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Abstract
We study the problem of the irreducibility of the Hessian variety H 𝑓 associated with a smooth cubic hypersurface
𝑉 ( 𝑓 ) ⊂ P𝑛. We prove that when 𝑛 ≤ 5, H 𝑓 is normal and irreducible if and only if f is not of Thom-Sebastiani
type (i.e., if one cannot separate its variables by changing coordinates). This also generalizes a result of Beniamino
Segre dealing with the case of cubic surfaces. The geometric approach is based on the study of the singular locus of
the Hessian variety and on infinitesimal computations arising from a particular description of these singularities.
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1. Introduction

Let 𝑋 = 𝑉 ( 𝑓 ) be a hypersurface of the projective space P𝑛 over an algebraically closed field K of
characteristic zero. In the case where the determinant ℎ 𝑓 = det(𝐻 𝑓 ) of the associated Hessian matrix
𝐻 𝑓 is not equivalently zero – for example, for X smooth – it is well known that the associated Hessian
hypersurface H 𝑓 = 𝑉 (ℎ 𝑓 ) ⊂ P

𝑛 contains much information of X itself.
A sort of generic Torelli theorem for Hessian hypersurfaces is also supposed to be valid (see [8]), up

to some known cases. In particular, in [8] the so-called Hessian map

ℎ𝑑,𝑛 : P(𝑆𝑑) � P(𝑆 (𝑛+1) (𝑑−2) ) [ 𝑓 ] ↦→ [ℎ 𝑓 ]
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where S denotes the ringK[𝑥0, . . . , 𝑥𝑛] = ⊕𝑑≥0𝑆
𝑑 , is studied. In the specific case of cubic hypersurfaces,

namely when 𝑑 = 3, it is known that ℎ3,1 has the generic fiber of dimension 1, ℎ3,2 has the generic fiber
consisting of 3 points, and ℎ3,3 is birational onto its image. As in this last case, the Ciliberto-Ottaviani
conjecture states that the Hessian map ℎ𝑑,𝑛 should be birational onto its image, for higher values of n
and even for different values of d. Very recently, this conjecture has been analysed for the case of plane
curves in [2] and [9].

One can argue that also the singular locus Sing(H 𝑓 ) of the Hessian hypersurface H 𝑓 must keep track
of some crucial aspects of X. Along this line, the aim of this paper is a deep study of the singularities
of the hypersurface H 𝑓 associated with a smooth cubic (𝑛 − 1)-fold; in particular, we are interested
in the dimension of Sing(H 𝑓 ) and in the irreducibility of H 𝑓 itself. Notice that, for low dimensional
hypersurfaces (i.e.,curves or surfaces), this analysis is classical (see, for instance, [19] and [28]). More
recently, an approach has been developed in [1] for the case of cubic threefolds, while in [6], the authors
have dealt with the higher-dimensional cases.

To explain our main result (Theorem A), let us recall that a polynomial f (or a hypersurface 𝑋 = 𝑉 ( 𝑓 ))
is said to be of Thom-Sebastiani type, TS for brevity, if up to a change of coordinates it can be written using
two disjoint sets of variables (see Definition 3.1). The name comes from the works [27] of Sebastiani
and Thom and [29] of Thom. These polynomials have been extensively studied in several contexts (for
example, about their Jacobian ideals in some classical works of Bertini, Longo and Mammana – [3], [22]
and [24]) and have appeared with other names too in the literature (for example, they are called direct
sums in [7] and [13]). The Hessian hypersurface associated with a TS polynomial is not irreducible, and
its singular locus has dimension 𝑛 − 2. The interesting fact is that this is actually a characterization, as
proved in the following.
Theorem A (Theorem 5.1). Assume that 𝑛 ≤ 5 and consider 𝑓 ∈ K[𝑥0, . . . , 𝑥𝑛] defining a smooth
cubic. Then the Hessian hypersurface H 𝑓 ⊂ P𝑛 is irreducible and normal if and only if f is not of
Thom-Sebastiani type.

The problem of determining whether a polynomial is of TS type is interesting and investigated in the
literature (see, for example, [7] or [13]), also from an algorithmic point of view. As said above, one can
apply a sort of ‘hessian test’: if the Hessian hypersurface associated to a polynomial f is normal, then f
cannot be of TS type. Furthermore, with a strong geometric approach, Theorem A guarantees that this
‘hessian test’ is actually a complete test for (smooth) cubic forms with at most 6 variables.

