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Uniform distribution of the Steinitz invariants of

quadratic and cubic extensions

Anthony C. Kable and David J. Wright

Abstract

It is shown that the Steinitz invariants of the cubic extensions of a number field are
uniformly distributed in the class group when the cubic extensions are ordered by the ideal
norm of their relative discriminants. This remains true even if the extensions are restricted
by specifying their splitting type at a finite number of places. The same statement is also
proved for quadratic extensions.

1. Introduction

Algebraic number theory began with a focus on the arithmetic of number fields viewed as extensions
of the rational numbers. As the subject developed, its internal logic forced a change in perspective:
any number field k might serve as the domain of rationality and extensions of k were to be studied
as such. As the ring of integers, Ok, of k is not generally a PID, new phenomena appear in this
relative setting. For example, there might be finitely-generated torsion-free Ok-modules that are
not free. There is an invariant of such Ok-modules, the Steinitz invariant, which takes its values
in the ideal class group, Cl(k), of k and quantifies this phenomenon. The rings of integers of finite
extensions of k are an abundant and important source of finitely-generated torsion-free Ok-modules
and it is natural to inquire about the properties of their Steinitz invariants. There is substantial and
growing literature that studies this question by algebraic methods [Art65, Car98, Fro60, God02,
GS03, KP00, Sov02]. Here we use analytic methods to establish an equidistribution result for the
Steinitz invariant of the ring of integers of a quadratic or cubic extension of a fixed number field.
We may state a simplified version of our main result, Corollary 5.6, as follows.

Theorem 1.1. Let k be a number field of class number h and fix C ∈ Cl(k). If M is a finitely-
generated torsion-free Ok-module then let S(M) denote its Steinitz invariant. If K is a finite
extension of k then denote by ∆K/k the relative discriminant of K over k and by N(∆K/k) the
absolute ideal norm of ∆K/k. For d = 2 or 3 we have

lim
B→∞

|{K | [K : k] = d,N(∆K/k) � B,S(OK) = C}|
|{K | [K : k] = d,N(∆K/k) � B}| =

1
h

,

where the vertical bars stand for cardinality.

As mentioned in the abstract, the full version of this result allows the extension K to be restricted
by specifying its completion, up to isomorphism, at each of finitely-many places of k. Also, for d = 3,
the contribution to the numerator and denominator from cyclic cubic extensions is negligible and
so they may be excluded. The conclusion remains the same.
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In [Fro60], Fröhlich proved that every class in Cl(k) is the Steinitz invariant of OK for some
quadratic extension K of k. For d = 2, our result is a refinement of Fröhlich’s. For d = 3, it has as
a corollary that every class in Cl(k) may be realized as the Steinitz invariant of a non-normal cubic
extension of k.

We now describe the ingredients that go into the proof of the theorem. The first is a general
construction of a Cl(k)-valued invariant associated with certain group actions. Specifically, suppose
that we have an affine algebraic group G, an affine space V on which G acts rationally, a non-
zero polynomial P on V , and a character ω of G such that P (gx) = ω(g)mP (x) for some m � 1.
Suppose also that all of these objects are defined over the ring Ok. In this setting we obtain a map
S : Gk\V ′

k → Cl(k), where V ′ is the complement of the hypersurface P = 0. The construction of S
is described in § 2.

If we take G = GL(2) and V to be the space of binary cubic forms, with the associated discrimi-
nant polynomial and character, then it is known that the set Gk\V ′

k is in one-to-one correspondence
with the set of isomorphism classes of separable cubic k-algebras. We write Ax for the cubic k-algebra
associated with x ∈ V ′

k. The correspondence x ↔ Ax was constructed by Delone and Fadeev [DF64]
by giving an explicit model for the algebra Ax in terms of the coefficients of x. The key observation
that makes our result possible is that the Steinitz invariant of OAx is equal to the invariant S(x)
described in the previous paragraph. This identification is made in § 3.

In order to exploit this equality, we turn to the zeta function of the space of binary cubic
forms. This remarkable meromorphic function was introduced by Shintani [Shi72] when k = Q as
a specific example of the general theory of the zeta functions of prehomogeneous vector spaces
[SS74, Yuk93]. It was studied over general numbers fields by Datskovsky and Wright in a series of
papers [DW86, DW88, Wri85], and further progress has recently been made by Yukie [Yuk03]. By
using this body of theory we are able to obtain the analytic properties of a family of Dirichlet series
that should be

ξd(s, χ) =
∑

[K:k]=d

χ(S(OK))
N(∆K/k)s

,

where χ is a character of the class group of k. In reality, the series we obtain are more complicated
than this: each term has an additional weight factor that is itself a Dirichlet series of a simpler
kind. For conceptual purposes, this complication may be ignored. With the analytic properties of
ξd(s, χ) in hand, standard methods of analytic number theory allow us to extract the equidistribution
theorem that is our goal. The argument we use originated in Dirichlet’s proof of the infinitude of
primes in an arithmetic progression. The theory of the zeta function of the space of binary cubic
forms is recalled in § 4 and the complications due to the extra weight factors are dealt with in § 5,
thus completing the proof. We would like to emphasize that Yukie’s results in [Yuk03] are essential
for our success. A forthcoming paper of Taniguchi will include still more precise information on the
analytic properties of the zeta function. This work should appear in due course, and can serve as
an alternate reference whenever we require results from [Yuk03].

In response to a question raised by the referee, we offer some remarks on error terms and related
issues. Denote by F3(B) the set of cubic extensions K of k with N(∆K/k) � B, and by F3(C, B) the
subset of F3(B) consisting of fields with S(OK) = C. It is known that there is a constant α > 0 such
that |F3(B)| = αB + o(B) as B → ∞. In unpublished work, the second-named author improved
this to |F3(B)| = αB +O(B/ log(B)). Our main result here states that |F3(C, B)| = (α/h)B +o(B),
and this can be improved in the same way. However, it is expected that this is very far from the
true error term. In fact, as explained in [Rob01], one expects at least that there are constants
β < 0 and r < 5/6 such that |F3(B)| = αB + βB5/6 + O(Br). One can modify the heuristics
leading to this proposal to take account of the Steinitz class and the result is very interesting. It is
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that |F3(C, B)| = (α/h)B + β(C)B5/6 + O(Br), where the constant β(C) depends in a non-trivial
way on C. That is, while all Steinitz classes are asymptotically equally populated to first order,
when the second-order terms are taken into account, some classes are systematically favored over
others. The precise formula for β(C) will be presented in a later paper. In recent work, Belabas
et al. [BBP04] obtained the error estimate |F3(B)| = αB + O(B19/20+ε) for any ε > 0 when k = Q.
A first step in pursuing their method in the current setting would be to extend the Delone–Fadeev
correspondence in a suitable manner to all cubic algebras over a Dedekind domain.

