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Abstract 

In user-centred design, digital human models hold the potential for proactive evaluations of ergonomics or 

discomfort in terms of a computer aided ergonomics tool. Therefore, models predicting human interaction 

behaviour, are necessary. In this contribution we present such a model as well as its initial evaluation. The 

evaluation is performed by applying the interaction model to a specific use case, conducting a comparison 

with an empirical subject study. The evaluation shows that similar and realistic human behaviour was 

predicted, which was consistent in terms of whole-body strain. 

Keywords: user-centred design, interaction design, digital human models, evaluation, computer-
aided ergonomics 

1. Introduction 
In the context of user-centred and simulation-based design, digital human models (DHM) hold the 

potential for proactive evaluations of usability, ergonomics or discomfort on digital product models in 

early development phases (Chaffin, 2005; Irshad et al., 2019). DHM like Siemens Jack (Raschke and 

Cort, 2019), the AnyBody Modelling System (Rasmussen, 2019) or OpenSim (Seth et al., 2018) are 

increasingly utilized as computer aided ergonomics tools (Wolf et al., 2020). In order to analyse user-

product interactions, the interaction between a digital product model and a DHM needs to be modelled 

in terms of a virtual mock-up (Ahmed et al., 2019). Customarily, this interaction modelling is 

conducted either manually (creating postures and movements by hand) or with help of experimental 

data (motion data, external forces, etc.). Both approaches have distinguished disadvantages. Manual 

interaction modelling on the one hand, is time-consuming, fault-prone and requires specific 

knowledge and expertise in human behaviour modelling (Chaffin, 2005; Reed et al., 2005; Perez and 

Neumann, 2015; Ranger et al., 2018). Experimental data on the other hand, has to be gathered in 

motion capture laboratories with human subjects, which is time-consuming, expensive and requires 

specific knowledge and expertise in motion capturing, force measurement and kinematics / dynamics 

modelling (Wartzack et al., 2019; Wolf and Wartzack, 2018). Furthermore, it requires a physical 

prototype or a mock-up of the product to be analysed. Hence, the experimental data used for 

interaction modelling is of limited use, as it can solely be used for reactive / retrospective analyses of 

certain product states. 

In order to achieve an proactive analysis of the user-product interaction, predictive interaction models 

are necessary alongside the DHM and the digital product model (Wolf et al., 2020). In former research 

we reviewed corresponding literature in order to identify existing interaction models (Wolf et al., 

2020). We found, that existing interaction models either address specific use cases in engineering and 

industrial design, like vehicle interior design (Jung et al., 2009; Wirsching, 2019) or sports equipment 

(Miehling et al., 2015), or are utilized for occupational design tasks, like assembly line or workplace 
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design (Bauer et al., 2019; Hanson et al., 2019). This is due to the fact, that all methods of interaction 

modelling (no matter if using statistical, machine learning or optimization based approaches) rely on 

some sort of experimental data in order to predict human behaviour validly (Wolf et al., 2020). In the 

case of occupational design tasks, working task catalogues, like the MTM-system (Kuo and Wang, 

2009), exist, which enable the development of versatile applicable interaction models. In engineering 

design however, a versatile applicable, data-driven interaction model is non-existent. We understood 

this research gap as a call for action and developed a phenomenological predictive interaction model 

which shall enable an proactive, time-efficient, standardized, accessible and versatile applicable 

interaction modelling, in order to analyse digital product model states virtual and proactive in terms of 

a computer aided ergonomics tool. We conducted an initial evaluation study regarding this data-driven 

interaction model. In this contribution we present the predictive interaction model as well as the 

results of the initial evaluation study. 