Beyond the smoothness hypothesis, which is anyway necessary (see Remark 5.2 for details), one
could conjecture that the same result still holds for higher dimensions or higher degrees. Even if we
strongly believe that Theorem A is valid for smooth cubic hypersurface of any dimension, one can see
that this is not the case – for example, in degree 4 (see again Remark 5.2).

Besides the fact that cubic hypersurfaces are classically endowed with interesting and particular
properties in relation to their geometry and also, for example, to their associated Hessian variety
(see, for example, [12], [26], [15], [20],...), the peculiarity of the case of (smooth) cubics lies in the
framework we want to deal with and in the techniques used. Indeed, Hessian loci of cubic hypersurfaces
are equipped, among other things, with a special symmetry that will be a key ingredient in the whole
article and which makes a crucial difference with the higher degree cases. Indeed, if 𝑋 = 𝑉 ( 𝑓 ) is a
general cubic hypersurface, then its Hessian H 𝑓 is a singular Calabi-Yau variety with a fixed point free
rational involution. Indeed, for 𝑑 = 3, one can observe that for all 𝑥, 𝑦 ∈ K𝑛+1,

𝐻 𝑓 (𝑥) · 𝑦 = 𝐻 𝑓 (𝑦) · 𝑥.

Such a relation can be easily translated in terms of the associated apolar ring 𝐴 𝑓 = L/AnnL( 𝑓 ), where
L = K[ 𝜕

𝜕𝑥0
, . . . , 𝜕

𝜕𝑥0
], as 𝑥 · 𝑦 = 𝑦 · 𝑥. Under the natural identification P(𝐴1) 	 P𝑛 (which comes from

the Gorenstein duality of the apolar ring; see [23] or the comprehensive book [17]), one can define the
natural incidence correspondence

Γ 𝑓 = {([𝑥], [𝑦]) ∈ P𝑛 × P𝑛 | 𝐻 𝑓 (𝑥) · 𝑦 = 0} = {([𝑥], [𝑦]) ∈ P(𝐴1) × P(𝐴1) | 𝑥 · 𝑦 = 0}.
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Observe that it dominates, via the two projections, the Hessian hypersurfaces H 𝑓 . Moreover, Γ 𝑓 is also
equipped with an involution 𝜏(([𝑥], [𝑦])) = ([𝑦], [𝑥]) which is fixed point free and descends to the
above-mentioned fixed point free rational involution defined on the Hessian hypersurface H 𝑓 .

Another key point is the determinantal structure of the Hessian hypersurface. Indeed, H 𝑓 is equipped
with a natural rank-decreasing filtration

H 𝑓 = D𝑛 ( 𝑓 ) ⊇ Sing(H 𝑓 ) ⊇ D𝑛−1 ( 𝑓 ) ⊇ · · · ⊇ 𝐷𝑖 ( 𝑓 ) ⊇ · · · ⊇ 𝐷0 ( 𝑓 ),

where D𝑘 ( 𝑓 ) = {[𝑥] ∈ P𝑛 | Rank(𝐻 𝑓 (𝑥)) ≤ 𝑘}. In the case where 𝑉 ( 𝑓 ) is any smooth cubic
hypersurface, the second inclusion in the above filtration is actually an equality as proved in [1] for cubic
threefolds and in [6] for 𝑛 ≥ 5. Moreover, the authors proved that for X general, each of the 𝐷𝑖’s has the
expected dimension, and we computed the basic invariant in some low dimensional cases. In particular,
for a smooth cubic 𝑉 ( 𝑓 ), we have

dim(Sing(H 𝑓 )) ∈ {𝑛 − 3, 𝑛 − 2}.

Indeed,H 𝑓 is reduced, and the expected value (namely, 𝑛−3) is achieved for f general. Observe that in the
other case, we would have that the Hessian locus H 𝑓 is not normal (indeed, see [18, Proposition 8.23];
recall that a hypersurface in P𝑛 is normal if and only if it is regular in codimension 1). Then, with
Theorem A, we partially answer the following natural question:

When, for a smooth cubic hypersurface 𝑉 ( 𝑓 ), is H 𝑓 not normal?