Next let us discuss possible extensions of our results. There are prehomogeneous vector spaces
that play the same role for quartic and quintic extensions of k that the space of binary cubic forms
plays for cubic extensions [WY92]. The invariant S : Gk\V ′

k → Cl(k) attached to these spaces again
coincides with the Steinitz invariant of the ring of integers of the field parameterized by an orbit and
so we may hope to extend our result to d = 4 and d = 5. For quartic extensions, the analytic theory
of the associated zeta function has nearly reached the point where this will be possible, thanks
again to the efforts of Yukie. For quintic extensions it will probably be some time before the same
can be said. However, the standard conjectures on the analytic behavior of the zeta function of a
prehomogeneous vector space also imply our theorem in that case. It seems unlikely that there is
anything special about d � 5 and so we venture to suggest the following conjecture. By a symmetric
extension of degree d we mean an extension K/k of degree d such that the Galois group of the
normal closure of K over k is isomorphic to Sd.

Conjecture 1.2. For any d � 2 the Steinitz invariant of OK is equidistributed in Cl(k) as K varies
over the symmetric extensions of k of degree d, ordered by N(∆K/k). This remains true even if K
is restricted by specifying its splitting type at a finite number of places.

Beyond this there are many other quadruples (G,V, P, ω) whose orbit space Gk\V ′
k is in one-to-

one correspondence with some set of objects of arithmetic interest. For prehomogeneous examples
the reader may consult [Yuk00]. There are also non-prehomogeneous examples, such as the space
of binary n-tics for n � 4. It is likely that the invariant S(x) will be equidistributed (with suitable
weights) in Cl(k) as x varies over Gk\V ′

k, provided that this set is infinite. One challenge in these
cases is to identify the invariant S in more familiar terms and to elucidate its significance.

2. A general construction

In this section we define the ideal class invariant that lies at the heart of our work. To begin with
we require notation for some of the standard objects of algebraic number theory. Let k be a number
field, Ok be its ring of integers, Cl(k) be its ideal class group, and M(k), Mf(k) and M∞(k) be
the set of places, finite places and infinite places of k, respectively. For v ∈ M(k), kv will denote
the completion of k at v and | · |v the normalized absolute value on kv, as in [Wei74]. If v ∈ Mf(k)
then Ov will be the ring of integers in kv, Pv the maximal ideal, qv the cardinality of Ov/Pv, O×

v

the units of Ov and �v ∈ Pv a fixed uniformizer. If a is a fractional of k whose completion at a
finite place v is Pi

v then we shall write ordv(a) = i; we extend this notation to elements α ∈ k× by
confusing α with the fractional ideal it generates. The completion of a at v is denoted by av , so that
av = P

ordv(a)
v . Each finite place v of k is associated with a prime ideal pv = Ok ∩ Pv of Ok. There is

a unique homomorphism N from the group of fractional ideals of k to Q× such that N(pv) = qv for
all v ∈ Mf(k); we call N the ideal norm. If a is a non-zero ideal of Ok then N(a) is the cardinality
of the finite ring Ok/a.

The adeles of k will be denoted by Ak, the ideles by A×
k and the idele norm by | · |. We put

A×
k,∞ =

∏
v∈M∞(k)

k×
v
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and regard A×
k,∞ as a subgroup of A×

k . The class group of k may be identified with the quotient of
A×

k by the subgroup

Jk = k× · A×
k,∞ ·

∏
v∈Mf (k)

O×
v .

This identification is made by sending the class of the fractional ideal a of k to the class of the idele
ι(a) whose components are given by

ι(a)v =

{
1 if v ∈ M∞(k),
�

ordv(a)
v if v ∈ Mf(k).

We shall henceforth identify Cl(k) with A×
k /Jk via ι.

Let G be an algebraic group, V a rational representation of G, ω a rational character of G and
P a non-zero polynomial on V that satisfies the transformation law P (gx) = ω(g)mP (x) for some
fixed m � 1. Denote by V ′ the complement of the hypersurface P = 0 in V . Assume that the
quadruple (G,V, ω, P ) is defined over Ok. In addition, assume that if v ∈ Mf(k) and x ∈ V ′

kv
then

Gkvx ∩ VOv �= ∅. This hypothesis will be satisfied, for example, if the center of G contains a split
torus that acts on V by a non-trivial rational character. In this situation we define

∆v(x) = max{|P (y)|v | y ∈ Gkvx ∩ VOv}
for v ∈ Mf(k) and x ∈ V ′

kv
. Note that |P (y)|v is bounded above for y ∈ VOv and that zero is the only

limit point of the set |k×
v |v; thus the indicated maximum is achieved, and ∆v(x) is well defined. It

is clear that ∆v(x) depends only on the Gkv -orbit of x. Furthermore, ∆v(x) � 1 for all v ∈ Mf(k)
and x ∈ V ′

kv
.

Now let x ∈ V ′
k. For each finite place v of k we may choose gx,v ∈ Gkv such that |P (gx,vx)|v =

∆v(x). Let a(x) be the idele whose components are

a(x)v =

{
1 if v ∈ M∞(k),
ω(gx,v) if v ∈ Mf(k),

and S(x) be the class of a(x) in Cl(k). Note that x ∈ VOv and |P (x)|v = 1 for all but finitely many
v ∈ Mf(k). Thus ω(gx,v) ∈ O×

v for all but finitely many v ∈ Mf(k), so that a(x) is well defined.

Lemma 2.1. The class S(x) ∈ Cl(k) does not depend on the choices made in its definition. If x ∈ V ′
k

and g ∈ Gk then S(gx) = S(x), so that S may be regarded as a map from Gk\V ′
k to Cl(k).

Proof. The only choices made in the definition of S(x) are those of gx,v for v ∈ Mf(k). Suppose
that (gx,v)v is one possible choice and (g′x,v)v is another. Then

|ω(gx,v)|v = (|P (gx,vx)|v/|P (x)|v)1/m = (∆v(x)/|P (x)|v)1/m

and similarly with g′x,v in place of gx,v. It follows that |ω(gx,v)|v = |ω(g′x,v)|v and so
ω(g′x,v)ω(gx,v)−1 ∈ O×

v . If a(x) is the idele defined with (gx,v)v and a′(x) is the idele defined with
(g′x,v)v then we conclude that a′(x)a(x)−1 ∈ Jk and so [a(x)] = [a′(x)].

