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NON,DIFFERENTIABLE SYMMETRIC DUALITY

BERTRAM MOND AND MURRAY SCHECHTER

In this paper we construct dual pairs of problems, of both the Wolfe and Mond-
Weir types, in which the objective contains a a support function and is therefore
not differentiate. A special case which appears repeatedly in the literature is that
in which the support function is the square root of a positive semidefinite quadratic
form. This and other special cases can be readily generated from our result.

1. INTRODUCTION

In the literature of mathematical programming there are a large number of papers
discussing duality theory for- a problem involving the square root of a positive semidef-
inite quadratic function, VxTBx. (See [2] and [3] and the references cited there). The
popularity of this kind of problem seems to stem from the fact that, even though the
objective function and/or constraint functions are nonsmooth, a simple representation
for the dual problem may be found. Nonsmooth mathematical programming theory
deals with much more general kinds of functions by means of generalised subdifferen-
tials [l] or quasidifferentials [4]. However the square root of a positive semidefinite
quadratic form is one of the few cases of a non-differentiable function for which one can
write down the sub or quasi differentials explicitly. In this paper we replace \/xTBx by
a somewhat more general function, namely, the support function of a compact convex
set, for which the subdifferential may be simply expressed. Using such a function we
construct two different symmetric pairs of dual problems, one of the Wolfe type and
one of the Mond-Weir type.

First we review some well known facts about support functions. Let C be a
compact convex set in Rn. The support function of C is denned by

s(x | C) = max{xTj/, y G C}.

Every sublinear (that is, positively homogeneous and subadditive) function defined
on all of Rn may be written as a support function and furthermore C is uniquely
determined by its support function. A support function, being convex and everywhere
finite, has a subdifferential in the sense of convex analysis, that is, there exists z such
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that s(y | C) > s(x \ C) + zT(y - x) for all x. The subdifferential of s(x | C) (that is,
the set of all such z's) is given by

ds(x | C) = {z £ C such that zTx = s(x \ C)}.

We also require the concept of a normal cone. For any set S the normal cone to
S at a point x £ S is defined by

Ns(x) = {y such that yT(z - x) < 0 for all z £ 5}.

There is an easily verified relationship between normal cones and support functions
of a compact convex set C, namely, y is in Nc{x) if and only if s(y \ C) — xTy or,
equivalently, x is in the subdifferential of a at y.

Finally we shall need a form of the Fritz John conditions for a nonsmooth program-
ming problem. The following is from [6]. Let / and j j , i = l , . . . m b e subdifferentiable
functions from Rn into R and let C be a convex set in Rn. Consider the problem

minimise f(x)

subject to gi(x) ^ 0 , i = 1, . . . m

x £ C

If x is an optimal solution to this problem then there exists a real number X and a
vector /x £ Rm, both > 0, such that

(1) 0 £ \df(x) + £ indgi(x) + Nc(x)

(2) A

( 3 ) iH9i{*) = 0,i = l,...m.

2. A WOLFE TYPE SYMMETRIC DUAL PAIR

Consider the following pair of problems.

Problem (P)

minimise k(x,y) + s(x \ d) — yTV2k(x,y)

V2k(x,y)-z <0
x ^ 0 , z£C2.

Problem (D)

maximise k(u,v) — s(v \ C2) — uT'Vik(u,v)

S7!k(u,v) + w ^ 0

v ~£ 0, w £ C\.
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Here A; is a differentiable mapping from Rn x Rm into R and C\ and C2 are compact
convex sets in Rn and Rm respectively.

THEOREM 1. (Weak duality) Suppose that k is convex in x for fixed y and is
concave in y for fixed x. Then inf(P) ^ sup(D).

PROOF: Suppose that (x,y) and (u,v) are feasible for problems (P) and (D)
respectively. Then using the convexity and concavity properties of k we have

(4) k{x,v) - k(x,y) ^(v- y)TV2k(x,y),

(5) k(x,v) - k{u,v) ^ (x - u)TVifc(u,w).