When 𝑛 = 2, given a smooth cubic curve 𝑋 = 𝑉 ( 𝑓 ), the associated Hessian curve H 𝑓 is singular if and
only if X is the Fermat curve. It is remarkable that Beniamino Segre in 1943 proved that a similar result
also holds for cubic surfaces in a projective 3-dimensional space. Indeed (see [28]), given a smooth
cubic surface 𝑋 = 𝑉 ( 𝑓 ) ⊂ P3, H 𝑓 is reducible if and only if X is cyclic; that is, up to a change of
coordinate, we can write 𝑓 = 𝑧3

0 + 𝑔(𝑧1, 𝑧2, 𝑧3).
It is a real misfortune, due likely to the war and to racial issues, that the book of Beniamino Segre

which focuses on non-singular cubic surfaces, is not easy to find. Its analysis is based on the use of
Sylvester’s Pentahedral Theorem which, with a modern terminology, says that the general cubic surface
has Waring rank equal to 5 (i.e., after a suitable change of coordinates, it can be written as the zero
locus of

∑5
𝑖=1 𝐿3

𝑖 where 𝐿1, . . . , 𝐿5 ∈ 𝑆1). This description has also been recently used, for example, in
[10] and [8]. With Theorem A, we extend Segre’s result to cubic threefolds and fourfolds.

Let us now explain the main features of our proof. First of all, let us observe that, since no useful
‘Sylvester form tool’ seems to exist for cubic forms in P𝑛 with 𝑛 ≥ 4, a completely new strategy must
be used. In this environment, it is a great pleasure to acknowledge our main source of inspiration:
Adler’s work. In a remarkable series of appendices to the book [1], among many other results, Adler set
up a method to study the singular locus of the Hessian locus H 𝑓 associated with a cubic hypersurface
𝑉 ( 𝑓 ). He considered the correspondence Γ 𝑓 introduced above, which can be seen as a partial desin-
gularization of H 𝑓 , and moreover, he proved that the singular locus of Γ 𝑓 has a ‘triangle structure’.
More precisely, a point ([𝑥], [𝑦]) is singular for Γ 𝑓 if and only if there exists [𝑧] ∈ P𝑛 such that
([𝑥], [𝑦]), ([𝑥], [𝑧]), ([𝑦], [𝑧]) ∈ Γ 𝑓 .

Our crucial observation is that if Sing(H 𝑓 ) contains a component of dimension 𝑛− 2, then the same
holds also for Sing(Γ 𝑓 ). We have then a large amount of triangles to deal with, and moreover, such a
description is greatly enlightened by using the apolar-geometric method we already exploited in our
proof of a Gordan-Noether theorem (see [16], [26], [5]). The whole proof is then devoted to showing
that ‘too many triangles’ for H 𝑓 force f to be of TS type.

Two results can be thought of as the main ingredients to this aim. First of all, we give a characterisation
of the cubic polynomials of TS type in terms of the Hessian loci D𝑘 appearing in the above-mentioned
filtration:
Theorem B (Theorem 3.4). A polynomial 𝑓 ∈ K[𝑥0, . . . , 𝑥𝑛] defining a smooth cubic is of TS type of
the form 𝑓 (𝑥0, . . . , 𝑥𝑛) = 𝑓1(𝑥0, . . . , 𝑥𝑘 ) + 𝑓2(𝑥𝑘+1, . . . , 𝑥𝑛) if and only if D𝑘+1( 𝑓 ) contains a P𝑘 .
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The second result allows us to make specific assumptions on the general triangle we will deal with.
In particular, by considering an irreducible component F of the variety parametrizing these triangles
for H 𝑓 and denoting by 𝜋𝑖 its natural projections, we have the following:

Theorem C (Theorem 4.6). Assume 𝑛 ≤ 5 and let 𝑋 = 𝑉 ( 𝑓 ) be a smooth cubic hypersurface in P𝑛 not
of TS type. If F is an irreducible family of triangles for H 𝑓 with dim(𝜋1 (F)) = dim(F) = 𝑛 − 2, then
the general element in F is such that none of its vertices belongs to X.

Even if, a fortiori, the situation presented in the above theorem cannot be realised, let us stress that
this result will allow us to set the right framework on which all the proof is based.

The problem (after some reduction preliminaries) becomes to compute the Zariski tangent space at
the general point of F . This approach leads almost immediately to a conclusion in the case of cubic
surfaces, and it is reasonably accessible for 𝑛 = 4. In the fourfold case, the computation becomes instead
much more complicated: there are really many sub-cases to be considered (this is certainly due also
to the fact that for 𝑛 ≤ 4 all the cubics of Thom-Sebastiani type are indeed cyclic, which is not true
anymore for 𝑛 ≥ 5).

It is interesting to notice that there is a family of cubic fourfolds (which is considered in Lemma 6.4),
where the infinitesimal methods are not enough in order to conclude. For these hypersurfaces, in the
spirit of the possible Torelli theorem, we recover the equation of the cubic fourfold 𝑉 ( 𝑓 ), and then, with
a direct computation, we show that the dimension of the singular locus of H 𝑓 is actually the expected
one (i.e. 2, unless f is of TS type).