2. Predictive interaction models 
The phenomenological predictive interaction model is composed of two components (see Figure 1). A 

task modelling component in a computer aided design (CAD) application (Siemens NX) and a 

interaction prediction and analysis component embedded in a musculoskeletal simulation environment 

(OpenSim). Both components make use of the assumption, that many interaction concepts between 

humans and products occurring in technology can be reduced to a relatively small catalogue of 

elementary affordances. Affordances (artificial term for ‘to afford something’) describe the 

possibilities of interaction directly linked to physical objects, resulting from the abilities of the actor 

and the characteristics of the object (Gibson, 1979; Norman, 2013). The idea of using affordances as a 

interaction modelling item, is to enable designers to manually choose affordances as intuitively as they 

do in their daily lives. 

 
Figure 1. Approach of the predictive interaction model 

We identified 31 elementary affordances using a database of interaction possibilities and a taxonomy 

development approach (see Wolf et al., 2021). These elementary affordances contain information about 

the mechanical interaction possibilities (mechanical coupling) between certain human body parts / end-

effectors (e.g. hands, feet, back or buttock) and rudimental geometries (e.g. cylinder, surface or cuboid). 

The elementary affordance "hand grabs cylinder" for instance, contains information how a hand and a 

cylinder are coupled when contacted with a palm grip. The mechanical coupling is described as a 

kinematic-minimal dependency, which in this case consists of a joint with one rotational and 

translational degree of freedom, and a dynamic-minimal dependency, which in this case allows force and 

moment transmissions to a predefined limit. All identified elementary affordances were implemented as 

CAD-features (Weber, 1996) in a CAD-integrated task editor. Those enable designers to attach 

information of interaction possibilities to a digital product model in an intuitive way. The modelling is 
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conducted manually, by applying an elementary affordance to a product geometry and by concretizing 

the predefined mechanical coupling. Accordingly, the default kinematic-minimal dependency can be 

supplemented with further kinematic restrictions or the default dynamic-minimal dependency can be 

supplemented with additional external forces (which have to be overcome by the DHM) and reaction 

forces (supporting the DHM against the environment). Thus, the product model becomes a carrier of 

specific interaction information. This information can subsequently be used to generate constraints for 

the prediction and analysis of human interaction behaviour, which is realized using a DHM. The task 

modelling environment in Siemens NX as well as the identification and elaboration of the catalogue of 

elementary affordances is described in detail in Wolf et al. (2021). 

The interaction prediction and analysis component is realized using a musculoskeletal human model 

(Miehling, 2019) in the dynamic multibody simulation environment OpenSim (Seth et al., 2018). The 

human interaction behaviour is predicted in terms of postures using an kinematic optimization approach 

which requires a set of affordance features and so-called behaviour cards as input (see Figure 2). 

 
Figure 2. Principle of the interaction (posture) prediction approach 

Using the Matlab-OpenSim interface, the affordance features of interest (defined on the CAD-model) 

can automatically be transferred into kinematic constraints, by introducing rudimental rigid-body 

representations of the respective product geometries (at the respective positions in the OpenSim 

environment and by introducing joint definitions between these rigid bodies and the respective DHM 

end-effectors / body parts. The behaviour cards provide experimental posture data as a start solution for a 

comprehensible, data-driven / phenomenological prediction of human behaviour. The idea behind the 

interaction cards is to gather posture data of specific interactions in a one-off expenditure and to reuse 

the data in order to predict similar or related human behaviour. A behaviour card contains a specific 

body posture (which can be understood as a start solution), described in generalized coordinates (joint 

angles and positional coordinates) 𝒒𝑗
𝑆𝑡𝑟𝑎𝑡, and a coordination pattern, consisting of weight factors 𝒘𝑗 for 

each generalized coordinate 𝒒𝑗. Using a modified version of the inverse kinematic optimisation 

algorithm (1) introduced by Delp et al. (2007), this information can be used to compute a body posture: 

min [∑ 𝒘𝑗(𝒒𝑗
𝑆𝑡𝑟𝑎𝑡 − 𝒒𝑗)2𝑔.𝑐.