Adding (—1) times equation (4) to equation (5) we get

k{x,y) - k{u,v) - yTS72k{x,y) + ttTVifc(w,i>) + vTV2k(x,y) - I ^ J ^ ^ ) ^ 0.

Using the constraints we get

k{x,y) - k{u,v) - y
TV2k(x,y) + uTVik(u,v) + vTz + xTw ^ 0.

Finally, using vTz ^ s(v | C2) and xTw ^ s(x | C\) we get

k(x,y) + s(x | Ci) - y
TV2k(x,y) - k(u,v) + s(v \ C2) + uTVik(u,v) ^ 0,

from which the result is immediate. D

THEOREM 2. (Strong duality) Suppose that k is twice continuously differentiable
and that {x,y,~z) is optimal for problem (P)- Suppose also that the Hessian (V2) k(x,y)
is nonsingular. Then there exists ct such that (u,v,w) = (x,y,a) is feasible for problem
(D) and the objective function of problem (D) has the value min(P) at this feasible
solution.

PROOF: We recast problem (P) into a form to which the Fritz John conditions
stated in the introduction may be applied. Let q = (x,y,z) and let

F(q) = k(x,y) - yTV2k(x,y) + s(q | d x {0} x {0})

G(q) = V2k(x,y)-z

H{q) = -X

C = Rn x Rn x C2.

Then problem (P) can be restated as follows:

minimise F(q)

G(q) ^ 0

H(q) ^ 0

qec.
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In computing subdifferentials we shall use the following conventions: elements of Rn

will be written as columns and gradients also will be written as columns. ViV2fc(sc,2/)

will be the matrix whose j'th. column is the gradient with respect to x of ——.
oyj

Now we compute the desired subdifferentials.

-(V2
2k(x,y))y

0

where a is any vector in C satisfying aTx = s(x \ C\).

„ , , dk
from which we get

dk -,

j
dk

Hj = —Xj SO

(where Ej is column j of the identity matrix).

0
0

Also note that Nc(q) = {0} x {0} x NCj{z) at any q E C. The Fritz John conditions
(1) and (3) become

0 6 XdF(q) Nc(q),

Using the above formulas for subdifferentials we get (suppressing arguments)

(6)

(7)

(8)

(9)

(10)

(11)

A[Vifc - (ViV2fc)y + a] + (ViV2fc)/x - r, = 0

a G C\ and ax — s(x \ C\)

u ^ 0 and, for all i, aA — 5;] = 0
\dyi J

rj ^ 0 and rjTx = 0.

Suppose A = 0. Prom equation (7) and the nonsingularity of (V2) k we deduce p, — 0
and from equation (6) we conclude that r/ — 0. This is impossible since A, 77 and //
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cannot all vanish, so A ̂  0. We may and do assume that A = 1. Then equation (7)
implies fi — y and equation (6) simplifies to

(12) Vifc + a - 7 7 = O.

so that Vifc + a ^ 0. Then (u,v,w) = (x,y,a) is feasible for problem (D). Now we
want to show that the objectives of the two problems have the same value. This is
equivalent to the assertion that

(13) s(x | C1) + xT\71k(x,y) = -s(y \ C2)+yTV2k(x,y).

We shall show that both sides of equation (13) have the value 0. By multiplying both
sides of equation (12) by xT we get from equations (9) and (11) that the left side
vanishes. Using fi = y equation (10) gives yTV2k(x,y) = yT~z. But from y 6 iVc2(z)
(equation (8)) we have y ~z = s(y \ C2), therefore y S72k[x,y) — s(y \ C2), so that the
right side of equation (13) is zero as claimed. D

Putting together the last two theorems and utilising the symmetry of the two
problems we have the following:

COROLLARY 1. Suppose that k is convex in its first argument and concave in
its second argument and is twice continuousely differentiable with respect to all of its
arguments. If problem (P) has an optimal solution and (V2) k is nonsingular there
or if problem (D) has an optimal solution and (Vi) k is nonsingular there then both
problems have optimal solutions and min(P) = max (D).

