A DECOMPOSITION THEOREM FOR SUBMEASURES

by A. R. KHAN and K. ROWLANDS

(Received 11 October, 1983)

1. Introduction. In recent years versions of the Lebesgue and the Hewitt-Yosida decomposition theorems have been proved for group-valued measures. For example, Traynor [4], [6] has established Lebesgue decomposition theorems for exhaustive group-valued measures on a ring using (1) algebraic and (2) topological notions of continuity and singularity, and generalizations of the Hewitt-Yosida theorem have been given by Drewnowski [2], Traynor [5] and Khurana [3]. In this paper we consider group-valued submeasures and in particular we have established a decomposition theorem from which analogues of the Lebesgue and Hewitt-Yosida decomposition theorems for submeasures may be derived. Our methods are based on those used by Drewnowski in [2] and the main theorem established generalizes Theorem 4.1 of [2].

2. Notation and terminology. Let G be a commutative lattice group (abbreviated to *l*-group). A quasi-norm (resp. norm) q on G is said to be an *l*-quasi-norm (*l*-norm) if $q(x) \le q(y)$ for all x, y in G with $|x| \le |y|$. A G-valued function μ defined on a ring \mathcal{R} of subsets of a set X is said to be a submeasure if $\mu(\emptyset) = 0$, $\mu(E \cup F) \le \mu(E) + \mu(F)$ for all E, F in \mathcal{R} with $E \cap F = \emptyset$, and $\mu(E) \le (F)$ for all E, F in \mathcal{R} with $E \subseteq F$. A G-valued submeasure μ on \mathcal{R} is said to be exhaustive if and only if, for any disjoint sequence $\{E_n\}$ in $\mathcal{R}, \lim_{n \to \infty} \mu(E_n) = 0$ in (G, q). An *l*-group G is said to be order complete if every bounded increasing net in G has a supremum. An *l*-quasi-norm q on G is said to be order continuous if $\emptyset \subset A \uparrow x$ in $G^+ = \{x \in G : x \ge 0\}$ implies $q(x) = \sup\{q(y) : y \in A\}$ and $B \downarrow x$ in G^+ implies $q(x) = \inf\{q(y) : y \in B\}$.

Let \mathcal{D} denote a collection of pairwise disjoint sets in \mathcal{R} and let Δ be the set of all such collections. If $\mathcal{D}_1, \mathcal{D}_2 \in \Delta$, then we write $\mathcal{D}_1 \leq \mathcal{D}_2$ if and only if \mathcal{D}_2 is a refinement of \mathcal{D}_1 . With each $E \in \mathcal{R}$ we associate members of \mathcal{D} ; the collection of all such pairs (E, \mathcal{D}) is denoted by \mathcal{G} and we let

$$\mathscr{G}(E) = \{\mathscr{D} \in \Delta : (E, \mathscr{D}) \in \mathscr{G}\} \text{ and } \Delta_{\mathscr{G}} = \bigcup_{E \in \mathfrak{R}} \mathscr{G}(E).$$

In the sequel we use $\bigcup \mathcal{D}$ to mean the set theoretic union of the members of \mathcal{D} . Following Drewnowski's terminology ([2], Definition 2.1), the collection \mathcal{G} is said to be an *additivity* on \mathcal{R} if it satisfies the following conditions:

(a) $\Delta_f \subseteq \Delta_{\mathcal{G}}$, where Δ_f consists of those collections \mathcal{D} which have only a finite number of members;

(b) if $E \in \mathcal{R}$ and $\mathcal{D} \in \mathcal{G}(E)$, then $\bigcup \mathcal{D} = E$;

(c) if $E \in \mathcal{R}$, \mathcal{D}_1 , $\mathcal{D}_2 \in \mathcal{G}(E)$, then $\mathcal{D}_1 \cap \mathcal{D}_2 \in \mathcal{G}(E)$, where $\mathcal{D}_1 \cap \mathcal{D}_2 = \{D_1 \cap D_2 : D_i \in \mathcal{D}_i, i = 1, 2\}$.

Glasgow Math. J. 26 (1985) 69-74.