𝑗=1 ] (1) 

𝑮(𝒒) − 𝑮0 = 0 (2) 

Hereby, 𝒒𝑗 correspond to the degrees of freedom of the DHM and thus to the body posture to be 

predicted (𝑗 corresponds to the number of generalized coordinates (g.c.) to be optimized). 𝒒𝑗
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correspond to the pre-specified joint angles (posture) from the behaviour card (start solution). The 

squared differences of these values, are weighted using the factors 𝒘𝑗, which correspond to the 

coordination pattern. The solution of the optimization problem is subject to constraint equations (2). 

These require compliance with all kinematic constraints and (joint) definitions. Hence, the goal of this 

optimization algorithm is to minimize the kinematic error and thus to enable the best possible 

compliance with the body posture from the behaviour card, while fulfilling the kinematic constraints 

exactly. This is done by taking the coordination pattern and the movement possibilities of the 

musculoskeletal DHM into account (see Figure 2). Since, the computation of the posture is performed 

kinematically, posture adaptations due to support or external forces, have to be covered by the 

experimental posture data in the behaviour cards. The resulting (predicted) posture can subsequently be 

analysed using inverse dynamics under consideration of a static optimization (Delp et al., 2007) and 

dynamic constraints. The dynamic constraints are defined in the task modelling environment (see Wolf 

et al. 2021). The results of the static optimization are biomechanical parameters like muscle and joint 

reaction forces. Those can be used as quantitative measures for ergonomics, discomfort or usability. 

3. Methods 
The evaluation of this predictive interaction model was conducted as a part of the so-called Initial 

Descriptive Study II of the Design Research Methodology presented by Blessing and Chakrabarti 

(2009). One major aim of this initial descriptive study is to find indications for the applicability and 

usefulness of the predictive interaction model. 

3.1. Study design 

For this purpose, interactions with different product characteristics of a fictitious use case (operation 

of a dual rudder system of a sailing yacht) are investigated both reactive / experimentally in a subject 

study and proactive / simulative with the predictive interaction model (see Figure 3). Subsequently, 

the results of the experimental and simulative study are compared. The comparison of the results is 

conducted using an dynamic (biomechanical) evaluation criterion. For this purpose, subject 

anthropometry and interaction movements are measured in the subject study (via motion capture 

technology), transferred to a appropriately scaled musculoskeletal DHM and dynamically analysed. 

The behavioural cards needed for the postural interaction prediction are derived from the empirically 

determined movements of the subject study. Besides the comparison of the dynamic results, an initial 

evaluation of the analysis capabilities regarding product ergonomics and usability was conducted. For 

this purpose the discomfort perceived by the subjects was surveyed. This experimental discomfort 

evaluation was compared with the dynamic results of the predictive interaction model. 

 
Figure 3. Study design for the evaluation of the interaction model 
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As a fictitious use case a human-product interaction was chosen, which describes a whole-body 

interaction with a certain complexity and a relation to a real problem. Specifically, the operation of a 

dual rudder system of a sailing yacht is to be investigated. In series-produced yachts, the throttle lever 

for operating the engine is often located just above the deck, which is why operating the rudder and 

throttle lever usually results in bent and uncomfortable postures with a limited view over the bow of 

the yacht. The use case includes 18 characteristic configurations of a fictitious rudder stand. These 

result from the combination of three rudder positions (RP), three lever heights (LH) and two lever 

depths (LD) (see Figure 4). The product configurations are named using the nomenclature LH-LD-RP. 

 
Figure 4. Characteristic configurations of the fictitious rudder system 

3.2. Conduction of the subject study 

A mock-up of the rudder system was designed and assembled to perform the subject study. The mock-

up includes all relevant interaction actuators, providing the necessary functionalities (see Figure 5). 

The subject study was conducted with five male subjects. Due to the Covid-19 pandemic and the 

accompanying policy of social distancing, it was unfortunately not possible to survey a larger and 

more diverse subject group. The test persons were introduced to the scenario and given a steering task. 

