equivalent to
E. In particular the formula of Clebsch yields 1 = pg(Ba) = 10 - 3a5 - a2, thus
a2 + 3a5 = a2 + 2as = 9 which implies a5 = 0. •

In Proposition 3.2 of [10], it is proved that the linear system la^cl = |4C0 - 2e*P\
has dimension 1 and its generic member is a smooth irreducible curve. We now
produce the two-dimensional family of bielliptic abelian surfaces with a (1,3)-
polarization.

Proposition 1.5. Let a: S ->• IP̂  be as in Proposition 1.2 and let x: A -> S be the double
cover branched along a general divisor Bt e \a>s\c\- Then (A, |T*(C0 + e*Q)\) is a (1,3)-
polarized bielliptic abelian surface.

Conversely each (1, 3)-polarized bielliptic abelian surface (A, \D\) arises in this way.

Proof. The general element of |ct>̂ jcl is smooth and irreducible, thus A is smooth.
Moreover q{A) = 2, pg{A) = 1 and coAiC ^ OA (see [2, Lemma 17.1 of Chapter I]), thus
A is abelian.

The map Q := a o r. A -> ff£ is a cover of degree 6, then |T*(C0 + e'Q)\ = \g*Opi (1)|
is ample, hence it must be a (1,3)-polari7ation. The map x induces a non-trivial
involution jA:A -»• A, thus A is bielliptic.

The converse follows trivially from (i) and (ii) of Proposition 4.4 in [13]. •

Remark 1.6. Since (4C0 - 2e*Q)2 = 0 then we get a fibration cp: S -*• Fl
c, whose

generic fibre is a smooth elliptic curve.
Moreover x(0s) = 0 hence q> is isotrivial, its singular fibres are multiple of smooth

curves (see Lemma 1.1 of [20]), and q> has exactly three double fibres by Proposition
3.2 of [10].

Consider the residual divisor Ro := a*Ba — 2RO e |4C0 — 2e*P\. Then the restriction
of a to Ro\a~l (Sing(.Bff)) is an isomorphism onto Bff\Sing (Bff). Moreover Lemma 5.9
of [15] asserts the smoothness of Ro also at the points of total ramification. We
conclude that R,, is globally smooth, hence irreducible, and aiRo is birational onto Bo. It
follows that Ro = E and that all the smooth fibres of q> are isomorphic to E.

The fibres of the map <p o x: A -> P{. are double etale covers of the curves in
|4C0 - 2e*P\, since B, • (4C0 - 2e'P) = 0. It follows that they are not connected (see [3,
Exercise IX1]), hence the Stein factorization of cp o x gives rise to a commutative
diagram
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A ± £'

1'

where £ ' is a smooth elliptic curve and I; is a double cover.
The map (piCo: Co -> P c is a double cover since Co • (4C0 — 2e'P) = 2. Its branch

points are exactly the critical values of <p o T. Therefore they coincide with the branch
points of £. In particular £ ' ^ Co = £, and we have an exact sequence of abelian
varieties

0—-•£ —+A^U £—•()

(see also [3, Example 1X4.3]).
Notice that A 2* (£ x F)/G where G := Zj x Z2 (see [13, Proposition 4.1]) and

F/G ^ £ (see [20, Theorem 1.2]).
In the following example, choosing RQ — Bx, we obtain the family studied in [4].

Example 1.7. Let a: S -*• WQ be as above. Since the Tschirnhausen module of a does
not split, then a is not cyclic. According to [21] we can build the discriminant
D(S | WQ) of a and we have a commutative square

A:= S - ^

}•
.

Theorem 1.4 above and [21, Proposition 3.4] give us the following results:

(i) /? is a double cover branched along Ba and D(S | Fc) is normal with 9 singular
points of type A2;

(ii) a is a cyclic triple cover of D(S \ Pc) branched only at Sing(D(S | iF^)) and
A := S is smooth;

(iii) S is the quotient of A := S via an involution.

In particular D(S \ IFc) is a singular K3-surface and A is a bielliptic abelian surface.
Again Q := a o T is a cover of degree 6 and g'CV (1) is a polarization of type (1, 3) on
A.

