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1. Introduction. In recent years versions of the Lebesgue and the Hewitt-Yosida
decomposition theorems have been proved for group-valued measures. For example,
Traynor [4], [6] has established Lebesgue decomposition theorems for exhaustive group-
valued measures on a ring using (1) algebraic and (2) topological notions of continuity and
singularity, and generalizations of the Hewitt-Yosida theorem have been given by
Drewnowski [2], Traynor [5] and Khurana [3]. In this paper we consider group-valued
submeasures and in particular we have established a decomposition theorem from which
analogues of the Lebesgue and Hewitt-Yosida decomposition theorems for submeasures
may be derived. Our methods are based on those used by Drewnowski in [2] and the main
theorem established generalizes Theorem 4.1 of [2].

2. Notation and terminology. Let G be a commutative lattice group (abbreviated to
/-group). A quasi-norm (resp. norm) q on G is said to be an l-quasi-norm (I-norm) if
q(x)s£q(y) for all x, y in G with |x|=s|y|. A G-valued function fi, defined on a ring 0t of
subsets of a set X is said to be a submeasure if n ( 0 ) = O, /x(EUF)^p,(E) + /x(i7) for all
E, F in 0t with EC\F = 0 , and fx(-E)=s(F) for all E, F in 0t with EQF. A G-valued
submeasure /x on 9? is said to be exhaustive if and only if, for any disjoint sequence {£^}
in 0t, lim ii(En) = 0 in (G, a). An /-group G is said to be order complete if every bounded

n—«o

increasing net in G has a supremum. An i-quasi-norm q on G is said to be order
continuous if 0 <= A | x in G+ = {x e G: x s= 0} implies q(x) = sup{q(y): y e A} and B | x in
G+ implies q(x) = inf{q(y): y e B}.

Let 2) denote a collection of pairwise disjoint sets in 0t and let A be the set of all such
collections. If 3)u 2>2eA, then we write 2'1=£2)2 if and only if 2)2 is a refinement of 2^.
With each E e 9% we associate members of 3>; the collection of all such pairs (E, 3>) is
denoted by % and we let

(3} and A«,

In the sequel we use \J3) to mean the set theoretic union of the members of 3). Following
Drewnowski's terminology ([2], Definition 2.1), the collection <§ is said to be an additivity
on 9t if it satisfies the following conditions:

(a) Af £ A*,, where Af consists of those collections 2) which have only a finite number
of members;

(b) if Ee3? and 2)e<§(E), then \J3) = E;
(c) if E e 01, 2>1; 2)2 e «(£), then 2^ D 2>2 € <S(E), where 2)j n 2>2 = {Dj n D2: Df € 2>j,

i = 1, 2}.
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(d) if Eu E2e0t, E 1 n E 2 = 0 and °bie.c3{Ei) (i = 1,2), then % U S 2 e ^ ( E , UE2),
where @t U 2)2 = {Dx U D2: Df e 21;, j = 1, 2};

(e) if E, Fe0t, E^F and 3 s « ( F ) , then 2) H E e
Examples of additivities are

2. "Se = {(E, 2l): E € SB, 2> e Ac, U 2> = E}, where Ac is the collection of all 2) which
contain a countable number of disjoint sets in 01.

A topology T on 0t is said to be a ring topology if the mappings (A, B) —» A A B and
( A , B ) - » A n B of 0tx0i —»<% are continuous, continuity being with respect to the
product topology on 01 x Si. A ring topology T is said to be an FN-topology (Frechet-
Nikodym) if and only if, for each T-neighbourhood U of 0 in 01, there exists a
T-neighbourhood V of 0 in 3? such that B e [/ for all B £ A € V, B e 0t. The notion of an
FN-topology was introduced and studied by Drewnowski in ([1], pp. 271-5). In particular,
a family & = {T|;: i e I) of R*-valued submeasures on a ring defines an FN-topology
r(T)j:JeI); a base of IXTJ, :ie^-neighbourhoods of 0 in 01 being given by finite
intersections of sets of the form UBi ={A e£% : Tjj(A)<e}(e >0, rj; e SF). Conversely, for
each FN-topology Y on £%, there is a family {̂  : / e /} of U%-submeasures on 01 such that
r = r(|; :JeJ).

Let f(2)) denote finite collections of members of 2). If F is an FN-topology on £% and
E e 01, we say that E = F-lim f(9)) if and only if, for each T-neighbourhood U of 0 in i%,
there exists a 2 ^ e /(2>) such that E A (J S ' e U for all 2)^ s 2)' e /(@). We shall also use
the following example of an additivity.

3. c§c(T) = {(E,3)):Ee0l, 2)eAc, U S = E, E = T-lim /(S)}. The above additivity is
called the additivity generated by Y. In particular, if TJ is an IR*-valued submeasure on 0L
we abbreviate %(Y(r))) to 'S(T)); in this case we note that, if Ee0l and 2) =
{D,,: n = 1,2,.. .}e Ac, then E = T)-lim/(2)) if and only if

E \ U A J - * O as n^oo.