They had to push the throttle forward and turn the rudder to a predefined position while looking 

forward. This steering task was performed by the subjects for each product configuration. The order in 

which the characteristics were changed was different for each subject. After each interaction, the 

subjects were asked about the discomfort felt during the interaction. The discomfort was determined 

using the categories of the CP-50 scale introduced by Shen and Parsons (1997). While performing the 

tasks, the subjects wore a motion capture system, based on inertial measurement units (Perception 

Neuron Studio; Noitom), which recorded the movement during the interaction (see Figure 5). The 

measurements were carried out twice for each product configuration. This improves the data basis for 

the derivation of the behaviour cards and allows for the analysis of the variability of human behaviour. 

Subsequently, the measured movements were transferred to musculoskeletal human models (same as 

used in the predictive interaction model), which were scaled to the respective test persons according to 

the anthropometric data collected. The transfer was conducted by applying a virtual marker tracking 

procedure, similar to the approach of Karatsidis et al. (2018). The scaling of the musculoskeletal 

human models was also carried out using virtual markers. From each of the transferred movements 

one representative posture was extracted. The representative posture chosen, was one in which the 

rudder is steered out to a predefined extent, whereas the test persons had to stretch. To ensure 

reproducibility, a quantitative selection criterion (hand position on the rudder) was defined. These 

representative body postures, expressed in the joint angles of the scaled musculoskeletal human 

models, were dynamically analysed using static optimisation. This allows a comparison of the 

dynamic state of the experimentally determined and predictively generated postures. To ensure 

comparability, the same dynamic constraints were used for these simulations as for the static 

optimisation of the predicted postures. 
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Figure 5. Subject in interaction with the physical mock-up, wearing the motion capture suit 

3.3. Application of the predictive interaction model  

In order to apply the predictive interaction model, the rudder stand was implemented as a CAD model 

and the affordance-features for the defined movement state (representative body posture) were 

generated with the developed CAD-integrated task editor (see Wolf et al., 2021). With help of the 

affordance features, the left hand was coupled to the rudder, the right hand to the throttle as well as the 

feet on the deck. Within the affordance features, the reaction forces were modelled in such a way that 

most of the body weight is transferred to the deck over the feet. In addition, there is the possibility of 

supporting part of the body weight via the hand on the rudder or throttle. The affordance features were 

defined without using external forces, since both the operation of the rudder and the throttle require 

negligible forces. By adjusting the CAD model (product configurations) and deriving affordance 

features the described 18 tasks were generated. 

The behavioural cards needed for postural interaction prediction were determined using the 

representative postures from the experimental data. For this purpose, the representative postures were 

reviewed and a qualitative manual search for different movement strategies was conducted. It turned 

out that four of the five subjects always choose a similar strategy. This strategy was used to 

characterise the interaction behaviour with help of one behaviour card per LH (a total of three 

behaviour cards were used). The specific generalized coordinates (joint angles and global DHM 

positional coordinates) of a behaviour card were determined by calculating the median for each 

generalized coordinate of all postures of a LH. In addition, the ranges of the individual joint angles of 

all postures of a LH were calculated. These were used to estimate how much the respective joints were 

used to adapt to the different product configurations. From this information, the coordination patterns 

of the behaviour cards were generated. 

The 18 generated tasks were simulated using the predictive interaction model with the three determined 

behaviour cards. For comparability, the simulations were carried out for each of the five scaled DHM 

(according to subject anthropometry). Accordingly, 90 predictive simulations were carried out. 

3.4. Evaluation and comparison measures 

Due to the redundancy of human movement possibilities, a direct comparison of predicted and 

measured posture by means of joint angle values is only of limited significance. A predicted posture 

can have a different joint angle pattern than the measured posture and still represent a valid solution. 

Hence, the comparison of the joint angle patterns of predicted and measured postures are primarily 

used to gain a better understanding of results rather than to find indications for the applicability and 

usefulness of the approach. To assess these indications, dynamic results are of higher significance. 