Notice that Lemma 1.4 of [21] implies that the reduced branch locus of Q is Ba, thus
the branch locus of Q satisfies Be = 3Ba. It follows that Bx = RQ. Moreover Q is a Galois
cover with Galois group S 3 (see again [21]).
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2. The equation of the branch locus Bg

In this section we will describe the branch locus BQ of the cover g: A -*• P | , when A
is bielliptic. To this purpose we denote by ta : A -*• A the translation by a e A and we
set \D\ := lc'CVc(l)|.

Since D is a polarization of type (1,3), the morphism g.A -> Pc is invariant with
respect to the group

K(D) := {a e A | t'aD e \D\) ss TL, x Z3 c PGL3.

Proposition 2.1. FAere exists a decomposition into K(D)-invariant sextic curves
Be = 2BO + Ct.

Proof. Obviously Be = 2Ba + <r,BT. Let Ce := ff.B, and fix a general line £e!^c .
Then C := e~'(£) e \D\ is a smooth irreducible curve of genus 4, by adjunction formula.
Hence the theorem of Hurwitz applied to C yields deg(#e) = 18, whence deg(Ce) = 6.

Since Be is K(D)-invariant, thus the two curves Ce and Ba must be invariant too. •

With a suitable choice of the coordinates xo,x,,x2 in Pj, we can assume that
K(D) c PGL3 is generated by the classes of

0
0
1

1
0
0

°\ n
0

Vo

0

c
0

0
0

e
where C i1 1. C = 1 • The K(D)-orbit O(x) of a point x e W% contains at most nine
distinct points. If O(x) contains less than nine points then it coincides with one of the
following:

O0 := {[1,0,0], [0, 1,0], [0,0,1]}, O, := {[1,1,1], [1, C. C2]. [1. C, CD,

O2 := {[1,1, a [1, C, 1], tC, 1,1]}, O, := {[1,1, C2], [1, C2,1], K2.1. Ill-

A simple computation shows that each K(D)-invariant sextic has an equation of the
form

/(x0, x,, x2) := a(xl + xf + x\) + b(4x] + xjx2 + x\x\) +
(2.2)

+ cxox,x2(x2 + x] + x\) 4- dx\x\x\ = 0,

for some [a, b, c, d] e ffc- Let C c p£ be the corresponding curve. We have a rational
map
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and, computing Bf/3xit one easily checks that cp, is K(£>)-equivalent. It follows that
the dual curve C c P J is also K(£>)-invariant. Let g be its equation in P£ with
coordinates y0, yx, y2- We have

and it is well known that the biduality \]/g o q>f is the identity on C (in particular C
and C are birational).

Since Ba has nine points of type A2, the ordinary formula of Plucker implies that
Ba is a smooth cubic. Therefore its equation is

A + A + A - 3Ayoyiy2 = o, A3 ? 1.

Taking into account Section 1 of [4], by biduality we get that the equation of Ba with
respect to the above system of coordinates is

+ 2(2A3 - l)(xjx? + xfjX3,
(2.3)

- 6A2xox,x2(x
3 + x3 + x3) - 3A(A3 - 4)xjxfx^ = 0,

where A3 ̂  1. Notice that OjnBJ = 0 and that Sing(Bff) = 0([A, 1,1]).

Remark 2.4. Let y, (5 e PGLi be classes of the matrices

1
0
0

0
C
0

o\
o ,
C

/ i
i

l i

l
C2

c

1

c

The group G := (y, 5> is well-known to be isomorphic to the alternating group A* of
order 4 ([6, Section 7.3]). The elements of order two of G form a normal subgroup
Go = Z2 x Z2 < G, y generates a cyclic subgroup G, = Z3 and G = GoxiGi.