Plan of the paper

After setting the notation and proving some preliminary results in Section 2, in Section 3 we deal with
polynomials of Thom-Sebastiani type, and we prove Theorem B. In Section 4, we focus on the study
of particular families of triangles, and we prove Theorem C. Finally, in Sections 5 and 6, we prove our
main result, namely Theorem A, respectively for 𝑛 ≤ 4 and for the case of cubic fourfolds.

2. Preliminaries and first results

In this first section, we set the notation and present some preliminary results, some of them proved
in [6]. For a complete comprehension of standard Artinian Gorenstein Algebras, which we are going
to introduce, one can refer to [17]. Consider K an algebraically closed field of characteristic 0 and the
projective space P𝑛 for 𝑛 ≥ 2. Let us set

𝑆 = K[𝑥0, . . . , 𝑥𝑛] =
⊕
𝑘≥0

𝑆𝑘 and L = K[𝑦0, . . . , 𝑦𝑛] =
⊕
𝑘≥0

L𝑘

so that S is the homogeneous coordinate ring of P𝑛 and L is the graded algebra of linear differential
operators on S, where we define 𝑦𝑖 as the first partial derivative with respect to 𝑥𝑖; that is,

𝑦𝑖 =
𝜕

𝜕𝑥𝑖
: 𝑆• → 𝑆•−1. (2.1)

If 𝑣 ∈ K𝑛+1, we will denote by 𝜕𝑣 the derivative in the direction of v (i.e.,
∑𝑛

𝑖=0 𝑣𝑖𝑦𝑖).
Let us now consider a homogeneous polynomial f of degree d (i.e., an element of 𝑆𝑑). Two objects

can then be associated with f in a natural way:

◦ the Jacobian ring of f, defined as the quotient 𝑅 𝑓 = 𝑆/𝐽 𝑓 , where 𝐽 𝑓 denotes the Jacobian ideal of f,
spanned by the partial derivatives of f ;

◦ the apolar ring of f, defined as the quotient 𝐴 𝑓 = L/AnnL( 𝑓 ), where AnnL ( 𝑓 ) is the annihilator
ideal of f (i.e,. the ideal in L given by {𝛿 ∈ L | 𝛿( 𝑓 ) = 0}).
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Both the Jacobian and the apolar ring of f are graded Artinian algebras with socle in degree
respectively (𝑛+1) (𝑑 −2) and d (i.e., 𝑅 𝑓 = 𝑅0 ⊕ 𝑅1 ⊕ · · · ⊕ 𝑅 (𝑛+1) (𝑑−2) and 𝐴 𝑓 = 𝐴0 ⊕ 𝐴1 ⊕ · · · ⊕ 𝐴𝑑).
One can also see that they are standard (i.e., generated in degree 1) and that they satisfy the so-called
Poincaré (or Gorenstein duality) – for example, the multiplication map 𝐴𝑑−𝑘 × 𝐴𝑘 → 𝐴𝑑 is a perfect
pairing for every suitable positive integer k. In other words, they are both examples of what we call
SAGAs, an acronym for standard Artinian Gorenstein algebras.

Finally, given f as above, we can then define the associated Hessian matrix and the hessian polynomial,
respectively the square symmetric matrix whose entries are the second partial derivatives of f with
respect to the 𝑥𝑖’s and the determinant of such a matrix; that is,

𝐻 𝑓 = ((𝑦𝑖𝑦 𝑗 ) ( 𝑓 ))𝑖, 𝑗=0,...,𝑛 and ℎ 𝑓 = det(𝐻 𝑓 ).

Let us observe that if the zero locus of f, 𝑋 = 𝑉 ( 𝑓 ) ⊂ P𝑛 is a smooth hypersurface, then the hessian
determinant ℎ 𝑓 belongs to 𝑆 (𝑛+1) (𝑑−2) \ {0}. In this case, one can define the Hessian hypersurface H 𝑓

associated with f (or with X) as the zero locus of such a polynomial; that is,

H 𝑓 = 𝑉 (ℎ 𝑓 ).

The smoothness of 𝑋 = 𝑉 ( 𝑓 ) implies also that the associated apolar ring 𝐴 𝑓 is such that 𝐴1 has
dimension 𝑛 + 1: indeed, such a dimension is strictly smaller than 𝑛 + 1 if and only if 𝑉 ( 𝑓 ) is a cone.
From the natural pairing 𝑆 × L → 𝑆, one can then deduce an isomorphism

P𝑛 	 P((𝑆1)∗) 	 P(𝐴1).