Take x ∈ V ′
k and g ∈ Gk and suppose that (gx,v)v is as above. As ∆v(gx) = ∆v(x), the family

(gx,vg
−1)v has the defining property with respect to gx and so a(gx) = a(x)ω(g)−1. However,

ω(g) ∈ k× and so a(gx)a(x)−1 ∈ Jk. Thus [a(gx)] = [a(x)].

The construction of the map S is rather formal and the reader might wonder what its significance
is. In the next section we throw some light on this question by identifying the map S associated
with the space of binary cubic forms with the Steinitz invariant of the ring of integers of a cubic
extension of a number field.
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3. Binary cubic forms and the Steinitz invariant

For the reader’s convenience, we recall certain facts from the theory of modules over Dedekind
domains. This theory is developed at length in [Bou65, ch. 7] and is also described in [Coh00, ch. 1]
and in [FT91, ch. 2]. Let R be a Dedekind domain with field of fractions F and M be a finitely-
generated R-module. Then M is projective if and only if it is torsion-free. If M is torsion-free then
of rank m then there is a fractional ideal a of F such that M ∼= Rm−1 ⊕ a and the ideal class of a

depends only on the isomorphism class of M . This ideal class is called the Steinitz invariant of M
and we shall denote it by S(M). Note that in the Picard group of Ok we have S(M) = ∧mM ; this
interpretation of the Steinitz invariant has recently been emphasized by Khare and Prasad [KP00].
The theory we have just recalled applies in particular to the ring of integers of a number field. In
this case, we have the following result [Art65].

Lemma 3.1 (Artin [Art65]). Let k be a number field and K a finite extension of k. Let δK/k ∈ k×

be the discriminant of the trace form with respect to some k-basis of K. There is a fractional ideal
a of k such that ∆K/k = (δK/k)a2 and S(OK) = [a].

Our next task is to describe the space of binary cubic forms and its relation with the set of based
cubic algebras. This subject has received detailed treatments in [DF64, WY92] and so, apart from
establishing essential notation, we shall be brief. The new feature of our discussion is Proposition 3.3,
which identifies the Steinitz invariant of a cubic ring in this picture.

Working initially over Z, let V be affine four-space and denote by x1, . . . , x4 the canonical
coordinates on V . With a point x = (x1, . . . , x4) in V we associate the binary cubic form

Fx(u1, u2) = x1u
3
1 + x2u

2
1u2 + x3u1u

2
2 + x4u

3
2.

The group G = GL(2) acts on V in such a way that

Fgx(u1, u2) = det(g)−1Fx

(
(u1, u2)g

)
and the quartic polynomial

P (x) = x2
2x

2
3 + 18x1x2x3x4 − 4x3

2x4 − 4x1x
3
3 − 27x2

1x
2
4

on V satisfies the transformation law

P (gx) = det(g)2P (x)

with respect to this action. With ω(g) = det(g) and m = 2, this places us in the situation of § 2
and we shall employ the notation introduced there. When k is a number field we obtain a map
S : Gk\V ′

k → Cl(k) associated with the quadruple (G,V, ω, P ).
Let R be a commutative ring with 1 and A a free R-module of rank three with a fixed ordered

basis e, ω1, ω2. If x ∈ VR then we may introduce an R-bilinear multiplication on A in such a way
that it becomes a commutative, associative R-algebra with multiplicative identity e by defining the
basic products as

ω2
1 = −x1x3e − x2ω1 + x1ω2,

ω2
2 = −x2x4e − x4ω1 + x3ω2,

ω1ω2 = −x1x4e.

We denote the resulting R-algebra by Ax. The map x �→ Ax was discovered by Delone and Fadeev
[DF64] and hence we call it the Delone–Fadeev map. For brevity’s sake, we define a cubic R-algebra
to be a commutative, associative R-algebra with identity that is free of rank three as an R-module.
The following result may be extracted from the discussion in [DF64, § 15].
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Lemma 3.2 (Delone–Fadeev [DF64]). The isomorphism class of Ax depends only on the GR-orbit
of x in VR. The discriminant of the trace form of Ax with respect to the basis e, ω1, ω2 is P (x). The
set GR\V ′

R is in one-to-one correspondence with the set of isomorphism classes of separable cubic
R-algebras via the Delone–Fadeev map.

Let k be a number field. If K is a separable cubic k-algebra then K is isomorphic to a direct
sum of number fields and so we may make sense of the notation OK as the direct sum of the rings
of integers in each of these fields. Then OK is a torsion-free Ok-module and so the Steinitz invariant
S(OK) is defined. Note that if K ∼= k3 then S(OK) is the identity in Cl(k) and if K ∼= k⊕E, with E
a quadratic extension of k, then S(OK) = S(OE). Observe that Lemma 3.1 extends without change
to this setting.

Take v ∈ M(k). As the set of extensions of kv of fixed degree is finite, Gkv\V ′
kv

is finite. It will
be convenient to choose specific representatives for each of the orbits in this set. Let n(v) be the
cardinality of Gkv\V ′

kv
. If v ∈ M∞(k) then choose representatives wi,v, 1 � i � n(v), for the orbits

in Gkv\V ′
kv

such that |P (wi,v)|v = 1. Note that n(v) = 1 if v is a complex place and n(v) = 2 if v is
a real place. Suppose now that v ∈ Mf(k), take x ∈ Gkv\V ′

kv
and let Ax be the associated separable

cubic kv-algebra. Then Ax is isomorphic to a direct sum of local fields and there is unique maximal
compact subring Rx in Ax. The ring Rx is in fact a cubic Ov-algebra and there is an orbit GOvw
in GOv\V ′

Ov
that corresponds to Rx under the Delone–Fadeev map for Ov. As every Ov-subalgebra

of Ax is contained in Rx, GOvw is the unique GOv -orbit on which |P (y)|v achieves its maximum
value for y ∈ Gkvx ∩ VOv . In the notation of § 2 this means that ∆v(x) = |P (w)|v and, moreover,
that this equality determines the GOv -orbit of w. We now choose representatives wi,v, 1 � i � n(v),
for the orbits in Gkv\V ′

kv
that satisfy ∆v(wi,v) = |P (wi,v)|v . With orbital representatives fixed at

all v ∈ M(k), we introduce one more piece of notation: if x ∈ V ′
kv

then let iv(x) be the index such
that x ∈ Gkvwiv(x),v.

Proposition 3.3. Let k be a number field, x ∈ V ′
k and K the separable cubic k-algebra corre-

sponding to x. Then S(OK) = S(x).