The polynomials/A and^j, represent birationally isomorphic curves if and only if they
lie in the same G-orbit, i.e. if and only if there is g e G such that g(Jx) =/,, (see [4,
Section 1] and [6]). The group G induces an action on C\{1, C, C2} given by

With respect to this action g(fx) =fM,g e G. Then fx and f^ represent birationally
isomorphic curves if and only if g(X) = \i. For such a pair (X, fx), some easy
computation shows the existence of g e Go, depending on {X, n), and sending (A, fi) to
(A', /O where // 6 {A', y(A'), y2(A'), S(X%

Remark 2.5. We claim that if y e BT n Rff and x := ff(y) ̂  Sing(Bo), then the tangent
space of Ce at x contains the tangent space of Ba at x.
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Since the assertion is local we can consider a: spec(B) -*• spec(̂ 4) c IP2,, where A is
a ring with maximal ideal 5DJ corresponding to x and B = A[u]/p(u) where p(u) =
u3 4- OLU2 + fiu + y, a, p, y e A. We can also assume that y corresponds to the ideal
(M) + 2R of B. In this setting Ra has equations 3u2 + 2au + p = p(u) = 0. It follows that
y € Ra if and only if jS.ye SCR. Moreover a ^ 2R since x is not a point of total
ramification of a. An easy local computation shows that y 4 9JJ2, otherwise S would be
singular at y. Eliminating the variable u we finally obtain an equation of Ba of the form
b := 4a3y + b2 where b2 e 2R2.

Since spec(B) = Al
A c Wl

A and Ov\ (Oisp^s) = <Wspec(B)ispec(,4) (see the introduction) and
|coS|p21 = \C0 + e'(P + 3 0 | , a proper choice of u allows us to assume that u = p(u) = 0
are equations of Co, thus Bt € |4C0 — 2e*Q\ is given by p(u) = q(u) = 0, where q(u) is a
polynomial of degree 4. It follows that we can choose equations p(«) = Su2 + eu + rj =
0, (5, e, r\ G y4, for Bt. The condition y e f l , yields »; e 9K. Again eliminating the variable
u we obtain the equation of Ce of the form c = (a<5e — e3)y + c2 where c2 e 9H2.

Theorem 2.6. Ce is an irreducible sextic birationally isomorphic to E. Its singularities
are either nine points of type Ax, possibly three by three infinitely near (i.e. three points
of type D4), or nine cusps of type A2.

Each cuspidal tangent lines at Ba contains exactly one singular point of Ce. Ce has
points of type D4 if and only i/Sing(Ce) = Ot/or some i = 0,1, 2, 3. Ce has points of type
A2 if and only ifCe = Ba and, in this case, Q is the cover described in Example 1.7.

Finally Ce and Ba are tangent at each point of intersection.

Proof. If Ce n Sing(J?a) ^ 0 then BT contains at least one point of total ramification
of a, whence R0CiBz^ 0. Since RQ • Bz = 0 we get that RQ = Bz, hence Ce — Ba and Q
is the cover described in Example 1.7.

For this reason, from now on, we will always assume that Bx ^ i?0, i.e.
Ce n Sing(Bff) = 0. Notice that it follows from Remark 2.5 that Ce and Ba are tangent
at each point of intersection.

Since Bx is irreducible and Bt • (Co + e*Q) = 6 then Ce is an irreducible sextic curve.
If Ce was not reduced then its reduced structure (Ce)red would be either a conic or a
cubic, thus Bt c a"'((Ce)rrf) e |n(C0 + e*Q)\, where n = 2, 3, which is absurd since
Bz e |4C0 - 2tTP\.

It follows that ff|Bt:Bt -*• Ce is a resolution of singularities of Ce, which is then
birationally isomorphic to E. Therefore the formula of Clebsch becomes

E! (2.6.1)

where mx is the multiplicity of x. We also obtain that if the tangent lines at
x e Sing(Cc) are not all distinct, then x e Ba. Since Ce is K(D)-invariant, we get that
Sing(Ce) is union of K(D)-oxhi\.s.

Assume that Sing(Ce) contains either a point of type Ak, with k > 3, or a non-
ordinary point of multiplicity at least three. Such kind of points contribute at least two
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in the sum in formula 2.6.1. Then there is i = 0, 1, 2, 3 such that 0 # Sing(Ce) n 0, c
Ba n 0, = 0, a contradiction.