(d) if $E_1, E_2 \in \mathcal{R}, E_1 \cap E_2 = \emptyset$ and $\mathcal{D}_i \in \mathcal{G}(E_i)$ (i = 1, 2), then $\mathcal{D}_1 \cup \mathcal{D}_2 \in \mathcal{G}(E_1 \cup E_2)$, where $\mathcal{D}_1 \cup \mathcal{D}_2 = \{D_1 \cup D_2 : D_i \in \mathcal{D}_i, i = 1, 2\}$;

(e) if $E, F \in \mathcal{R}, E \subseteq F$ and $\mathcal{D} \in \mathcal{G}(F)$, then $\mathcal{D} \cap E \in \mathcal{G}(E)$.

Examples of additivities are

1. $\mathscr{G}_{f} = \{(E, \mathscr{D}) : E \in \mathscr{R}, \mathscr{D} \in \Delta_{f}, \bigcup \mathscr{D} = E\}$

2. $\mathscr{G}_c = \{(E, \mathscr{D}) : E \in \mathscr{R}, \ \mathscr{D} \in \Delta_c, \bigcup \mathscr{D} = E\}$, where Δ_c is the collection of all \mathscr{D} which contain a countable number of disjoint sets in \mathscr{R} .

A topology τ on \Re is said to be a ring topology if the mappings $(A, B) \to A \Delta B$ and $(A, B) \to A \cap B$ of $\Re \times \Re \to \Re$ are continuous, continuity being with respect to the product topology on $\Re \times \Re$. A ring topology τ is said to be an FN-topology (Fréchet-Nikodym) if and only if, for each τ -neighbourhood U of \emptyset in \Re , there exists a τ -neighbourhood V of \emptyset in \Re such that $B \in U$ for all $B \subseteq A \in V$, $B \in \Re$. The notion of an FN-topology was introduced and studied by Drewnowski in ([1], pp. 271-5). In particular, a family $\mathscr{F} = \{\eta_i : i \in I\}$ of \mathbb{R}^*_+ -valued submeasures on a ring defines an FN-topology $\Gamma(\eta_i : i \in I)$; a base of $\Gamma(\eta_i : i \in I)$ -neighbourhoods of \emptyset in \Re being given by finite intersections of sets of the form $U_{e,i} = \{A \in \Re : \eta_i(A) < \varepsilon\} (\varepsilon > 0, \eta_i \in \mathscr{F})$. Conversely, for each FN-topology Γ on \Re , there is a family $\{\xi_j : j \in J\}$ of \mathbb{R}^*_+ -submeasures on \Re such that $\Gamma = \Gamma(\xi_i : J \in J)$.

Let $f(\mathfrak{D})$ denote finite collections of members of \mathfrak{D} . If Γ is an FN-topology on \mathfrak{R} and $E \in \mathfrak{R}$, we say that $E = \Gamma$ -lim $f(\mathfrak{D})$ if and only if, for each Γ -neighbourhood U of \mathfrak{O} in \mathfrak{R} , there exists a $\mathfrak{D}_U \in f(\mathfrak{D})$ such that $E \Delta \bigcup \mathfrak{D}' \in U$ for all $\mathfrak{D}_U \subseteq \mathfrak{D}' \in f(\mathfrak{D})$. We shall also use the following example of an additivity.

3. $\mathscr{G}_{c}(\Gamma) = \{(E, \mathfrak{D}) : E \in \mathscr{R}, \mathfrak{D} \in \Delta_{c}, \bigcup \mathfrak{D} = E, E = \Gamma - \lim f(\mathfrak{D})\}$. The above additivity is called the additivity generated by Γ . In particular, if η is an \mathbb{R}^{*}_{+} -valued submeasure on \mathscr{R} we abbreviate $\mathscr{G}_{c}(\Gamma(\eta))$ to $\mathscr{G}(\eta)$; in this case we note that, if $E \in \mathscr{R}$ and $\mathfrak{D} = \{D_{n} : n = 1, 2, \ldots\} \in \Delta_{c}$, then $E = \eta - \lim f(\mathfrak{D})$ if and only if

$$\eta\left(E \setminus \bigcup_{k=1}^{n} D_{k}\right) \to 0 \text{ as } n \to \infty.$$

In proving our decomposition theorem we require the notions of \mathscr{G} -continuity and \mathscr{G} -singularity as given by Drewnowski in [2], Definitions 2.4 and 2.17 respectively. For the sake of completeness we include these definitions as follows.