Proof. For each v ∈ Mf(k) choose gx,v ∈ Gkv such that gx,vx = wiv(x),v. Let a(x) be the idele whose
infinite components are all 1 and whose component at a finite place v is det(gx,v). The choice of
orbital representatives wi,v made above is consistent with the definition of S and so S(x) = [a(x)].
The cubic Ov-algebra Rv = Ov ⊗Ok

OK is the maximal compact subring of the cubic kv-algebra
kv ⊗k K. As such, Rv corresponds to wiv(x),v under the Delone–Fadeev map, and it follows from
Lemma 3.2 that the discriminant ideal of Rv over Ov is generated by P (wiv(x),v). This ideal coincides
with the completion of ∆K/k at v. We have P (wiv(x),v) = det(gx,v)2P (x) and so if a(x) is the
fractional ideal of k corresponding to the idele a(x) then ∆K/k = (P (x))a(x)2. By Lemma 3.2, P (x)
is the discriminant of the trace form with respect to some k-basis of K. It follows from Lemma 3.1,
or its extension to separable algebras, that S(OK) = [a(x)].

4. The zeta function

In this section we describe the zeta function of the space of binary cubic forms and its connection
to the problem considered here. As usual, we must begin by introducing some further notation and
recalling various standard facts.

Let k be a number field. A continuous homomorphism ω : A×
k /k× → C× will be referred to as

an idele class character of k. The group of all idele class characters of k will be denoted by Ω(k).
Included in this group are the principal idele class characters ωs for s ∈ C, defined by ωs(a) = |a|s.
Let A1

k = {a ∈ A×
k | |a| = 1} be the kernel of the idele norm. Associated with the idele norm there
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is a short exact sequence

{1} −→ A1
k −→ A×

k −→ R+ −→ {1},
where R+ denotes the multiplicative group of positive real numbers. This sequence is split and we
may choose a specific splitting λ �→ λ such that λv = 1 for all v ∈ Mf(k). Once this splitting is
chosen we obtain an isomorphism

A×
k
∼= R+ × A1

k. (1)

If a ∈ Ak then let (|a|, ã) ∈ R+ × A1
k be the pair corresponding to a under the isomorphism (1).

We also have an isomorphism

A×
k /k× ∼= R+ × A1

k/k
× (2)

induced by (1).

Let Ω1(k) be the group of continuous homomorphisms from A1
k/k

× to C×; note that, since
A1

k/k
× is compact, the image of any such homomorphism actually lies in S1 = {z ∈ C | |z| = 1}.

Corresponding to the isomorphism (2) we obtain an isomorphism Ω(k) ∼= C×Ω1(k). The character
ω ∈ Ω(k) corresponds under this isomorphism to the pair (s(ω), ω|

A1
k/k×), where s(ω) is the unique

complex number such that ω(λ) = λs(ω). If ω ∈ Ω1(k) then let ω̃ ∈ Ω(k) be the character defined
by ω̃(a) = ω(ã). Note that s(ω̃) = 0 for all ω ∈ Ω1(k). As Jk contains the image of λ �→ λ, the
inclusion A1

k → Ak induces an isomorphism

Cl(k) ∼= A1
k/J

1
k ,

where J1
k = Jk ∩ A1

k. Thus, we may identify the characters of the finite group Cl(k) with the
characters of A1

k that are trivial on J1
k .

Denote by GA, respectively VA, be the adele points of G, respectively V , as a group over k. Let
Uv ⊂ Gkv be the orthogonal group if v is a real place of k, the unitary group if v is a complex place
of k, and GOv if v is a finite place of k. Then

U =
∏

v∈M(k)

Uv ⊂ GA

is a maximal compact subgroup of GA. The image of the determinant map restricted to U is
A0

k = {a ∈ Ak | |av |v = 1 ∀v ∈ M(k)}. Let S(VA) be the space of Schwartz–Bruhat functions on VA
and S0(VA) ⊂ S(VA) be the subspace consisting of U -invariant functions.

In [DW86, Wri85], specific Haar measures were fixed on Ak, A×
k and GA, as well as on the local

factors of each of these groups. We employ the same measures here, albeit with a simplified notation
that should be clear in context. From these basic choices, we also obtain Haar measures on VA and
its local factors and on quotient spaces such as GA/Gk.

Let X ⊂ V ′
k be a Gk-invariant set, ω ∈ Ω(k) and Φ ∈ S0(VA). We define the associated zeta

function to be

Z(ω,Φ;X) =
∫

GA/Gk

ω(det(g))
∑
x∈X

Φ(gx) dg.

Note that Z(ω,Φ;X) ≡ 0 unless ω is trivial on A0
k · k×/k×. If x ∈ V ′

k then let Ax be the cubic
k-algebra corresponding to x under the Delone–Fadeev map. We have to consider the Gk-invariant
sets

X2 = {x ∈ V ′
k | Ax

∼= k ⊕ E with E a field},
X3 = {x ∈ V ′

k | Ax is a field}.
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Define functionals Σ2 and Σ3 on S0(VA) by

Σ2(Φ) =
∫
A
×
k

∫
Ak

∫
Ak

|t|2Φ(0, t, y1, y2) dy1 dy2 d×t

and

Σ3(Φ) =
∫

VA

Φ(x) dx.

The following result summarizes some of the analytic properties of the zeta functions Z(ω,Φ;X2) and
Z(ω,Φ;X3) in a form convenient for our applications. When discussing the convergence of integrals
we use the phrase normally convergent to mean absolutely and locally uniformly convergent.

Proposition 4.1. Let χ ∈ Ω1(k), Φ ∈ S0(VA) and s ∈ C and put

Zd(s, χ,Φ) = Z(ωsχ̃,Φ;Xd)

for d = 2, 3. The integral defining Zd(s, χ,Φ) is normally convergent in the region re(s) > 2. The
resulting holomorphic function has a meromorphic continuation to the region re(s) > 5/3. If χ is
non-trivial then this continuation is, in fact, holomorphic. If χ = χ0 is trivial then the only possible
singularity of Zd(s, χ0,Φ) in the region re(s) > 5/3 is a simple pole at s = 2 with residue CdΣd(Φ),
where C2 and C3 are positive constants depending only on k.