If Sing(Ce) contains an ordinary multiple point x of multiplicity at least three, 2.6.1
implies that x must be of type D4 and x e 0,, thus Sing(C?) = 0, for some i — 0,1,2, 3.
Conversely if a = 0 in equation 2.2 then 0O Q Sing(C8). If also c = 0 then equality holds
and each point is of type £>4. If c ^ 0 then the points of 0O are of type /!,. Then by
2.6.1 we necessarily have Sing(Ce) = U0,. As proved above the points in 0, must be
ordinary, hence again by 2.6.1 they are all of type Ax and Sing(C5) = 0O U Ot U 0,
(i,j =1,2 ,3 , / / ; ) •

Now let the singularities of Ce be nine points of type A2. Then the equation of Ce

is /,, (see formula 2.3), hence Sing(Ce) = 0([/i, 1, 1]). Moreover C8 is birationally
isomorphic to E. Thus we can suppose that either A3 = (j? or /x = (A 4- 2)/(A — 1) by
remark 2.4. Moreover Sing(Ce) c Ba, since Q is locally etale outside Ba.

If A = // = 0 then Ce = Ba. Assume that A/i / 0 and A3 = j * 3 . Since CeBa = 36,
Remark 2.5 implies that the pencil <J> of sextic curves generated by Ce and Ba has at
most 18 base points. On the other hand O contains a reducible curve C of equation
xox,x2(xo + x] + x\- 3mx0x,x2) = 0. It is not difficult to check that ~Cn Ba contains at
least 27 points, which are base points of O.

Assume finally that n = (A + 2)/(A — 1). By direct substitution one checks that the
condition Sing(CB) c Ba is equivalent to Sing(Bo) c CQ. Thus in both these cases we
obtain a contradiction.

The point x := [x0, x,, x2] e I?c is singular on the curve C of equation 2.2, if and only
if [a, b, c, d] e Fc is a solution of the homogeneous system

6xofl + 3x2(x3 + x\)b + x,x2(4xo + 5c]+ x\)c + 2x0x]x2
2d = 0

6xf a + 3x?(x3 + x3
2)b + xox2(x

3 + 4x3 + x\)c + 2x?x, 5c\d = 0 (2.6.2)
+ x\)b + xox,(xj + x? + 4x2

t)c + 2x\x\x2d = 0.

Let us denote by M the matrix of the system 2.6.2.
Obviously the system 2.6.2 has always oo1 solutions, corresponding to the unique

curve of equation (x\ + x\ + x\ — 3mx0x,x2)
2 = 0 passing through x.

Generically rk(M) = 3. In order to have also solutions representing irreducible curves,
we need rk(M) < 2. Some easy computations show that the ideal / of 3 x 3-minors of
M is generated by the three polynomials

x\x]x\q{x), xox, x.2{x\ + x] + x\)q(x), (x3, + x3 + x\fq{x),

where q{x) := (x3, - x\){x\ - x2)(x
3 - x2). It follows that / c (q).

On the other hand if x e PQ is singular on C but q(5c) ^ 0, then xox,x2 = 0. If
x0 = 0, we get x\ + x\ = 0. Assuming x, = 1 and x2 = — 1, then 2.6.2 becomes
2a - b = 0. If a — 0 then C is reducible. Assume a = 1, then 2.2 becomes

(x3, + x] + x{)2 + cx0xtx2(xl + x\ + x\) + dx\x\x\ = 0,

which is reducible too.
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We have proved that x e Sing(Ce) if and only if q(x) = 0. Notice that q(x) = 0 is
the equation of the union of the cuspidal tangent lines at Ba and it is easy to check that
each cuspidal tangent line contains a singular point of Ce. •

3. The sheaves £ and T

In this section we prove Theorem 0.4. Let (A, \D\) be a (1,3)-polarized abelian
surface satisfying (C). One has for n > 1

Since KA ~ 0 then, by adjuction, pa(D) = 4. If C e \D\ is smooth then the map
giC: C -*• FQ is branched at 18 points hence Q is branched along a curve of degree 18.
Finally

As usual one has the isomorphisms 0.2. Since

h\A, OA{nD)) = H{A, Q'O^n)) = h'^ ^

using 3.1, Bott's formulas and Serre duality one easily checks that

h\¥%, €{n)) = fc'OP*. Op2(n - 3)) + 2/z'(P*,^|C(n)), (3.2)

for every n e Z and i = 0,1,2.