From now on, let us focus on the case d = 3: the first result we need to recall is the following
Proposition (see [6, Proposition 1.2]), which allows us to interpret the cubic hypersurface 𝑋 = 𝑉 ( 𝑓 ), its
singular locus and its associated Hessian variety in terms of the apolar ring 𝐴 𝑓 .
Proposition 2.1. Given a cubic hypersurface 𝑋 = 𝑉 ( 𝑓 ) (not a cone) and the corresponding 𝐴 𝑓 , we have
1. Under the identification P𝑛 	 P(𝐴1), 𝐻 𝑓 (𝑥) · 𝑦 = ∇(𝑥𝑦( 𝑓 )), for 𝑥, 𝑦 ∈ K𝑛+1;
2. H 𝑓 = {[𝑦] ∈ P(𝐴1) | ∃ [𝑥] ∈ P(𝐴1) with 𝑥𝑦 = 0 𝑖𝑛 𝐴2};
3. 𝑋 = {[𝑦] ∈ P(𝐴1) | 𝑦3 = 0};
4. Sing(𝑋) = {[𝑦] ∈ P(𝐴1) | 𝑦2 = 0}.

In this paper, we deal with a homogeneous cubic polynomials whose zero locus is smooth: we will
denote by U ⊂ P(𝑆3), the locus of such elements.

As done in [6], given [ 𝑓 ] ∈ U , let us introduce some objects which will be used extensively in what
follows. First of all, for [𝑥] ∈ P𝑛, we set

𝜄([𝑥]) = P(ker(𝐻 𝑓 (𝑥))). (2.2)

This is either empty (exactly when [𝑥] ∉ H 𝑓 ) or a projective linear space of dimension 𝑛−Rank(𝐻 𝑓 (𝑥)).
It is then natural to consider the Hessian loci

D𝑘 ( 𝑓 ) = {[𝑥] ∈ P𝑛 | Rank(𝐻 𝑓 (𝑥)) ≤ 𝑘}, (2.3)

which give a stratification of the projective space P𝑛 and in particular of the Hessian hypersurface
H 𝑓 (for example, we have D𝑛+1( 𝑓 ) = P𝑛 and D𝑛 ( 𝑓 ) = H 𝑓 ). Moreover, in general, for 𝑘 ≤ 𝑛 − 1,
D𝑘−1( 𝑓 ) ⊆ D𝑘 ( 𝑓 ) ⊂ H 𝑓 . We will simply write D𝑘 , when it is clear which polynomial we are
referring to in the following. In [6], the authors actually proved that for every integer 𝑘 ∈ {2, . . . , 𝑛},
D𝑘−1( 𝑓 ) ⊆ Sing(D𝑘 ( 𝑓 )) and that equality holds for [ 𝑓 ] ∈ U general. For any [ 𝑓 ] ∈ U , let us introduce
a useful incidence correspondence:

Γ 𝑓 = {([𝑥], [𝑦]) ∈ P𝑛 × P𝑛 | 𝐻 𝑓 (𝑥) · 𝑦 = 0} (2.4)

and let us denote by pr𝑖 the two natural projections.
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Remark 2.2. By the relation 𝐻 𝑓 (𝑥) · 𝑦 = 𝐻 𝑓 (𝑦) · 𝑥 (which is equivalent to the relation 𝑥𝑦 = 𝑦𝑥 in 𝐴 𝑓 ,
by Proposition 2.1), the standard involution

𝜏 : P𝑛 × P𝑛 → P𝑛 × P𝑛 ([𝑥], [𝑦]) ↦→ ([𝑦], [𝑥])

sends Γ 𝑓 to itself. As a consequence, Γ 𝑓 dominates H 𝑓 via both pr1 and pr2.

By Proposition 2.1, the loci just introduced can be described also in terms of the apolar ring as follows:

𝜄([𝑥]) = P(ker(𝑥· : 𝐴1 → 𝐴2)) Γ 𝑓 = {([𝑥], [𝑦]) ∈ P(𝐴1) × P(𝐴1) | 𝑥𝑦 = 0}.

Through the article, we will use one description or the other according to the convenience.
We summarise here the main results of [6]:

Theorem 2.3. The following hold:

1. for any [ 𝑓 ] ∈ U , we have Sing(H 𝑓 ) = D𝑛−1( 𝑓 );
2. if [ 𝑓 ] ∈ U is general, then Γ 𝑓 is smooth and pr𝑖 : Γ 𝑓 → H 𝑓 is a desingularization;
3. the expected codimension of D𝑘 ( 𝑓 ) is

(𝑛−𝑘+2
2

)
.

In particular, the expected dimension of Sing(H 𝑓 ) equals 𝑛 − 3.