DEFINITION 1. Let \mathscr{G} be an additivity on \mathscr{R} . An FN-topology Γ on \mathscr{R} is said to be \mathscr{G} -continuous if and only if, for each $E \in \mathscr{R}$ and $\mathscr{D} \in \mathscr{G}(E)$, Γ -lim $E \setminus \bigcup_{\mathfrak{D}' \in f(\mathfrak{D})} \mathscr{D}' = \mathscr{O}$.

DEFINITION 2. An FN-topology Γ is said to be *G*-singular if and only if the only *G*-continuous FN-topology weaker than Γ is the trivial one.

If (G, q) is an *l*-quasi-normed group and η is a G-valued submeasure on \mathcal{R} , then clearly $\Gamma(q \circ \eta)$ is $\mathcal{G}(\eta)$ -continuous. We also see that, if \mathcal{G} is an additivity on \mathcal{R} , then $\Gamma(q \circ \eta)$ is \mathcal{G} -continuous if and only if, for each $E \in \mathcal{R}$ and $\mathcal{D} \in \mathcal{G}(E)$, $\lim_{\mathfrak{D}' \in f(\mathfrak{D})} q(\eta(E \setminus \bigcup \mathfrak{D}')) = 0$; in this case we simply say that η is \mathcal{G} -continuous. It is also straightforward to show that an FN-topology Γ is \mathscr{G}_c -continuous if and only if it is order continuous; that is, if $\{E_n : n = 1, 2, ...\}$ is a sequence in $\mathscr{R}, E_n \downarrow \emptyset$, then Γ -lim $E_n = \emptyset$. In a

similar way we say that η is \mathscr{G} -singular if and only if $\Gamma(q \circ \eta)$ is \mathscr{G} -singular. It is not difficult to prove that η is \mathscr{G} -singular if and only if any \mathscr{G} -continuous G-valued submeasure λ on \mathscr{R} such that $\lambda \ll \eta$ is identically zero.

3. The decomposition theorem. In this section we assume that G is an order complete *l*-group and that q is an order continuous *l*-quasi-norm on G. Let μ be an exhaustive G-valued submeasure on \mathcal{R} and suppose that \mathcal{G} is an additivity on \mathcal{R} . For each $E \in \mathcal{R}$, define

$$S_{\mu}(E) = \bigwedge_{\mathfrak{D} \in \mathfrak{G}(E)} \bigvee_{\mathfrak{D}' \in \mathfrak{f}(\mathfrak{D})} \mu(\bigcup \mathfrak{D}')$$

and

$$S'_{\mu}(E) = \bigvee_{\mathfrak{D} \in \mathscr{G}(E)} \bigwedge_{\mathfrak{D}' \in f(\mathfrak{D})} \mu(E \setminus \bigcup \mathfrak{D}').$$

Then we have the following

LEMMA 1. S_{μ} and S'_{μ} are G-valued exhaustive submeasures on \mathcal{R} .

Proof. Let $E \in \mathcal{R}$ and $\mathcal{D} \in \mathcal{G}(E)$. By property (b) of an additivity $\bigcup \mathcal{D} = E$ and so $0 \leq \mu(\bigcup \mathcal{D}') \leq \mu(E)$ for all $\mathcal{D}' \in f(\mathcal{D})$; the net $\{\mu(\bigcup \mathcal{D}') : \mathcal{D}' \in f(\mathcal{D})\}$ is \uparrow and bounded and so by the order completeness of $G \bigvee_{\mathcal{D}' \in f(\mathcal{D})} \mu(\bigcup \mathcal{D}')$ exists. Similarly, by property (c) of an additivity the net $\{\bigcup_{\mathcal{D}' \in f(\mathcal{D})} \mu(\bigcup \mathcal{D}') : \mathcal{D} \in \mathcal{G}(E)\}$ is \downarrow and bounded and so by the order completeness of $G \bigvee_{\mathcal{D}' \in f(\mathcal{D})} \mu(\bigcup \mathcal{D}') : \mathcal{D} \in \mathcal{G}(E)\}$ is \downarrow and bounded and so by the order completeness of $G \bigwedge_{\mathcal{D} \in \mathcal{G}(E) \mathcal{D}' \in f(\mathcal{D})} \mu(\bigcup \mathcal{D}')$ exists in G^+ for each $E \in \mathcal{R}$. By a similar

argument we can prove that $S'_{\mu}(E)$ exists in G^+ for each $E \in \mathcal{R}$.