Proof. The analytic properties of Z(ω,Φ;V ′
k) were studied in detail in [Wri85]. If x0 ∈ V ′

k is a point
corresponding to the cubic k-algebra k3 then we have V ′

k = X3∪X2∪Gkx0 and Z(ω,Φ;Gkx0) is easily
understood. Thus, if one can obtain the analytic properties of either Z(ω,Φ;X2) or Z(ω,Φ;X3) then
those of the other will follow. A direct analysis of Z(ωs,Φ;X2) is achieved in [Yuk03]. Although this
work does not consider Z(ωsχ̃,Φ;X2) for non-trivial χ, the proof turns on the estimation of the
region of absolute convergence of certain integrals connected with Z(ωs,Φ;X2) and, as |χ̃(a)| = 1
for all a ∈ A×

k , it is a straightforward matter to modify the arguments to cover the more general
case.

Every Φ ∈ S0(VA) is a finite sum of functions that factor as a product over v ∈ M(k) of local
Schwartz–Bruhat functions. We assume henceforth that all Φ that we consider have a factorization
Φ =

⊗
v Φv. Note that Φv is invariant under the group Uv. If v ∈ Mf(k) then denote by Φ0,v the

characteristic function of the compact open set VOv . If Φ ∈ S0(VA) then Φv = Φ0,v for all but finitely
many places v. If ω ∈ Ω(k) then the pullback of ω to A×

k has a factorization ω =
⊗

v ωv. The local
character ωv is unramified for all but finitely many v. We have |ωv(x)| = |x|re(s(ω))

v for all v ∈ M(k)
and all x ∈ k×

v . When we are discussing a single place of k we may denote the exponent in this
identity by re(ωv), which is defined without regard to a global character of which ωv is a factor.

Recall that in § 3 we chose standard local orbital representatives wi,v ∈ V ′
kv

subject to certain
conditions. If x ∈ V ′

k then, for all v ∈ M(k), x ∈ Gkvwiv(x),v. For x ∈ V ′
k, ω ∈ Ω(k) and Φ ∈ S0(VA)

we define
Ξx(ω,Φ) =

∏
v∈M(k)

Ξx,v(ωv,Φv),

where

Ξx,v(ωv,Φv) =
∫

Gkv

ωv(det(gv))Φv(gvwiv(x),v) dgv .

Note that Ξx(ω,Φ) depends on x only through its Gk-orbit. In order to justify these definitions, we
give a preliminary convergence result.

Proposition 4.2. The integral defining Ξx,v(ωv,Φv) is normally convergent in the region re(ωv) >
1/3. After possibly discarding a finite number of vanishing factors, the product that defines Ξx(ω,Φ)
is absolutely convergent in the region re(s(ω)) > 1.
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Proof. The statements are a consequence of [DW86, Corollaries 3.1 and 3.2 and Theorem 3.1],
together with the observations recorded above.

The following result establishes the essential connection between Zd(s, χ,Φ) and the distribution
of the Steinitz invariant of degree d extensions of k in the class group. For each x ∈ V ′

k let o(x) be
the cardinality of the isotropy group of x in Gk. The number o(x) is also the cardinality of the group
of automorphisms of the cubic k-algebra Ax (see, for example, [DW86]); in particular, 1 � o(x) � 6.

Proposition 4.3. Let χ be a character of Cl(k) and regard χ equivalently as an element of Ω1(k).
Let Φ ∈ S0(VA) and s ∈ C with re(s) > 2. There is a positive constant C0, depending only on k,
such that

Zd(s, χ,Φ) = C0

∑
x∈Gk\Xd

o(x)−1χ(S(OAx)) Ξx(ωsχ̃,Φ)N(∆Ax/k)
−s/2

for d = 2, 3.

Proof. By unfolding the integral against the sum in the definition of Zd(s, χ,Φ) we obtain

Zd(s, χ,Φ) =
∑

x∈Gk\Xd

o(x)−1

∫
GA

|det (g)|sχ̃(det(g))Φ(gx) dg.

Each term in this series may be written as a product of local factors. The Haar measure on GA is
necessarily proportional to the product of the Haar measures on Gkv and so

Zd(s, χ,Φ) = C0

∑
x∈Gk\Xd

o(x)−1
∏

v∈M(k)

∫
Gkv

|det (gv)|svχ̃v(det(gv))Φv(gvx) dgv ,

where C0 depends only on k. For each x ∈ Xd and v ∈ M(k) we may choose gx,v ∈ Gkv such that
gx,vx = wiv(x),v. Let a(x) be the idele whose component at v is det(gx,v). After making the change
of variable gv �→ gvgx,v in each of the local integrals, we arrive at

Zd(s, χ,Φ) = C0

∑
x∈Gk\Xd

o(x)−1|a(x)|sχ̃(a(x)) Ξx(ωsχ̃,Φ).

As A×
k,∞ ⊂ Jk, it follows from the definition that a(x) lies in the class S(x) in A×

k /Jk. By
Proposition 3.3 this is also the class S(OAx) and so χ̃(a(x)) = χ(S(OAx)). Furthermore, we have
P (wiv(x),v) = det(gx,v)2P (x) and so

|a(x)| =
∏

v∈M(k)

|P (wiv(x),v)|1/2
v |P (x)|−1/2

v =
∏

v∈M(k)

|P (wiv(x),v)|1/2
v ,

where we have applied the Artin product formula to P (x) ∈ k× to obtain the second equality. The
representatives wiv(x),v were chosen so that |P (wiv(x),v)|v = 1 if v ∈ M∞(k) and wiv(x),v corresponds
under the Delone–Fadeev map to the maximal order Rx,v = Ov ⊗Ok

OAx if v ∈ Mf(k). If v ∈ Mf(k)
then it follows from Lemma 3.2 that P (wiv(x),v)Ov is the discriminant ideal of Rx,v. Thus

|a(x)| =
∏

v∈Mf (k)

|P (wiv(x),v)|1/2
v = N(∆Ax/k)

−1/2

and we obtain the required identity.

5. The filtration process

If Ξx(ωsχ̃,Φ) were absent from the expression for Zd(s, χ,Φ) given in Proposition 4.3 then our
main result would follow from Proposition 4.1, a Tauberian theorem for Dirichlet series and the

92

https://doi.org/10.1112/S0010437X05001740 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X05001740


Uniform distribution

orthogonality relations for the characters of Cl(k). The purpose of this section is to make the
technical modifications to this simple argument necessitated by the presence of Ξx(ωsχ̃,Φ). We
refer to these modifications as the filtration process. This process, first described in [DW88], has
previously been used to obtain density results from series such as Zd(s, χ0,Φ). As we must deal with
Zd(s, χ,Φ), with χ not necessarily trivial, we require a minor variant of the usual argument.