Hence, by Theorem 2.3, the Hessian variety associated with any smooth cubic hypersurface in P𝑛
for 𝑛 ≥ 3 is always singular, and in the general case, Γ 𝑓 is a desingularization for it and we have a lower
bound for the dimension of Sing(H 𝑓 ) for any [ 𝑓 ] ∈ U . We are now interested in giving an upper bound
for this dimension and more generally for dim(D𝑘 ( 𝑓 )).

Remark 2.4. It is well known that the diagonal ΔP𝑛 ⊆ P𝑛 × P𝑛 has decomposition in the Chow group
of P𝑛 × P𝑛 given by

[ΔP𝑛 ] =
⊕
𝑝+𝑞=𝑛

𝑝𝑟∗1 [𝐻] 𝑝 · 𝑝𝑟∗2 [𝐻]𝑞 ,

where H is a hyperplane in P𝑛 and 𝜋𝑖 are the standard projections. Hence, every effective cycle of
dimension at least n intersects ΔP𝑛 .

Proposition 2.5. Consider any [ 𝑓 ] ∈ U . Then the following hold:

1. the variety Γ 𝑓 is a connected complete intersection in P𝑛 × P𝑛 of pure dimension 𝑛 − 1;
2. for each k, one has dim(D𝑘 ( 𝑓 )) ≤ 𝑘 − 1;
3. there is a bijective correspondence between irreducible components of Γ 𝑓 and the irreducible

components of the various loci D𝑘 ( 𝑓 ) for which the bound in (𝑏) is sharp.

Proof. For (𝑎), first of all, observe that Γ 𝑓 ∩ ΔP𝑛 = ∅ since, otherwise, 𝑉 ( 𝑓 ) would be singular by
Proposition 2.1. Hence, by Remark 2.4, we have that Γ 𝑓 has dimension at most 𝑛 − 1. However, by
definition, we have that Γ 𝑓 is cut by 𝑛 + 1 divisors of P𝑛 × P𝑛 of bidegree (1, 1) so each component of
Γ 𝑓 has dimension at least 𝑛 − 1.

Since Γ 𝑓 is a complete intersection, its connectedness follows by the Fulton-Hansen-type theorem
(see [14], [21, Ch.3] or [25]).

For (𝑏), let us assume by contradiction that there exists an irreducible component W of D𝑘 ( 𝑓 ) of
dimension 𝑑 ≥ 𝑘 . Over the general point [𝑤] of W, the fiber of the projection pr1 from Γ 𝑓 is a projective
space 𝜄([𝑥]) 	 P𝑠 with 𝑠 ≥ 𝑛 − 𝑘 . Therefore, there exists a component of Γ 𝑓 of dimension at least
𝑑 + 𝑠 ≥ 𝑛. This would mean, by Remark 2.4, that Γ 𝑓 ∩ ΔP𝑛 is not empty, giving a contradiction.

For (𝑐), assume that W is as in (𝑏) and of dimension 𝑘 − 1. Then the same reasoning as above
implies the existence of an irreducible component of Γ 𝑓 dominating W. For the converse, let G be an
irreducible component of Γ 𝑓 , set 𝐺 ′ = pr1(𝐺) and let m be the dimension of 𝐺 ′. If 𝑚 = 𝑛 − 1, then 𝐺 ′

is a component of H 𝑓 = D𝑛 ( 𝑓 ), so we are done. Otherwise, 𝑚 = 𝑛 − 1 − 𝑎 with 𝑎 > 0 so that pr1 |𝐺

https://doi.org/10.1017/fms.2025.36 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.36


Forum of Mathematics, Sigma 7

has the general fiber F of dimension a. Since the whole fiber of pr1 over a general point of [𝑥] ∈ 𝐺 ′ is a
projective space containing a fiber of dimension a, we have that Rank(𝐻 𝑓 (𝑥)) ≤ 𝑛− 𝑎 (i.e., the general
point of 𝐺 ′ lies in D𝑛−𝑎 ( 𝑓 )), as claimed. �

As a consequence of Proposition 2.5, recalling that Sing(H 𝑓 ) = D𝑛−1 ( 𝑓 ), we have in particular that

dim(Sing(H 𝑓 )) ∈ {𝑛 − 3, 𝑛 − 2}

and for f general, such dimension coincides with the expected one (i.e., dim(Sing(H 𝑓 )) = 𝑛 − 3). In
this paper, we are interested in answering the following:

Question 2.6. For which [ 𝑓 ] ∈ U does Sing(H 𝑓 ) have dimension 𝑛 − 2?

In this study, the singularities of Γ 𝑓 will play a central role.