The subadditivity of S_{μ} (resp. S'_{μ}) follows from the subadditivity of μ and property (d) (property (e)) of an additivity. Similarly the monotonicity of S_{μ} (resp. S'_{μ}) follows from the monotonicity of μ and property (e) (resp. (d)) of an additivity.

For any $E \in \mathcal{R}$, $S_{\mu}(E) \leq \mu(E)$ and $S'_{\mu}(E) \leq \mu(E)$, and so, since q is an l-quasi-norm, $q(S_{\mu}(E)) \leq q(\mu(E))$ and $q(S'_{\mu}(E)) \leq q(\mu(E))$; this implies that both S_{μ} and S'_{μ} are exhaustive and μ -continuous.

LEMMA 2. (i) S_{μ} is G-continuous. (ii) S'_{μ} is G-singular.

Proof. (i) Suppose that S_{μ} is not \mathscr{G} -continuous. Then there exist a positive number ε , $E \in \mathscr{R}$ and $\mathfrak{D} \in \mathscr{G}(E)$ such that $q(S_{\mu}(E \setminus \bigcup \mathfrak{D}')) > \varepsilon$ for all $\mathfrak{D}' \in f(\mathfrak{D})$. Since S_{μ} is a submeasure and q has the *l*-property we have

$$q(S_{\mu}(E)) \ge q(S_{\mu}(E \setminus \bigcup \mathcal{D}')) \ge \varepsilon$$
(1)

for all $\mathscr{D}' \in f(\mathscr{D})$; also, $S_{\mu}(E) \leq \bigvee_{\mathscr{D}' \in f(\mathscr{D})} \mu(\bigcup \mathscr{D}')$ and since q is order continuous

$$\begin{split} &\sup_{\mathfrak{D}'\in f(\mathfrak{D})} q(\mu(\bigcup \mathfrak{D}')) \ge q(S_{\mu}(E)) > \varepsilon. \text{ Thus there exists a } \mathfrak{D}_1 \in f(\mathfrak{D}) \text{ such that } q(\mu(\bigcup \mathfrak{D}_1)) > \varepsilon. \\ & \text{By property (e) of an additivity } \mathfrak{D} \setminus \mathfrak{D}_1 \in \mathscr{G}(E \setminus \bigcup \mathfrak{D}_1), \text{ where } \mathfrak{D} \setminus \mathfrak{D}_1 = \{D \in \mathfrak{D} : D \notin \mathfrak{D}_1\}, \\ & \text{and from (1) } q(S_{\mu}(E \setminus \bigcup \mathfrak{D}_1)) > \varepsilon. \text{ It follows from the order continuity of } q \text{ that } \\ & \sup_{\mathfrak{D}'\in f(\mathfrak{D} \setminus \mathfrak{D}_1)} q(\mu(\bigcup \mathfrak{D}')) \ge q(S_{\mu}(E \setminus \bigcup \mathfrak{D}_1)) > \varepsilon \text{ and so there exists a } \mathfrak{D}_2 \in f(\mathfrak{D} \setminus \mathfrak{D}_1) \text{ such that } \\ & \mathfrak{D}'\in f(\mathfrak{D} \setminus \mathfrak{D}_1) > \varepsilon. \end{split}$$

In this way we construct by induction a disjoint sequence $\{\mathcal{D}_n : n = 1, 2, ...\}$ such that $q(\mu(\bigcup \mathcal{D}_n)) > \varepsilon$. This contradicts the exhaustive property of μ , and so μ is \mathscr{G} -continuous, as required.