One important dynamic measure is the magnitude of the so-called residual forces (Delp et al., 2007). 

Residual forces act along each global degree of freedom on the pelvis and are activated as soon as the 
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DHM is no longer able to maintain dynamic equilibrium. As soon as one residual force exceeds 10 N 

the respective predicted posture is considered unrealizable. Additional to this measure, the results are 

compared in terms of the whole-body muscle activation (WBMA; equation 3): 

𝑊𝐵𝑀𝐴 = ∑ 𝜶𝑖
𝑛
𝑖=1  (3) 

The WBMA corresponds to the sum of all muscle activations 𝜶𝑖 of the body. The parameter 𝑛 

corresponds to the number of muscle models considered. Following the load-strain concept of 

Rohmert (1986) this parameter can be interpreted as an ergonomic evaluation criterion. 

4. Results 
With the help of the predictive interaction model, postures in dynamic equilibrium could be generated 

and analysed for each of the 90 simulations. Accordingly, none of the generated postures has residual 

forces above the defined limits. Figure 6 representatively shows the predicted posture of product 

configuration 3-1-3 using the musculoskeletal human model scaled to subject 4 in frontal and lateral 

view (a) in comparison to the corresponding experimentally measured posture (b). Qualitatively, the 

postures show similarities, while a quantitative comparison of the joint angle pattern reveals, that the 

predicted postures defer slightly from the measured ones. 

 
Figure 6. Comparison of the predicted and experimentally measured posture of product 

configuration 3-1-3 

Figure 7 shows the distribution and mean values of the WBMA of the predicted postures and 

experimentally measured postures for each product configuration. The boxplot shows the median 

(black line in the box), the range from the 2nd quantile to the 3rd quantile (grey or orange box) as well 

as the total range from the 1st quantile to the 4th quantile in the form of the whiskers. On the 

secondary axis, the mean values of the surveyed subjective discomfort (CP-50 score) are plotted for 

each product configuration. When comparing the distributions directly, it is noticeable that the 

WBMA of the predicted postures are mostly within the range of the WBMA of the experimentally 

measured postures and in most cases are less distributed. Accordingly, the experimentally measured 

and predicted body postures show a similar WBMA magnitude for each product configuration, both in 

their mean values and in the distributions. For the most configurations, the distributions of the 

predicted and experimentally determined WBMA coincide from the 2nd quantile to the 3rd quantile. 

On the secondary axis of the diagram (Figure 7), the subjective discomfort rating is plotted as mean 

values of the recorded CP-50 ratings. The test persons used the entire scale to evaluate the product 

configurations. It is noticeable that the basic correlations between the product configurations and the 

subjective perception of discomfort are also found in the correlations between the product 

configurations and the simulated WBMA values. The influence of the LH is most clearly discernible 

in all assessment approaches. The lower the LH, the higher the subjectively perceived discomfort and 

the simulated WBMA. Furthermore, it can be seen that the RP 1 (outermost rudder position) within a 

LH and LD has the highest discomfort rating and WBMA values, while the RP 3 within a LH and LD 

produces the lowest discomfort and WBMA values. However, the significant drop in subjective 

discomfort ratings from RP 1 to RP 2 is not observable in the WBMA. In addition, the subjective 

evaluations of the configurations 1-1-1 and 1-2-1 stand out. These correlations are also not discernible 

a) b)
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within the WBMA values. The differences in the subjective discomfort rating in relation to the LD are 

comparatively small for LH 2 and 3. The subjective evaluation of LH 1 stands out here too, as the 

differences between LD 1 & 2 are more elaborated. When looking at the WBMA with regard to the 

LD, again hardly any differences are discernible for all LH and RP. 

 
Figure 7. Distribution (boxplot) and mean values of the WBMA of both the predicted postures 

and the experimentally measured postures per product configuration (LH-LD-RP). 