Definition 2.7. Given 𝑓 ∈ 𝑆3, we set

T = {([𝑥], [𝑦], [𝑧]) ∈ (P𝑛)3 | [𝑥] ∈ 𝜄(𝑦), [𝑦] ∈ 𝜄(𝑧) and [𝑧] ∈ 𝜄(𝑥)}.

Elements in T are called triangles for H 𝑓 .

Remark 2.8. Recall that if f is a cubic polynomial, then the incidence variety Γ 𝑓 is symmetric with
respect to the involution 𝜏. This implies that

[𝑥] ∈ 𝜄(𝑦) ⇐⇒ [𝑦] ∈ 𝜄(𝑥)

for all [𝑥], [𝑦] ∈ P𝑛, so a permutation of the vertices of a triangle yields again a triangle. Furthermore,
if [ 𝑓 ] ∈ U , two vertices of the same triangle cannot be equal, since we have ΔP𝑛 ∩ Γ 𝑓 = ∅, and so by
construction, each vertex of a triangle lies necessarily in D𝑛−1 ( 𝑓 ).

The following result links triangles for H 𝑓 and singularities of Γ 𝑓 . It has been proved for 𝑛 = 4 in
[1] and in [6] for the general case.

Lemma 2.9. For [ 𝑓 ] ∈ P(𝑆3), a point ([𝑥], [𝑦]) is singular for Γ 𝑓 if and only if there exists a third
point [𝑧] ∈ H 𝑓 such that the triple ([𝑥], [𝑦], [𝑧]) is a triangle for H 𝑓 .

To conclude this first section, let us present a couple of technical results which will be useful in what
follows.

Lemma 2.10. Assume that [ 𝑓 ] ∈ U . Consider a point 𝑃 ∈ Γ 𝑓 . Then

1. the squares of its coordinates are independent;

Moreover, if 𝑇 ∈ T is a triangle, then

2. the squares of the vertices of T are independent;
3. the vertices of T span a P2.

Proof. In order to prove the claims, we will use extensively that Sing(𝑉 ( 𝑓 )) can be identified with
{[𝑥] ∈ P(𝐴1) | 𝑥2 = 0} (see Proposition 2.1). More precisely, we will proceed by contradiction by
proving that if the conclusion of (𝑎), (𝑏) or (𝑐) is false, then there exists an element whose square is 0
(i.e., a singular point for f ), which is impossible by assumption.

Let us start by proving (𝑎). For 𝑃 = ([𝑦1], [𝑦2]) ∈ Γ 𝑓 , assume, by contradiction, that 𝑦2
1 and 𝑦2

2 are
linearly dependent. Then, there exists 𝜆 ∈ K such that 𝑦2

1 = −𝜆2𝑦2
2. As 𝑦1𝑦2 = 0 vanishes, we would

have that (𝑦1 + 𝜆𝑦2)
2 = 0, which is impossible.

By (𝑎), in order to prove (𝑏), it is enough to show that 𝑧2 ∉
〈
𝑥2, 𝑦2〉 in 𝐴2

𝑓 : let us assume again by
contradiction that it is the case (i.e., there exist 𝛼 and 𝛽 in K∗ such that 𝑧2 = −𝛼2𝑥2 − 𝛽2𝑦2). In the same
way as before, we can consider the square (𝑧 +𝛼𝑥 + 𝛽𝑦)2, which is zero since 𝑥𝑦 = 𝑥𝑧 = 𝑦𝑧 = 0, leading
a contradiction.
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For (𝑐), assume, by contradiction, that we could write 𝑧 = 𝛼𝑥 + 𝛽𝑦 for some 𝛼, 𝛽 ∈ K∗. Then, by
definition of triangle, we would have that 𝑥2, 𝑦2 and 𝑧2 are linearly dependent, which is impossible
by (𝑏). �

Assume that [ 𝑓 ] ∈ U . If F is variety of (P𝑛)3 	 P(𝐴1)3 whose points are triangles for H 𝑓

(i.e., F ⊆ T ), we will refer to F as a family of triangles (for H 𝑓 ). Recall that the tangent space to
(P𝑛)3 	 P(𝐴1)3 at 𝑇 = ([𝑥1], [𝑥2], [𝑥3]) is given by

𝑇(P(𝐴1))3 ,𝑇 =
3⊕

𝑖=1
𝐴1/〈𝑥𝑖〉. (2.5)