We have to consider the set of extensions of k whose completion at a finite number of places is
fixed. To this end, let T ⊂ M(k) be a finite set. Recall that n(v) denotes the cardinality of the set
Gkv\V ′

kv
and that we have indexed the Gkv -orbits by choosing representatives wi,v, 1 � i � n(v),

for them. A T -type α will be a map α : T → N such that 1 � α(v) � n(v) for each v ∈ T . If α is a
T -type and x ∈ V ′

k then we write x ≈ α if iv(x) = α(v) for all v ∈ T . Thus, x ≈ α if the completion
of the cubic k-algebra Ax at each v ∈ T is the cubic kv-algebra corresponding to the orbit indexed
by α(v). If T ⊂ T ′, α is a T -type and α′ is a T ′-type then we write α′|T = α if α′(v) = α(v) for all
v ∈ T .

If T ⊂ M(k) is a finite set, α is a T -type, C ∈ Cl(k) and B > 0 then the sets

Xd(α) = {x ∈ Xd | x ≈ α},
Xd(α,B) = {x ∈ Xd | x ≈ α,N(∆Ax/k) � B},

Xd(α,C) = {x ∈ Xd | x ≈ α, S(OAx) = C},
Xd(α,C, B) = Xd(α,B) ∩ Xd(α,C)

are Gk-invariant. The quotient sets Gk\Xd(α,B) and Gk\Xd(α,C, B) are finite because of the well-
known theorem on the finiteness of the set of number fields with bounded discriminant.

For v ∈ M(k), 1 � i � n(v), ωv a character of k×
v and Φv ∈ S(Vkv ) we let

Zi,v(ωv,Φv) =
∫

Gkv

ωv(det(gv))Φv(gvwi,v) dgv .

Of course, Ξx,v(ωv,Φv) = Ziv(x),v(ωv,Φv), but it will be convenient to discuss these functions without
reference to any point x ∈ V ′

k.

Lemma 5.1. Let v ∈ M(k), 1 � i � n(v), and ω∗
v be an unramified character of k×

v . There exists a
Uv-invariant function Φv ∈ S(Vkv) such that the support of Φv is contained in Gkvwi,v, Zi,v(ωv,Φv)
is an entire function of ωv and Zi,v(ω∗

v ,Φv) �= 0.

Proof. Start with a positive Schwartz function of sufficiently small compact support in the orbit
and then average it over Uv.

For v ∈ M(k) and Φv ∈ S(Vkv ) a Uv-invariant function let

Σ2,v(Φv) =
∫

k×
v

∫
kv

∫
kv

|tv|2vΦv(0, tv , y1,v, y2,v) dy1,v dy2,v d×tv

and

Σ3,v(Φv) =
∫

Vkv

Φv(xv) dxv .

There are positive constants C ′
2 and C ′

3 such that if Φ ∈ S0(VA) and Φ = ⊗vΦv then

Σd(Φ) = C ′
d

∏
v∈M(k)

Σd,v(Φv)

for d = 2, 3. The constant C ′
d is the constant of proportionality between the global measures and

the product of the local measures.
In order to state the next lemma, it will be convenient to introduce an assumption on the stan-

dard representatives wi,v which has not been needed so far. We assume that the list w1,v, . . . , wn(v),v
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is so arranged that the elements corresponding to cubic kv-algebras that are fields come at the end.
Thus, there is a number n2(v) � n(v) such that wi,v corresponds to a field if and only if i > n2(v).
The point of this is that if x ∈ X2 then 1 � iv(x) � n2(v). If T ⊂ M(k) is a finite set and α is a
T -type then we say that α is a quadratic T -type if α(v) � n2(v) for all v ∈ T .

Lemma 5.2. Let v ∈ M(k). There are positive constants bi,v, for 1 � i � n(v), and ci,v, for
1 � i � n2(v), such that

Zi,v(| · |2v,Φv) = bi,vΣ3,v(Φv)

and

Zi,v(| · |2v,Φv) = ci,vΣ2,v(Φv)

whenever Φv ∈ S(Vkv) is a Uv-invariant function whose support is contained in Gkvwi,v.

Proof. The first identity is [DW86, (2.4)]. The second follows from Theorem 5.2 of the same refer-
ence.

For v ∈ M(k) we define

E2,v =
n2(v)∑
i=1

c−1
i,v

and

E3,v =
n(v)∑
i=1

b−1
i,v .

Lemma 5.3. Let v ∈ Mf(k), 1 � i � n(v) and ωv be an unramified character of k×
v that takes

its values in S1. As before, let Φ0,v denote the characteristic function of VOv . There are constants
{ai,v,n}∞n=0 such that

Zi,v(ωv| · |sv,Φ0,v) =
∞∑

n=0

ai,v,nωv(�v)nq−ns
v

for re(s) > 1/3. We have ai,v,0 = 1 and ai,v,n � 0 for all n.

Proof. The local integral defining Zi,v(ωv| · |sv,Φ0,v) was evaluated for all i and v ∈ Mf(k) in
[DW86, Theorem 3.1]. The results are conveniently summarized in [DW88, § 2]. The claims follow
by inspection. In [Yuk03, § 6] the same result is proved by a simpler method when v is neither
dyadic nor triadic. As we shall remark in the proof of Theorem 5.5, this would in fact suffice for our
application.

Lemma 5.4. For each v ∈ Mf(k) there is a series

Lv(s) =
∞∑

n=0

lv,nq−ns
v ,

convergent for re(s) > 1/3, such that lv,0 = 1 and ai,v,n � lv,n for all 1 � i � n(v). These series may
be chosen so that the product

∏
v∈Mf (k) Lv(s) is absolutely convergent in the region re(s) > 1.

Proof. It follows from the discussion in [DW88, § 2] that we may take Lv(s) to be Zi,v(| · |sv,Φ0,v)
for that index i corresponding to the cubic kv-algebra k3

v . A similar result is proved in [Yuk03,
§ 6] under the restriction that v be neither dyadic nor triadic, and again this would suffice for our
application.

94

https://doi.org/10.1112/S0010437X05001740 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X05001740


Uniform distribution

Theorem 5.5. Let h be the class number of k and C ∈ Cl(k). Choose a finite set T0 ⊂ M(k) and a
T0-type α. Let d = 2 or 3 and assume that α is a quadratic T0-type if d = 2. We have

lim
B→∞

B−1
∑

x∈Gk\Xd(α,C,B)

o(x)−1 =
1
h

lim
B→∞

B−1
∑

x∈Gk\Xd(α,B)

o(x)−1.