(ii) Suppose that S'_{μ} is not \mathscr{G} -singular. Then there exists a \mathscr{G} -continuous G-valued submeasure λ such that $\lambda \ll S'_{\mu}$ and λ is not identically zero. This implies that there is a set $E \in \mathscr{R}$ and a positive number η such that $q(\lambda(E)) > \eta > 0$. Since $\lambda \ll S'_{\mu}$ there is a positive number δ such that

$$q(S'_{\mu}(F)) < \delta \Rightarrow q(\lambda(F)) < \eta/2 \qquad (F \in \mathcal{R}).$$
⁽²⁾

Thus $q(S'_{\mu}(E)) \ge \delta$; since q is order continuous there exists a $\mathcal{D} \in \mathcal{G}(E)$ such that $q(\mu(E \setminus \bigcup \mathcal{D}')) \ge \delta$ for all $\mathcal{D}' \in f(\mathcal{D})$. Now λ is \mathcal{G} -continuous and so there exists a $\mathcal{D}'_0 \in f(\mathcal{D})$ such that $q(\lambda(E \setminus \bigcup \mathcal{D}'_0)) < \eta/2^2$. Let $E_1 = \bigcup \mathcal{D}'_0$ and $A_1 = E \setminus E_1$. Then $q(\mu(A_1)) \ge \delta$, $q(\lambda(A_1)) < \eta/2^2$ and $q(\lambda(E_1)) \ge \eta/2 + \eta/2^2$. Thus from (2) $q(S'_{\mu}(E_1)) \ge \delta$ and so there exists a $\mathcal{D} \in \mathcal{G}(E_1)$ such that $q(\mu(E_1 \setminus \bigcup \mathcal{D}')) \ge \delta$ for all $\mathcal{D}' \in f(\mathcal{D})$. Again since λ is \mathcal{G} -continuous there exists a $\mathcal{D}'_1 \in f(\mathcal{D})$ such that $q(\lambda(E_1 \setminus \bigcup \mathcal{D}'_1)) < \eta/2^3$. Let $E_2 = \bigcup \mathcal{D}'_1$ and $A_2 = E_1 \setminus E_2$. Then $q(\mu(A_2)) \ge \delta$, $q(\lambda(A_2)) < \eta/2^3$ and $q(\lambda(E_2)) > \eta/2 + \eta/2^3$. In this way we construct by induction a disjoint sequence $\{A_n : n = 1, 2, \ldots\}$ in \mathcal{R} such that $q(\mu(A_n)) \ge \delta$ for $n = 1, 2, \ldots$. This contradicts the property that μ is exhaustive.

LEMMA 3. (i) If λ is a G-continuous G-valued submeasure on \mathcal{R} such that $\lambda \ll \mu$, then $\lambda \ll S_{\mu}$.

(ii) If ν is a G-singular G-valued submeasure on \mathcal{R} such that $\nu \ll \mu$, then $\nu \ll S'_{\mu}$.

Proof. (i) Since $\lambda \ll \mu$, given any $\varepsilon > 0$, there exists a positive δ such that

$$q(\mu(E)) < \delta \Rightarrow q(\lambda(E) \le \varepsilon \qquad (E \in R).$$
(3)

We seek to show that $q(S_{\mu}(E)) < \delta \Rightarrow q(\lambda(E)) \leq \varepsilon$. Suppose that this assertion is not true. Then there exists an E_0 in \mathcal{R} such that $q(S_{\mu}(E_0)) < \delta$ and $q(\lambda(E_0)) > \varepsilon + \gamma$ for some positive number γ . Since q is order continuous there exists $\mathfrak{D} \in \mathscr{G}(E_0)$ such that $q(\mu(\bigcup \mathfrak{D}')) < \delta$ for all $\mathfrak{D}' \in f(\mathfrak{D})$. Since λ is \mathscr{G} -continuous there exists a $\mathfrak{D}'_0 \in f(\mathfrak{D})$ such that $q(\lambda(E_0 \setminus \bigcup \mathfrak{D}'_0)) < \gamma/2$. It follows that $q(\lambda(\bigcup \mathfrak{D}'_0)) > \varepsilon + \gamma/2$. Thus $q(\mu(\bigcup \mathfrak{D}'_0)) < \delta$ and $q(\lambda(\bigcup \mathfrak{D}'_0)) > \varepsilon + \gamma/2$. This contradicts (3), and so $\lambda \ll S_{\mu}$.