Finally, we make the following observation: in the course of proving Theorem 2 we
saw that y ^ 0 (since y = fi). It follows from this that the set of optimal solutions
of problem (P) remains unchanged if the condition y ^ 0 is added to the constraints.
A corresponding statement may be made about problem (D). Also the weak duality
theorem (Theorem 1) is clearly still valid if the conditions y ^ 0 and u ^ 0 are
adjoined to problems (P) and (D) respectively. This observation leads to the following:

COROLLARY 2 . Suppose that conditions y ^ 0 and u ^ 0 are added to problems
(P) and (D) respectively. Then Theorems 1 and 2 (weak and strong duality) and
corollary 1 remain valid.

3. A MOND-WEIR SYMMETRIC DUAL PAIR

Here we present another symmetric dual pair involving a support function. In these
problems gradients appear only in the constraints, as in all Mond-Weir duals. (See, for
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example, [5]).

Problem (PI)
minimise = k(x,y) + $(x | C\) — y z

V2k(x,y)-z ^ 0

x > o, z e c2.
Problem (Dl)

maximise = k(u,v) — s(v \ C2) + u w

Viib(u,u) + w ^ 0

uT[V1k(u,v) + w] ̂  0

v ^ 0, w E C\.

It will prove convenient to have a name for the hypotheses we shall be using.

Hypothesis (HI) Let (x,y,~z) and (u,v,w) be feasible for problems (PI) and (Dl)

respectively. We assume that

1. k(u,v) + uTw is a pseudoconvex function of u at u = u.

2. k(x,y) — yT~z is a pseudoconcave function of y at y = y.

Note that Hypothesis (HI) is satisfied if k(x,y) is convex in x and concave in y, as is

assumed in the duality theorem of the preceding section.

THEOREM 3 . (Weak Duality) Assume that hypothesis (HI) is satisfied. Then

inf (PI) > sup (Dl).

PROOF: Let (x,y,z) and (u,v,w) be feasible for problems (PI) and (Dl) respec-
tively. We shall show that

k(x,y) + s{x | d) - yTz > k(u,v) - s{v | C2) + uTw.

By multiplying the first constraint of problem (Dl) by xT and subtracting the second
we get (x — u) [Vifc(u,«) — w] ^ 0. From the first part of hypothesis (HI) we can
conclude that

(14) k(x,v) + xTw ^ k(u,v) + uTw.

In a similar fashion we get

(15) k(x,v) - vTz ^ k(x,y) - yTz.

From equations (14) and (15) we get

(16) k(x,y) + xTw — yTz ~£ k(u,v) — vTz + «riu.
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Finally, note that xTw ^ s(x | Ci) and vTz ^ s(v \ Cz). This together with equation
(16) gives the desired result. U

We now restate problem (PI) in a form which facilitates the application of the
Fritz John conditions as stated in the introduction. Let q — (x,y, z) and let

F{q) = k{x,y) + s(q | {0} x {0} x d ) - yTz

HM) = ~xi' 3 = l •••n

K(q) = -yT[V2k(x,y) - z]

C = Rn x Rm x C2.

Then problem (PI) may be restated as follows:

minimise F(q)

H ^ 0

K ^ 0

qec.

The Fritz John conditions then become

0 G XdF(q) + ̂ 2 NdG{q) + XI VjdHjiq) + uK{q) + Nc(q)

IMjGj - r)Tx - uK(q) - 0

X, w ^ O

Computation of the required sub differentials is similar to those done in section 2 and is
omitted. The resulting conditions follow. It is to be understood that all functions are
to be evaluated at (x, y).