Proof. If T1 ⊂ M(k) is a finite set containing T0 then the T0-type α extends in various ways to
a T1-type. Suppose that we can obtain the claim with T1 in place of T0. Then by summing over
all of the extensions of α to a T1-type we may obtain the original claim. Thus, we may suppose
without loss of generality that T0 contains the infinite places. Note that we could also assume that
T0 contains all the dyadic and triadic places, so that the full strength of Lemmas 5.3 and 5.4 is not
really needed.

Henceforth, T0 will be a finite set of places containing M∞(k), α will be a T0-type, T will be a
finite set of places containing T0 and β will be a T -type extending α. If d = 2 then we assume, in
addition, that β is a quadratic T -type. For s ∈ C, ω ∈ Ω(k) and x ∈ V ′

k we define

LT (s) =
∏
v/∈T

LT (s)

and

Ξx,T (ω) =
∏
v/∈T

Ξx,v(ωv,Φ0,v).

Let χ be a character of Cl(k) and regard χ also as a character of A1
k trivial on J1

k . Note that
χ̃ is a character of A×

k trivial on Jk. Both LT (s) and Ξx,T (ωsχ̃) are Dirichlet series in s and, by
Proposition 4.2 and Lemma 5.4, these series are absolutely convergent in the region re(s) > 1. Let
us write

LT (s) =
∞∑

m=1

l∗T,mm−s

and

Ξx,T (ωsχ̃) =
∞∑

m=1

a∗x,T,m(χ)m−s.

From Lemmas 5.3 and 5.4 and the usual rule for calculating the coefficients of a product of Dirichlet
series, we see that

l∗T,m =
∑ ∏

v/∈T

lv,nv

and

a∗x,T,m(χ) =
∑ ∏

v/∈T

aiv(x),v,nv
χ̃v(�v)nv ,

where the sum is over all factorizations m =
∏

v/∈T qnv
v . It follows that a∗x,T,1(χ) = 1, l∗T,1 = 1,

l∗T,m � 0 and |a∗x,T,m(χ)| � l∗T,m for all x, T , m and χ.
After these preliminaries, we introduce the Dirichlet series that are at the center of the our

method. They are

ξα,T (s) =
∑

x∈Gk\Xd(α)

o(x)−1Ξx,T (ω2s)N(∆Ax/k)
−s

and

ξα,T,C(s) =
1
h

∑
χ

∑
x∈Gk\Xd(α)

o(x)−1χ(S(OAx)C−1)Ξx,T (ω2sχ̃)N(∆Ax/k)
−s.
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In the second equation, the outer sum is over all characters χ of Cl(k); we always understand such
sums in this way. We must determine the analytic properties of these series. In order to do so, it is
convenient to introduce the series

ξβ,T (s) =
∑

x∈Gk\Xd(β)

o(x)−1Ξx,T (ω2s)N(∆Ax/k)
−s

and

ξβ,T,C(s) =
1
h

∑
χ

∑
x∈Gk\Xd(β)

o(x)−1χ(S(OAx)C−1)Ξx,T (ω2sχ̃)N(∆Ax/k)
−s,

which differ from ξα,T (s) and ξα,T,C(s) only in that the sum includes fewer x. Note that we have

ξα,T,C(s) =
∑

β|T0=α

ξβ,T,C(s) (3)

and similarly with ξα,T (s). Thus, it suffices to determine the analytic properties of ξβ,T (s) and
ξβ,T,C(s).

The argument we are about to make is the same but for notation whether d = 2 or d = 3.
However, for definiteness, we assume that d = 3. Also we give the argument only for ξβ,T,C(s), as
the other is simpler. Consider the function

I(s,Φ) =
1
h

∑
χ

χ(C−1)Z3(2s, χ,Φ),

where Φ ∈ S0(VA) is yet to be chosen. By Proposition 4.1, I(s,Φ) is a holomorphic function in the
region re(s) > 1, which has a meromorphic continuation to the region re(s) > 5/6, and whose only
possible singularity in this region is a simple pole at s = 1 with residue (C3/h)Σ3(Φ), where C3 is
a positive constant depending only on k. Let us suppose that re(s) > 1. By Proposition 4.3, there
is a positive constant C0, depending only on k, such that

I(s,Φ) =
C0

h

∑
χ

∑
x∈Gk\X3

o(x)−1χ(S(OAx)C−1)Ξx(ω2sχ̃,Φ)N(∆Ax/k)
−s. (4)

We now make a particular choice of Φ. For v ∈ T ∩Mf(k), let Φ1,v denote the characteristic function
of the set Uvwβ(v),v and put

Φ =
⊗

v∈M∞(k)

Φv ⊗
⊗

v∈T∩Mf (k)

Φ1,v ⊗
⊗
v/∈T

Φ0,v,

where Φv for v ∈ M∞(k) is chosen so that Φv is Uv-invariant, the support of Φv lies in Gkvwβ(v),v ,
Zβ(v),v(| · |sv,Φv) is entire and Zβ(v),v(| · |2v,Φv) �= 0. According to Lemma 5.1, these requirements at
infinite places can be met. The restrictions on the supports of the various factors in Φ imply that
Ξx(ω2sχ̃,Φ) = 0 unless x ∈ X3(β). Now suppose that x ∈ X3(β). If v ∈ M∞(k) then χ̃v is trivial
and so

Ξx,v(| · |2s
v χ̃v,Φv) = Zβ(v),v(| · |2s

v ,Φv).

If v ∈ T ∩ Mf(k) then, by the choice of Φ1,v and the fact that χ̃v is unramified,

Ξx,v(| · |2s
v χ̃v,Φ1,v) = Zβ(v),v(| · |2s

v χ̃v,Φ1,v)

is equal to the volume of the set UvHβ(v),v, where Hβ(v),v denotes the isotropy group of wβ(v),v

in Gkv , regardless of the values of s and χ̃v. (Note that Hβ(v),v is a finite group. It is, in fact,
always contained in Uv, but we do not require this.) In particular, we may write

Ξx,v(| · |2s
v χ̃v,Φ1,v) = Zβ(v),v(| · |2v,Φ1,v)
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for all v ∈ T ∩ Mf(k). On substituting these observations into (4), we obtain

ξβ,T,C(s) = C−1
0

∏
v∈M∞(k)

Zβ(v),v(| · |2s
v ,Φv)−1

∏
v∈T∩Mf (k)

Zβ(v),v(| · |2v,Φ1,v)−1I(s,Φ).

To avoid needless repetition, we call a Dirichlet series standard if it converges absolutely in the region
re(s) > 1 and extends meromorphically to the region re(s) > 5/6 with its only possible singularity
a simple pole at s = 1. We conclude from the previous equation that ξβ,T,C(s) is standard. By using
Lemma 5.2, we see that the residue of ξβ,T,C(s) at s = 1 is

(C3C
′
3/hC0)

∏
v∈T

b−1
β(v),v

∏
v/∈T

Σ3,v(Φ0,v).