5. Discussion 
The experimental methodology is subject to certain limitations that must be taken into account when 

interpreting the results. Sers et al. (2020) investigated the validity of the motion capture system 

Perception Neuron 2.0 (same measurement technology as in the Perception Neuron Studio used) for 

measuring upper body movements and came to the conclusion that the system can record upper body 

movements with an accuracy of 5° per joint angle. The transfer of the measured movements to the 

respective musculoskeletal human model is also subject to errors. Karatsidis et al. (2018) transferred 

gait movements, measured with inertial sensors to musculoskeletal human models using a similar 

procedure. They observed root-mean-square differences of 4.1 ± 1.3°, 4.4 ± 2.0° and 5.7 ± 2.1° for the 

joint angles of the ankle, knee and hip in the sagittal plane. In total, these sources of error can lead to 

the case that the experimentally measured postures (expressed in the joint angles of the DHM) do not 

correspond exactly to the postures actually performed by the subjects. This particularly is evident in 

the foot positions of the measured postures, which are often not parallel to the ground (see Figure 6). 

This is not the case with the predicted postures and, along with other deviations, can be seen as a 

reason for the slightly higher or lower WBMA values of the measured postures compared to the 

predicted postures. Furthermore, it must be taken into account that the predicted postures were 

generated for the same tasks that were used to characterise human behaviour. In future evaluation 

studies, cross-validation could allow a deeper analysis. With the help of the developed predictive 

interaction model, body postures in dynamic equilibrium could be predicted for all five human models 

and 18 product configurations. The qualitative and quantitative comparisons of predicted and 

measured postures (joint angle values) show, that the predicted postures differ from the measured 

postures quantitatively, but show great similarities qualitatively. The WBMA of the predicted postures 

are mostly within the distribution of the WBMA of the experimentally captured postures and thus 

describe the same correlations in respect to the product configurations in a whole-body dynamic point 

of view. Thus, indications for the applicability and usefulness of the predictive interaction model are 

clearly recognisable. The evaluations show that although the measured postures were not exactly 

reproduced by the predictive interaction model, similar and realistic postures were predicted that were 

consistent in terms of whole-body strain. 
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The comparison of the subjective discomfort evaluation with the calculated WBMA shows that the 

predictive interaction model using the WBMA as an ergonomic evaluation criteria can reveal basic 

correlations between the product configurations and the subjective discomfort perception. The predictive 

ergonomics evaluation shows that the discomfort increases with decreasing LH and that a small distance 

between throttle and rudder (RP) leads to less discomfort. However, some correlations could not be 

resolved with the predictive method. Since these correlations are not shown in the WBMA of the 

experimentally captured body postures either, it is not the predictive interaction model but the ergonomic 

evaluation criterion (WBMA) or the subjective discomfort evaluation that has to be questioned. The 

assessment of discomfort using the CP-50 scale is exposed to subjective biases. In future studies, the 

subjective discomfort assessment should therefore be supplemented with objective measurements (such 

as EMG measurements). The WBMA as ergonomic evaluation criterion also seems not to be sufficient 

for an assessment of discomfort perception. In order to further develop the predictive interaction model 

into a computer-aided ergonomics tool, it is therefore necessary to research additional assessment criteria 

or schemes in order to validly interpret ergonomics, discomfort and usability. 

6. Summary and Outlook 
Engineering design lacks data-driven methods and tools for predictive and versatile applicable 

interaction modelling, in order to analyse digital product model states virtually and proactively using 

DHM, in terms of a computer aided ergonomics tool (Wolf et al., 2020). In order to address this research 

gap we developed and initially evaluated a phenomenological predictive interaction model. The initial 

evaluation shows indications for the applicability and usefulness of the developed method. Nevertheless, 

some open points remain. The need to characterize human behavior (behaviour cards) is a limitation to 

the applicability and usefulness of the presented interaction model. Hence, a behavior card library of 

elementary or recurring human-product interactions (e.g. pulling, lifting, pressing, etc.) should be 

established, alongside a standardized approach to deduce behaviour cards from empirical data. 
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