(ii) Since $\nu \ll \mu$, given any $\varepsilon > 0$, there exists a positive number δ such that

$$q(\mu(E)) < \delta \Rightarrow q(\nu(E)) \le \varepsilon \qquad (E \in R). \tag{4}$$

We seek to prove that $q(S'_{\mu}(E)) < \delta \Rightarrow q(\nu(E)) \leq \varepsilon$. Suppose that the implication is not true. Then there exists a set E_0 in \Re such that $q(S'_{\mu}(E_0)) < \delta \Rightarrow q(\nu(E_0)) > \varepsilon + \gamma$ for some

72

 $\gamma > 0$. This implies that for all $\mathcal{D} \in \mathcal{G}(E_0)$, $q\left(\bigwedge_{\mathfrak{D}' \in f(\mathfrak{D})} \mu(E_0 \setminus \bigcup \mathfrak{D}')\right) < \delta$. Since $\nu \ll \mu$ and μ is exhaustive it follows that ν is exhaustive and so, by Lemma 2(i), S_{ν} is \mathscr{G} -continuous. Moreover, $S_{\nu} \ll \nu$ and so, since ν is \mathscr{G} -singular, it follows that $S_{\nu} = 0$. Thus there exists a $\mathfrak{D}_0 \in \mathcal{G}(E_0)$ such that $q(\nu(\bigcup \mathfrak{D}')) < \gamma/2$ for all $\mathfrak{D}' \in f(\mathfrak{D}_0)$. Choose $\mathfrak{D}'_0 \in f(\mathfrak{D}_0)$ so that $q(\mu(E_0 \setminus \bigcup \mathfrak{D}'_0)) < \delta$ and let $F_0 = \bigcup \mathfrak{D}'_0$. Then $q(\nu(E_0 \setminus F_0)) > \varepsilon + \gamma - \gamma/2 = \varepsilon + \gamma/2$. This contradicts (4) and so $\nu \ll S'_{\mu}$.

DEFINITION 3. Two G-valued submeasures μ , ν defined on a ring \Re are said to be equivalent, written $\mu \sim \nu$, if and only if $\mu \ll \nu$ and $\nu \ll \mu$.

We now prove our decomposition theorem.

THEOREM 1. Let (G, q) be an l-group and q an order continuous l-norm on G. Let μ be an exhaustive G-valued submeasure on \mathcal{R} and \mathcal{G} an additivity on \mathcal{R} . Then $\mu \sim S_{\mu} + S'_{\mu}$ $(\sim S_{\mu} \vee S'_{\mu})$. If λ , ν are \mathcal{G} -continuous and \mathcal{G} -singular G-valued submeasures on \mathcal{R} respectively such that $\mu \sim \lambda + \nu$, then $\lambda \sim S_{\mu}$ and $\nu \sim S'_{\mu}$.

Proof. Let
$$E \in \mathcal{R}$$
, $\mathfrak{D} \in \mathcal{G}(E)$ and $\mathfrak{D}' \in f(\mathfrak{D})$. Now

$$E = (E \setminus \bigcup \mathcal{D}') \cup (\bigcup \mathcal{D}')$$

and so

$$\mu(E) \leq \mu(E \setminus \bigcup \mathcal{D}') + \mu(\bigcup \mathcal{D}') \leq \mu(E \setminus \bigcup \mathcal{D}') + \bigvee_{\mathcal{D}' \in f(\mathcal{D})} \mu(\bigcup \mathcal{D}');$$

it follows that

$$\mu(E) \leq \bigwedge_{\mathfrak{D}' \in f(\mathfrak{D})} \mu(E \setminus \bigcup \mathfrak{D}') + \bigvee_{\mathfrak{D}' \in f(\mathfrak{D})} \mu(\bigcup \mathfrak{D}')$$

and subsequently we have

$$\iota(E) \leq \bigvee_{\mathfrak{D} \in \mathfrak{G}(E)} \bigwedge_{\mathfrak{D}' \in \mathfrak{f}(\mathfrak{D})} \mu(E \setminus \bigcup \mathfrak{D}') + \bigwedge_{\mathfrak{D} \in \mathfrak{G}(E)} \bigvee_{\mathfrak{D}' \in \mathfrak{f}(\mathfrak{D})} \mu(\bigcup \mathfrak{D}').$$