In proving our decomposition theorem we require the notions of ^-continuity and
•^-singularity as given by Drewnowski in [2], Definitions 2.4 and 2.17 respectively. For
the sake of completeness we include these definitions as follows.

DEFINITION 1. Let "S be an additivity on 0t. An FN-topology Y on 0t is said to be
^-continuous if and only if, for each Ee01 and 3) e <S(E), T - l imE\ U 2)' = 0 .

DEFINITION 2. An FN-topology Y is said to be ^-singular if and only if the only
"^-continuous FN-topology weaker than Y is the trivial one.

If (G, q) is an l-quasi-normed group and TJ is a G-valued submeasure on 01, then
clearly F(q°T]) is ^(r))-continuous. We also see that, if <& is an additivity on 01,
then r(q°T)) is 'S-continuous if and only if, for each E G 0 t and 2)e(S(E),

lim q(r)(E\U 2)')) = 0; in this case we simply say that TJ is ^-continuous. It is also
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straightforward to show that an FN-topology F is ^-continuous if and only if it is order
continuous; that is, if {En : n = 1, 2 , . . .} is a sequence in 2k, En j 0 , then F-lim En = 0 . In a

n

similar way we say that TJ is 'S-singular if and only if r(q°-n) is ^-singular. It is not difficult
to prove that TJ is ^-singular if and only if any ^-continuous G-valued submeasure A on
2k such that A « TJ is identically zero.

3. The decomposition theorem. In this section we assume that G is an order
complete /-group and that q is an order continuous Z-quasi-norm on G. Let /x be an
exhaustive G-valued submeasure on 2k and suppose that "S is an additivity on 2k. For each
E e 2k, define

s,(£)= A V
and

SKE)= V A n(£\U9').
9s<9(E) a>'sf(3»

Then we have the following

LEMMA 1. S^ and S'^ are G-valued exhaustive submeasures on 2k.

Proof. Let E e 2k and 2) e ^(E). By property (b) of an additivity U ® = E and so
0s2/Li(U 3>')^ix(E) for all 2>'e/(2>); the net {fi,(U 2)'):2)'ef(2))} is | and bounded and so
by the order completeness of G V M-(U®') exists. Similarly, by property (c) of an

additivity the net ] V M-(U 3)'):3iecS{E)\ is I and bounded and so by the order

completeness of G A V /*(U ®') e x i s t s i n G + f o r e a c h £ e * BY a similar
9e

argument we can prove that S^(E) exists in G+ for each E&2k.
The subadditivity of S^ (resp. S,l) follows from the subadditivity of /x and property

(d) (property (e)) of an additivity. Similarly the monotonicity of S^ (resp. S'J follows from
the monotonicity of fx and property (e) (resp. (d)) of an additivity.

For any Ee2k, SI1,(E)^^(E) and S'^(E)^ix(E), and so, since q is an /-quasi-norm,
q(S(i(E))«q((x(E)) and q(S^.(E))«q(fx(E)); this implies that both S^ and SI are exhaus-
tive and ix-continuous.

LEMMA 2. (i) S^ is ^-continuous.
(ii) SI is ^-singular.

Proof, (i) Suppose that Ŝ  is not 'S-continuous. Then there exist a positive number e,
E&2k and S e « ( £ ) such that q(SM.(£:\U 3>'))>e for all 3)'ef(2)). Since S,, is a
submeasure and q has the /-property we have

q (^ (E) )Sq (S , (E \US ' ) )>e (D

for all 2i'e/(2i); also, S (E)^ V M-(U 2)') and since q is order continuous
3's/O)
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sup q((x(U S'))^q(S(i(E))>e. Thus there exists a ^ e f t S ) such that q(/u.(U ®i))>e.

By property (e) of an additivity 2)\2)1e
cg(EWJ 2),), where

and from (1) ( ( ( S ^ E M J S i ^ s . It follows from the order continuity of q that
sup q(/x(U ®'))^q(SM.(E\U ®i))>e and so there exists a 3)2ef(3)\2)1) such that

In this way we construct by induction a disjoint sequence {3)n : n = 1, 2,...} such that
q(fi,(U 3)n))>e. This contradicts the exhaustive property of /x, and so ju, is *S-continuous,
as required.

(ii) Suppose that S^ is not "^-singular. Then there exists a 'S-continuous G-valued
submeasure A such that A « S^ and A is not identically zero. This implies that there is a set
E € £% and a positive number 17 such that q(A(E))> TJ >0. Since A « S^ there is a positive
number 8 such that

q(S;(F))<S=>q(A(F))<-n/2 (Fe<%). (2)

Thus q(S^(E))^S; since q is order continuous there exists a 3> e "9CE) such that
q( /x(E\ | J 2>'))ss8 for all 2>'e/(2>). Now A is ^-continuous and so there exists a
3lo€f(3>) such that q(A(E\U ®o))<'n/22. Let E ^ L J S o and A ^ E X E j . Then
qdnCAjW^S, q(A(A1))<V22 and q(A(Ea))>V2 + T)/22. Thus from (2) qiS'^E^^S and
so there exists a 2> e 'S(Ei) such that qC/xCEiXU 2J'))^S for all 2)'e/(2)). Again since A
is ^-continuous there exists a 3)[ef(2>) such that qCACE^U 2>[))<r]l2i. Let E2= U 3)[
and A2 = E ! \ E 2 . Then q(|u,(A2))3=S, q(A(A2))<T|/23 and q(A(E2))>T)/2+Tj/23. In this
way we construct by induction a disjoint sequence {An: n = 1, 2,...} in 9£ such that
q(fi,(An))s=8 for n = 1, 2 , . . . . This contradicts the property that /m. is exhaustive.