(17)

(18)

(19) Xy + (n - uy) e Nc2C*~)

(20)

(21)

(22)

(23)

(V:

wy7

cv

zk-z

T—

'(V2*

, aTx

:) fi =

= 0

-z) =

= s(x~

0

0

ICO
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From equations (20) and (22) together we get

(24) (n-u,yf(V2k-z) = 0,

Multiplying equation (18) by (/x — wy) we get

(25) (p-wyf(S7lk)(v-u>y) = 0.

We now assume that ^7\k(x,y) is either positive definite or negative definite. Then
equation (25) gives

(26) fi = wy

and then equation (18) becomes (A — w)(V2k — ~z) = 0. We now assume further that
V2&(zM7) - z ^ O . Then we conclude from the last equation that

(27) \ = u.

From equation (26) we see that the middle term in equation (17) vanishes. From this
we can deduce that A ^ 0, for suppose A = 0. Then we get from equation (17) that
T) = 0, from equation (27) that w = 0 and from equation (20) that fi = 0. But this is
impossible, since not all the multipliers vanish, hence A > 0. We can and do assume that
A = 1. Then equation (17) tells us that Vik(x,y)+ a ̂  0, so that (u,v,w) = (x,y,a)
satisfies the first constraint of problem (Dl). From equations (17) and (21) we see that
(x,y, a) also satisfies the second constraint of problem (Dl) (with = as well as with
^ ). From equation (26) we have y = /J, (since u> = A = 1), therefore y ̂  0. Finally the
last constraint w G C is satisfied because of equation (23). Thus (x,y, a) is feasible for
problem (Dl). Furthermore, the objective functions of problems (PI) and (Dl) have
the same value when (x,y, z) = (x~,y,~z) and (-UjW,!!;) = (x,y, a). To verify this it has
only to be shown that

s(x | Ci) - yTz = -s{y \ C2)+xTa.

Because of equation (23) this reduces to yT~z — s(y \ C2). This is an immediate conse-

quence of the fact that y £ Nc2(~z) (equation (19)).

Combining what has just been proved with weak duality we get the following:

THEOREM 4 . (Strong Duality) Suppose that (x,y,z) is optimal for problem (PI),
that hypothesis (HI) is satisfied, that Vlk(x,y) is positive or negative definite and
that ^2k(x,y) ^ ~z. Then there exists w such that (u,t;,w) = (x,y,w) is optimal for
problem (Dl) and furthermore min(Pl) — max (Dl).

It is not clear that the hypothesis V2fc(i,y) - z ^ 0 will usually be satisfied, since
this rules out one way of satisfying the first and second constraints of problem (PI).
We shall see below that one can expect that this condition will frequently be satisfied.
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By virtue of the symmetry of problems (PI) and (Dl) an analogous statement may
be made in which problem (Dl) is assumed to have an optimal solution and and the
conclusion is that problem (PI) has an optimal solution and max(Dl) = min(Pl) .

In the proof of the strong duality theorem it was noted that not only is (x,y, a)
feasible for problem (Dl) but the second constraint uT[Vik(u,v) + w] ^ 0 is actually
satisfied as an equality. The strong duality theorem then holds with problem (Dl)
changed to make this constraint an equality constraint. Suppose we make the corre-
sponding constraint in problem (PI) an equality also. Clearly, weak duality is still
valid. In the Fritz John conditions the multiplier w would no longer be required to be
non-negative. By examining the proof of the strong duality theorem we see that the
condition w ^ 0 was never used, so the proof is valid even when the second constraint
in each problem is changed into an equality. Also note that while y is not required to
be non-negative in problem (PI) we found that, at an optimal solution, it is. We sum
up these observations in the following:

COROLLARY 3 . Suppose that in problems (PI) and (Dl) the second constraint
is changed from an inequality to an equality. Then the optimal solutions are unchanged
and the weak and strong duality theorems are still valid. Also if the conditions y Js 0
and u ^ 0 are added to the constraints of problems (PI) and (Dl) respectively the
optimal solutions are unchanged and the weak and strong duality theorems are still
valid.