Lemma 3.3. Let H be a locally free O^.-sheaf of rank 4 such that
ti(B%, H{p)) = 2/i'(IP£, Q^c(p))for i = 0,1, 2 and p e Z° ^ ^

Proof. The only non-zero terms in the Beilinson's spectral sequence (see [16]) are
£ r " = O$ and £?•' ^ ^ ( - l ) ® 6 . It follows £?' ^ E^1 and E^2'2 = ^ w , hence a
complex

0 - • £2-
2'2 ^ E^1 -»> 0 (3.3.1)

is defined. Moreover £?•' s £?' and E;2-2 ^ E^22 for any r > 3. Since £^' = 0 then
dj2'2 is surjective. On the other hand E^-2^H hence the complex 3.3.1 yields the
following exact sequence

0 -> H -+ Op|(-lf6 - ^ O^2 ^- 0.

The matrix S of s is of the form
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/OQ at a2 a3 a4 as\
~\b0 bx b2 b, b< bj

where a,,fc, e fl°(P|,C7^,(l)). Since rk(S) = 2 then H°(T%, O^(1)) is generated by the
a,'s, otherwise there exists a point x e P£ such that rk(sx) < 1. In particular, up to a
proper choice of a basis of C7p2(—I)®6 which corresponds to a proper sequence of
elementary operations on the columns of S, one can assume that

s = / x 0 x, x2 0 0 0 \
\b0 bx b2 b3 b4 b$j

If b3, fc4, b5 were linearly dependent then H would contain Ofi{— 1) as direct summand.
Hence

0 / ho(P^, W(l)) = 2^0(]P ,̂ n ^ l ) ) = °-

)®6We conclude that, up to a proper choice of a basis of Of* (— I)®6, one gets

s = / * o *i x2 0 0 0
VO 0 0 x0 x, x2

hence H ^ fi^|C 0 Q^|C. D

2j

Proof of isomorphism 0.4.1. The isomorphism

CVC © £ = C.O»XII» = e.e*c*^c(3) s 0^(3) © 5(3),

gives rise to a factorization of the identity on O^ as^

Since /i°(Pc, Opj (-3)) = 0 one can split both i and p through £(-3) hence
£ S Op2 (3) © £0.

CThus identities 3.2 imply thatrcv

/z'(Pc, £0(«)) = 2/J1(PC> fi^clc(n)), i = 0, 1, 2, n e Z.

It follows from Lemma 3.3 that £0 ^ Q^ |C © Q^ |C. D

Proof of isomorphism 0.4.2. Consider the exact sequence 0.3. Since co^c = OA then
pi = e'OpJ(3). Thus, taking into account the decomposition of £ and the

natural splitting Q^ |C ® O^|C ^ 52fi^|C © Op2 (-3), then we can identify q>: S2£ ->• Q.co1^
(see sequence 0.3) with

cp: Op2(3)© fl^|C(6)« © Op,(6) © ^ ^ ( f i ) 8 3

We want to prove that q> has a section. To this purpose note that q> induces two
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O,,(3) © ^ c i

There exists a natural monomorphism i: g,co2 ._j -»• <S2£ such that <p oi = <p,. We now
prove that <px is an isomorphism. Let r C F j b e a line. We claim that <pllr is an
isomorphism. If this is the case then

^ ) - 1 ) - C.det((?,) e H°Qrc, det(Q.(o2
Aip2) ®

Since, by the claim, det(<p1(r) ^ 0 then det(<p,) ^ 0 too. Let \j/ :— io q>~1. ^ is a section
of (/? hence

Now we prove the claim. Assume that Cr := g*r is smooth: set gr := Qlr, Pr:— n~x(f),
£r := £fr, fix an identification £i^|C(6)|r ^ Or(4) © Or(5) and take non-zero sections

s, t e /^(IPr, OPr

v, w e H°(Pr, OP

M e //°(Pr, CPr ® Q'OX-S)) = H°(r, £r(-3)).

The matrices M of (j5|r and M, of <jo,|r satisfy M = (M, | M2). Moreover

(a 0 0 0 0 0 \

c,,, cl j2 0 0 0

, c2,, c2i2 0 0 0
ei.i e12 /,_, / 1 2 0

! e2,l e2.2 fi,\ fl.2 0

\ 9 h\ h2 mt m2 n/

M, =

whose elements have degrees

/0 -1 -1 -2 -2 - 3 \
1 0 0 - 1 - 1 - 2
1 0 0 - 1 - 1 - 2
2 1 1 0 0 - 1
2 1 1 0 0 - 1

\3 2 2 1 1 0 J
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The first row of M is the matrix associated to 9r: S
2£r -*• 0,(3).