Thus, for $E \in \mathcal{R}$,

$$\mu(E) \leq S_{\mu}(E) + S_{\mu}'(E).$$

Moreover, $S_{\mu}(E) \leq \mu(E)$ and $S'_{\mu}(E) \leq \mu(E)$, and so it is clear that $\mu \sim S_{\mu} + S'_{\mu}$.

The second part of the theorem deals with the 'uniqueness' of the decomposition.

If $\lambda + \nu \sim \mu$, then λ , $\nu \ll \mu$. Thus, by Lemma 3, $\lambda \ll S_{\mu}$ and $\nu \ll S'_{\mu}$. Also $\lambda + \nu \sim S_{\mu} + S'_{\mu}$, so that, in particular, $S_{\mu} \ll \lambda + \nu$ and $S'_{\mu} \ll \lambda + \nu$. The G-valued submeasure $\lambda + \nu$ is exhaustive and so by Lemma 3

$$S_{\mu} \ll S_{\lambda+\nu} = S_{\lambda} + S_{\nu}$$
 and $S'_{\mu} \ll S'_{\lambda+\nu} = S'_{\lambda} + S'_{\nu}$.

Now S_{ν} is G-continuous and $S_{\nu} \ll \nu$ so that, since ν is G-singular, $S_{\nu} = 0$. Also S'_{λ} is G-singular by Lemma 2(ii) and since $S'_{\lambda} \leq \lambda$ and λ is G-continuous it follows that S'_{λ} is G-continuous; thus $S'_{\lambda} = 0$.

Therefore $S_{\mu} \ll S_{\lambda} \ll \lambda$ and $S'_{\mu} \ll S'_{\nu} \ll \nu$. Thus $S_{\mu} \sim \lambda$ and $S'_{\mu} \sim \nu$, as required.

A. R. KHAN AND K. ROWLANDS

COROLLARY 1. If $\mathscr{G} = \mathscr{G}_c$, then we have a Hewitt-Yosida type decomposition theorem for exhaustive l-group-valued submeasures. In this case S_{μ} is order continuous and so is a σ -sub-additive submeasure on \mathscr{R} and S'_{μ} is 'purely finitely sub-additive' in the sense that, if λ is an order-continuous G-valued submeasure on \mathscr{R} such that $\lambda \ll S'_{\mu}$, then $\lambda = 0$.

COROLLARY 2. Let (E, p) be an l-quasi-normed group and let η be an E-valued submeasure on \mathcal{R} . Suppose that the additivity on \mathcal{R} is $\mathcal{G} = \mathcal{G}_c(\Gamma(p \circ \eta))$. In this case we have a Lebesgue-type decomposition theorem for an exhaustive G-valued submeasure μ ; the submeasure S_{μ} is η -continuous and S'_{μ} is η -singular.

REFERENCES

1. L. Drewnowski, Topological rings of sets, continuous set functions, integration I, Bull. Acad. Polon. Sci., Sér. Sci. Math.,, Astr. et Phys., 20, (1972), 269-276.

2. L. Drewnowski, Decompositions of set functions, Studia Mathematica 48 (1973), 23-48.

3. S. S. Khurana, Submeasures and decomposition of measures, J. Math. Analysis and Applications **70** (1979), 111–113.

4. T. Traynor, Decomposition of group-valued additive set functions, Ann. Inst. Fourier, Grenoble 22 (1972), 131-140.

5. T. Traynor, A general Hewitt-Yosida decomposition, Canadian J. Math. 24 (1972), 1164-1169.

6. T. Traynor, The Lebesgue decomposition for group-valued set functions, Trans. Amer. Math. Soc. 220 (1976), 307-319.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF MULTAN PAKISTAN DEPARTMENT OF PURE MATHEMATICS UNIVERSITY COLLEGE OF WALES ABERYSTWYTH