We now consider the possibility of the hypothesis of Theorem 4 being satisfied.
Hypothesis (HI), needed for weak duality requires that the function k(x,y) — yTJ

be pseuodoconcave in y, but it is required that V|fc(a, y) be positive or negative
definite for strong duality. The assumption that S7\k(x,y) is negative definite on the
entire feasible set will guarantee that both these conditions are satisfied (although it's
much more than is needed). Let us make this assumption for now. Consider the
hypothesis V2&(as,3/) - J ^ 0. Let / (y ) = k(x,y) — yT~z. Then the minimum of /
over all y satisfying the first and second constraints of problem (PI) occurs at y = y.

Note that V / = V2& — z. Suppose that, contrary to the hypothesis of Theorem 4,
V2fc(z,y) — ~z = 0. Then y is a critical point of / . But since / is strictly concave at y,

this means that / has a maximum at y. We may conclude that y is the only solution
of the system

yT[V2k(x,y)-z] >0

in some neighbourhood of y. While it is possible that a system of inequalities has an
isolated solution, this is not usually the case. This tells us that in most problems we
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can expect it to be the case that the remaining hypothesis, namely V2(^,y) — z j=- 0,
is satisfied.

EXAMPLE. Let n = m = 1, let k(x,y) - x2 - y2 and let Cj = C2 — [0,1]. Then
s(x | Ci) = x+ = (z + |as|)/2. Problem (PI) becomes

Problem ( P l . l )

minimise x2 — y2 + x+ — yz.

- 2 y - z ^ 0

y[-2y -z}>0

O 0 . 2 E [0,1].

We can minimise over x independently of y and z and we find that the minimum
occurs at x = 0. To minimise over (y, z) we first hold z fixed in [0,1]. We find
that, independently of z, the minimum occurs at y = 0 and the value of the objective
function is 0, therefore the optimal solution is (0,0, z) where z can be any point in
[0,1]. The condition \/2k(x,y) — ~z ^ 0 is satisfied unless we are unlucky enough to
choose ~z = 0. (Even if we did this, the conclusion of the strong duality theorem would
still be valid).

4. SPECIAL CASES

As mentioned in the introduction, a frequently occurring example of a nondiffer-
entiable support function is VxTBx, where £ is a positive semidefinite matrix. It is
readily shown that VxTBx = s(x \ C\) where C\ = {Bw, wTBw ^ 1} and that this
set C\ is compact and convex. We briefly indicate what both the Wolfe symmetric dual
pair and the Mond-Weir symmetric dual pair look like in these cases.

Let C be another positive semidefinite matrix and let C2 = {Cw, wTCw ^ 1}.
Then the dual pair, problems (P) and (D), becomes

Problem (P2)
minimise k(x,y) + \lxTBx — yTV2k(x,y)

V2fc(z,y) -Cz^O

zTCz ^ 1

x ^ 0.

Problem (D2)

maximise k(u,v) — VvTCv +uTVik(u,v)

V!k(u,v)

wTBw <

v ^ 0 .
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This is the pair studied in [3], except that Chandra and Husain add the constraints

2 / ^ 0 and u ^ 0 to problems (P2) and (D2) respectively. As corollary 2 points out,

this may be done without changing the duality theorems.

Using the same choices for C\ and C2 (PI) and (Dl) become

Problem (P3)

minimise k{x,y) + VxTBx — yTCz

V2fc(x,y)-Cz^0

yT[V2Jb(z,y)-Cz]>0

zTCz ^ 1

x ^ 0.

Problem (D3)

maximise k(u,v) — vvTCv -\-u Bw

Vik(u,v)+Bw ^ 0

uT\V1k(u,v) + Bw] ^ 0

wTBw ^ 1

This is precisely the pair studied in [2], where the strong and weak duality theorems

were proved. Note also that three other dual pairs can be generated from these problems

by use of Corollary 3.
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