By the choice of measures, Σ3,v(Φ0,v) = 1 for all v /∈ T and so this residue is actually (C3C
′
3/hC0)∏

v∈T b−1
β(v),v . Equation (3) then implies that ξα,T,C(s) is standard and that its residue at s = 1

is (C3C
′
3/hC0)

∏
v∈T0

b−1
α(v),v

∏
v∈T\T0

E3,v. A simpler version of this argument shows that ξα,T (s)

is standard and that its residue at s = 1 is (C3C
′
3/C0)

∏
v∈T0

b−1
α(v),v

∏
v∈T\T0

E3,v. When d = 2 we
obtain the same conclusions and the residues of ξα,T (s) and ξα,T,C(s) at s = 1 in this case turn out to
be (C2C

′
2/C0)

∏
v∈T0

c−1
α(v),v

∏
v∈T\T0

E2,v
∏

v/∈T (1− q−2
v )−1 and 1/h times this quantity, respectively.

The key fact, valid in both cases, is that

ress=1(ξα,T,C(s)) =
1
h

ress=1(ξα,T (s)). (5)

Now that (5) has been established, we may again treat the cases d = 2 and d = 3 simultaneously.
Let us set

ξα,T (s) =
∞∑

m=1

cα,T,mm−s

and

ξα,T,C(s) =
∞∑

m=1

cα,T,m(C)m−s.

Observe that

cα,T,m =
∑

x∈Gk\Xd(α)
n2N(∆Ax/k)=m

o(x)−1a∗x,T,n(χ0)

and

cα,T,m(C) =
1
h

∑
x∈Gk\Xd(α)

n2N(∆Ax/k)=m

∑
χ

o(x)−1χ(S(OAx)C−1)a∗x,T,n(χ).

From these equations and the properties of the a∗x,T,n(χ) we obtain cα,T,m � 0 and |cα,T,m(C)| �
cα,T,m for all m � 1. We now have all the hypotheses necessary to apply a standard Tauberian
theorem ([Lan86, Theorem 1, § 3, ch. 15], for example) to these standard Dirichlet series. As a
consequence, we obtain

lim
B→∞

B−1
∑
m�B

(
cα,T,m(C) − 1

h
cα,T,m

)
= 0 (6)

for each T .
Let us write cα,T,m = Pm + Qm and cα,T,m(C) = Pm(C) + Qm(C), where Pm and Pm(C) are

the parts of the above sums with n = 1 and Qm and Qm(C) are the parts with n � 2. From the
property a∗x,T,1(χ) = 1 for all χ and the orthogonality relation for the characters of Cl(k), we obtain
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the evaluations
Pm =

∑
x∈Gk\Xd(α)
N(∆Ax/k)=m

o(x)−1

and
Pm(C) =

∑
x∈Gk\Xd(α,C)
N(∆Ax/k)=m

o(x)−1.

We wish to estimate the terms Qm and Qm(C) on average. To this end, recall that both the set
of quadratic fields and the set of cubic fields with prescribed splitting at a finite number of places
are known to have a non-zero density. That is, there are non-zero constants D2(α) and D3(α) such
that

lim
B→∞

B−1
∑

x∈Gk\Xd(α,B)

o(x)−1 = Dd(α). (7)

For d = 3 this is the main result of [DW88]. For d = 2 it is well known; it is stated as [DW88,
Theorem 4.2], where possible references for a proof are given. In fact, a simpler version of the current
proof would also serve to prove this fact. In any case, let us choose a constant D so large that∑

x∈Gk\Xd(α,B)

o(x)−1 � DB

for all B > 0 (note that the left-hand side is 0 when B < 1). From the fact that |a∗x,T,n(χ)| � l∗T,n

we obtain ∣∣∣∣B−1
∑
m�B

Qm(C)
∣∣∣∣ � B−1

∑
x∈Gk\Xd(α)

n2N(∆Ax/k)�B, n�2

o(x)−1l∗T,n

= B−1
∞∑

n=2

l∗T,n

∑
x∈Gk\Xd(α,Bn−2)

o(x)−1

� D

∞∑
n=2

l∗T,nn−2

= D(LT (2) − 1)

for B > 0. A similar argument gives∣∣∣∣B−1
∑
m�B

Qm

∣∣∣∣ � D(LT (2) − 1)

for B > 0.
Let ε > 0. By Lemma 5.4, the product

∏
v∈Mf (k) Lv(2) is absolutely convergent and so it is

possible to choose a finite set T ⊃ T0 such that D(LT (2) − 1) < ε/4. For this set T we may, by (6),
choose B0 > 0 such that ∣∣∣∣B−1

∑
m�B

(
cα,T,m(C) − 1

h
cα,T,m

)∣∣∣∣ <
ε

2

for all B � B0. Together with the evaluations of Pm and Pm(C), these inequalities imply that∣∣∣∣B−1
∑

x∈Gk\Xd(α,C,B)

o(x)−1 − B−1 1
h

∑
x∈Gk\Xd(α,B)

o(x)−1

∣∣∣∣ < ε

for all B � B0. In combination with (7), this gives the required result.
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Corollary 5.6. Let k be a number field, h the class number of k, C ∈ Cl(k) and d ∈ {2, 3}. Choose
a finite set T0 ⊂ M(k), possibly empty, and for each v ∈ T0 choose a separable kv-algebra Av of
degree d over kv. For B � 1 let Fd(B) denote the set of number fields K such that K ⊃ k, K/k has
degree d, N(∆K/k) � B, and kv ⊗k K ∼= Av for every v ∈ T0. If d = 3 then we add the condition
that K/k be a non-normal extension. Let Fd(C, B) ⊂ Fd(B) be the set of those K ∈ Fd(B) that
also satisfy S(OK) = C. Then we have

lim
B→∞

|Fd(C, B)|
|Fd(B)| =

1
h

,

where the vertical bars denote cardinality.

Proof. We first observe that the number of cyclic cubic extensions K of k with N(∆K/k) � B is
o(B). It is a simple consequence of [Wri89, Theorem I.2] that this number is bounded by a constant
times B1/2 log(B), which is more than enough. In light of (7), our claim follows immediately from
Theorem 5.5 and the fact that o(x) = |Autk(K)| is 2 for all quadratic extensions and 1 for all
non-normal cubic extensions of k. We have simply translated from the language of binary cubic
forms to the language of number fields, using the Delone–Fadeev correspondence.
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