It follows that if a = 0, then the first row of M would be 0 which is absurd since (p
is surjective.

If a ^ 0 and rk(M,) < 5, then the system Mx = 0 has a solution x :=
(0, a2 a6 ,0, . . . , 0) ^ 0 hence

Cr C Q = V+(u(a2s + <Xjt + a4t> + a5w + <x6u)) C P r .

Since Cr is irreducible this is absurd.
Hence the claim is proved. •

Remark 3.4. It is not difficult to check that if a section n e #°(P£, T ® S2£) defines
the smooth surface A :— D0(O6(r])) c P then A is an abelian surface and g := niA is a
cover of degree 6.

Unfortunately, by dimensional reasons, the generic section n does not define a
surface.

4. Bielliptic abelian surfaces in P(£)

In this last section we characterize (1, 3)-polarized bielliptic abelian surfaces with
respect to the behaviour of the embedding i: A <-*• P(£).

Let (A, \D\) be a (1,3)-polarized abelian surface satisfying condition (0?). Let
Q: A -*• PQ be the corresponding cover of degree 6. It follows from the previous section
and Theorem 2.1 of [9] applied to Q the existence of a unique embedding i: A <-*• P such
that g — noi and the scheme-theoretic fibre Ay:=Q~l(y)QPi

kiy) = Py:=n~l(y) is an
arithmetically Gorenstein subscheme.

Moreover such embedding is induced by the composition of Q'£<-+ g*(Op2 ®£) —>
e'e.^ipj.. see 0.2, followed by Q'Q.W^ -> a)AlP2.

We fix a decomposition £ = Op2 (3) © Q^t |C(3) © Q^ |C(^)- The two projections (on the
sum of the first two summands and on the third one), allow us to define two
subbundles P(O^|C(3)) ^ U c P and P(Op2(3) ©Q^|C(3)) ^ V c P. Let S:P—>£/ be
the projection from V.

Let S be the closure of n(A). There exists a dominant rational map v. A --•» S and
we define a := %, so that Q = a o T. Since S C ( / is a divisor then it is locally
Gorenstein, hence a is a Gorenstein cover.

Since deg(g) = 6 then deg(x) = 1,2,3,6, and if deg(x) = 6 then deg(a) = 1 and the
map Op2 -»• o,Os is an isomorphism, thus the same is true for a. If x € S is a general
point then g~\a(x)) = x~'(x) c (x, Vnn~l(x)) = P^x) c n~\x), which is absurd since
Q~\G(X)) c 7i"'(x) is arithmetically Gorenstein (see [9, Theorem 2.1] and [19, Lemma
4.2]).

Proposition 4.1. Let S be smooth and assume that x is a morphism. Then A is bielliptic
and the maps a and x coincide with the ones defined in Propositions 1.1 and 1.5 respectively.
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Proof. Since deg(g) = 6 then deg(x) = 1, 2, 3,6 and the case deg(r) = 6 is impossible
as shown above. Moreover the smoothness of S yields that z is actually a cover.

If deg(f) = 1 the map Os -> z,OA is an isomorphism, thus the same is true for z.
The surjective map O^(I)®3 -» ft^|C(3), yields

A c

Let p,: X -*• Pc be the projection onto the i-th factor and as usual set
Ox(a, b) := p',0^(a) <8> p*2O^{b). If ht and h2 are the classes of 0*0,0) and Ox(0,1)
respectively in the Chow ring A(X), then there are a, /?, y e Z such that the class of A is
a/if + /?/i2 + yh\ • h2. It is proved in Section 2 of [12], that a — 6, /} = 0, hence y is a
solution of y2 - 9y — 18 = 0 which has not integral solutions.

Thus deg(t) = 2, 3. Assume that deg(r) = 3 and let Op2 (n) and T be the Tschim-
hausen modules of a and z respectively. Since, in this case, Be = 3Ba + atBr then
deg(Bff) < 6, hence n = — 1, —2, —3. From the isomorphisms

© S s e.O^ s a.r.O,, s Op: © O^c(«) © a,T,

and formula 0.4.1, we obtain a factorization of the identity

© cvc(-3) © n^clc ^

On the other hand h°(]Pc, Q^|C(1)) = 0, thus only the case n — — 3 is possible. In this case
S is a X3 surface hence z is etale. Therefore 0 = x(OA) = 3*(OS) = 6 (see [15] or [17]).