LEMMA 3. (i) If A is a <&-continuous G-valued submeasure on 91 such that A « /x, then
A«S(i.

(ii) If v is a ^-singular G-valued submeasure on 01 such that v« jx, then v« S'^.

Proof, (i) Since A « /x, given any e > 0, there exists a positive 8 such that

e (EeR). (3)

We seek to show that q(Sli(E))<8 => q(A(E))s£e. Suppose that this assertion is not true.
Then there exists an Eo in 0t such that q(SllL(E0))<8 and q(A(E0))>e + y for some
positive number 7. Since q is order continuous there exists 2! e ^(Eo) such that
q(n(U 2>'))<8 for all S'e/(2)). Since A is 'S-continuous there exists a 2)oe/(2>) such
that q(A(E0\U 3)'0))<yl2. It follows that q(A(U 2>o))>£ + yl2. Thus q(ti([j 3)'0))<8
and q(A(|J 2i^))>e + 7/2. This contradicts (3), and so A«SM..

(ii) Since v«jx, given any e > 0 , there exists a positive number 8 such that

q(/x(E)) < 8 => q(v(E))«e (Ee R). (4)

We seek to prove that q(Sl(E))<8 ^> q{v(E))^e. Suppose that the implication is not
true. Then there exists a set Eo in 3/t such that q(S,l(Eo)) < 8 ^ q(v(E0)) > e + y for some
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v « a and u is7 >0. This implies that for all 2i e<g(E0),q( A (x(E0\(J 2>'))<8- Since

exhaustive it follows that v is exhaustive and so, by Lemma 2(i), Sv is ^-continuous.
Moreover, Sv « v and so, since v is ^-singular, it follows that Sv = 0. Thus there exists a
2ioe^CEo) such that q(v(\J 3)'))<y/2 for all 3>'ef(2>0). Choose 2ioe/(2>o) so that
q(jx(E0\U ®o))<S and let Fo= (J ©o- Then q(v(E0\FQ))> e+ y-y/2 = e + y/2. This
contradicts (4) and so v«S'^.

DEFINITION 3. Two G-valued submeasures fx, v defined on a ring SB are said to be
equivalent, written ju, ~ v, if and only if \x « v and v « p..

We now prove our decomposition theorem.

THEOREM 1. Let (G, q) be an /-group and q an order continuous l-norm on G. Let \x
be an exhaustive G-valued submeasure on 01 and 'S an additivity on £%. Then p. ~ S^ + S^
(~S(1vS|i). / / A, v are ^-continuous and ^-singular G-valued submeasures on 3H
respectively such that n.~\ + v, then A ~S^ and v~S'^.

Proof. Let Ee9l, 2>e<S(E) and @'e/(2>). Now

and so ')+ V

it follows that

n(B)« A ( i ( £ \U3 ' )+ V jt(US

and subsequently we have

V A M£\U3')+ A V

Thus, for E e 91,

Moreover, SM.(E)=SJU.(E) and S^(E)^fi.(E), and so it is clear that n.-S^ + S^.
The second part of the theorem deals with the 'uniqueness' of the decomposition.
If A + i/~/x, then A, v«fi. Thus, by Lemma 3, A«S| i and v«S,l. Also A + v~

S^ + S,l, so that, in particular, S^« K + v and S,l« A + v. The G-valued submeasure A + v
is exhaustive and so by Lemma 3

S^«SK+V = SK + SV and Sl«S'K+v = Sl + Sl.

Now Sv is ^-continuous and Sv« v so that, since v is ^-singular, S,, = 0. Also S'x is
^-singular by Lemma 2(ii) and since Sx=£A and A is 'S-continuous it follows that S'x is
^-continuous; thus S[ = 0.

Therefore S^« Sx « A and S'^« S'v« v.
Thus S(1~A and S^~v, as required.
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COROLLARY 1. If CS = %, then we have a Hewitt-Yosida type decomposition theorem
for exhaustive I-group-valued submeasures. In this case S^ is order continuous and so is a
a-sub-additive submeasure on 9t and S'^ is 'purely finitely sub-additive' in the sense that, if
A is an order-continuous G-valued submeasure on 9t such that A « S'^, then A = 0.

COROLLARY 2. Let (E, p) be an l-quasi-normed group and let TJ be an E-valued
submeasure on 9t. Suppose that the additivity on 91 is (S = %(T(p°r))). In this case we have
a Lebesgue-type decomposition theorem for an exhaustive G-valued submeasure /x; the
submeasure S^ is ^-continuous and S'^ is r)-singular.
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