Assume now that deg(r) = 2. Fix a line ^ e IFc such that both E := o~x(l) and
C := e~'(£) are smooth. Let p be the geometric genus of E and define t := T|C, S := E|E,
r := Q[C. The branch loci of r, s, t satisfy Br = 25, + s.B, and deg(Br) = 18. The formula
of Hurwitz applied to s and t implies that either deg(B5) = deg(s,Bt) = 6 and p = 1 or
deg(B5) = 8, deg(s.B,) = 2 and p = 2.

Since a factors through P(d^|C(3)), then s factors through P(Ot(l) ® Ot(2)). In any
case the Tschimhausen module of s, £„ is dual to Ot{\ + h) © Ot(2 + h) for some h e Z.
Since B, e |det(£,)~2| we get that p = 1 and h = 0. In particular the dual of the
Tschimhausen module of S is fi^ |C(3)- It follows from Proposition 1.2 that S is ruled with
invariant e(S) = — 1 over an elliptic curve.

On the other hand if £ e Pic(S) is the Tschimhausen module of T the OA = coA]C =
coS|C ® C, thus T is induced by a smooth and irreducible element of |coj|cl- •

Conversely let A be bielliptic and let Q: A ->• PQ be the corresponding cover
factorizing as n o i. The double cover T factors through A c->V(<uS|C) c P(OS © ajSjC)
followed by the projection onto S.

In order to simplify notations, we will set P := P(O^|C(3)). Let T := Op © (Op(l)®
p*Op2(-3)) and q:F := F(F) -> P be the projection. Since (US|C S (Op(l)® p*Op2(-3))|S

thenCP(Os © coS|c) = F x , S. Define M := OF(1) <g> q'p'Or* (3). The general morphism
q*p*£ -> M is surjective, thus we get/ :F -> P inducing
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u: U £ P(Op) c F -*• P,

Fix x e f j . Then u embeds linearly Ux :— p"'(x) s Pj(X) c Px := 7i"'(x) ^ P£(X) and /
is the natural embedding F, := (p o g)"'(x) ^ F, c P, ^ ^ as a cubic scroll. In
particular / is actually an embedding. By construction Ax :— g~'(x) generates a
subscheme £x c Fx which is exactly the pull back of Sx :— CT~'(X) via qVx : ¥x -*• Ux.

Each subscheme A' c Ax of degree at least 5 generates £x. On the other hand each
hyperplane H c Px intersect all the fibres of Fx and H n Fx is a cubic curve, thus
Ex g H. It follows that A' £ H. Hence Ax c Px is an arithmetically Gorenstein
subscheme (see [19, Lemma 4.2]).

We then obtain that the induced embedding i: A «->• P coincides with the embedding
given by the canonical factorization of Q in the sense of Theorem 2.1 of [9].

In this case q is induced by the projection of P onto U from the subbundle V
generated by im/ ' . Necessarily there exists a locally free Op2 -sheaf Q of rank 3 such
that V ^ P(£).

Since U and V generate fibrewise P and Un V = 0, then £^g®Q^2|C(3). Notice
that such an isomorphism gives rise to a factorization

cvc(3) ~ g e n^cic(3) -»c?^c(3)

of the identity on O^. Since /i°(Pc, Q̂ 2 |C) = 0, one can split the above sequence through
Q, hence Q = O^ (3) © W. As in the proof of Proposition 1.1 one easily checks that

^ CWafi^ | C(3) .
Thus we have proved the following converse of Proposition 4.1.

Proposition 4.2. If A is bielliptic, then there are subbundles P(Q^ |C(3)) = [ / c P and
P(<9p2 (3) © i^2 |C(3)) =* 7 c P juc/, //ia/ c

(i) Anv=unv = 0;

(ii) fef 7t:P—+ t/ 6e the projection from V, and identify S with its image inside U: then
S = n(A), T = n[A and a = n[S.
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