Lemma 2.11. Assume that [ 𝑓 ] ∈ U . Let 𝑇 = ([𝑥1], [𝑥2], [𝑥3]) be a triangle for H 𝑓 , and consider a
(Zariski) tangent vector 𝑣 = (𝑣1, 𝑣2, 𝑣3) ∈ 𝑇T ,𝑇 . Then, for 𝑙 ∈ {1, 2, 3} and for any representatives
𝑥 ′𝑙 ∈ 𝐴1 of the class 𝑣𝑙 ∈ 𝐴1/〈𝑥𝑙〉, one has

𝑥𝑖𝑥
′
𝑗 + 𝑥 𝑗𝑥

′
𝑖 = 0 and 𝑥 ′𝑖 ∈ Ann𝐴1 (𝑥2

𝑗 , 𝑥
2
𝑘 )

whenever {𝑖, 𝑗 , 𝑘} = {1, 2, 3}. In particular, 𝑣𝑖 ∈ Ann𝐴1 (𝑥2
𝑗 , 𝑥

2
𝑘 )/〈𝑥𝑖〉.

Proof. The variety T can be described in P(𝐴1)3 as

{([𝑥], [𝑦], [𝑧]) ∈ (P(𝐴1))3 | 𝑥𝑦 = 𝑥𝑧 = 𝑦𝑧 = 0}

so that the forms 𝑥𝑦, 𝑥𝑧 and 𝑦𝑧 vanish identically on T . If 𝑣 = (𝑣1, 𝑣2, 𝑣3) ∈ 𝑇T ,𝑇 is a tangent vector and
𝑣𝑙 = [𝑥 ′𝑙 ] as in the statement, then (𝑥1 + 𝑡𝑥 ′1, 𝑥2 + 𝑡𝑥 ′2, 𝑥2 + 𝑡𝑥 ′3) satisfies the equations 𝑥𝑦 = 𝑥𝑧 = 𝑦𝑧 = 0
at first order:

0 = (𝑥𝑖 + 𝑡𝑥 ′𝑖) (𝑥 𝑗 + 𝑡𝑥 ′𝑗 ) mod 𝑡2 = 𝑥𝑖𝑥 𝑗 + 𝑡 (𝑥𝑖𝑥
′
𝑗 + 𝑥 𝑗𝑥

′
𝑖) mod 𝑡2,

so 𝑥𝑖𝑥
′
𝑗+𝑥 𝑗𝑥

′
𝑖 = 0, as claimed. Multiplying by 𝑥 𝑗 , we get 𝑥2

𝑗𝑥
′
𝑖 = 0 (i.e., we have 𝑥 ′𝑖 ∈ Ann𝐴1 (𝑥2

𝑗 , 𝑥
2
𝑘 )/〈𝑥𝑖〉).

�

Notice that in the proof of Lemma 2.11, all the computations do not depend on the choice made for
𝑥 ′𝑙 in 𝑣𝑙 . Hence, for brevity, we will use indifferently 𝑥 ′𝑙 and 𝑣𝑙 in similar situations.

As a consequence of Lemma 2.10, we can then define a morphism

𝜓 : T → Gr(2, P𝑛) 𝑇 = ([𝑥], [𝑦], [𝑧]) ↦→ P(〈𝑥, 𝑦, 𝑧〉).

Proposition 2.12. The morphism 𝜓 has everywhere injective differential, and it is injective modulo
permutations of the vertices.

Proof. Let us start by proving that the map 𝜓 is injective (up to the permutation of such vertices).
Let 𝑇 = ([𝑥1], [𝑥2], [𝑥3]) and 𝑇 ′ = ([𝑦1], [𝑦2], [𝑦3]) be two triangles which are not equivalent via
permutation of the vertices. Assume, by contradiction, that 𝜓(𝑇) = 𝜓(𝑇 ′) (i.e., the two triples of
vertices span the same projective plane). We can then write 𝑦𝑖 =

∑3
𝑗=1 𝑎𝑖 𝑗𝑥 𝑗 . Recall that 𝑥𝑘𝑥𝑙 = 𝛿𝑘𝑙𝑥

2
𝑘 ,

since 𝑥𝑘𝑥𝑙 = 0 for every 𝑘 ≠ 𝑙, while 𝑥2
𝑖 ≠ 0, 𝑦2

𝑖 ≠ 0 for every i, by the smoothness of 𝑉 ( 𝑓 ). Hence, for
𝑖 ≠ 𝑗 , we get

0 = 𝑦𝑖𝑦 𝑗 =
∑
𝑘

𝑎𝑖𝑘𝑥𝑘 ·
∑
𝑙

𝑎 𝑗𝑙𝑥𝑙 =
∑
𝑘,𝑙

𝑎𝑖𝑘𝑎 𝑗𝑙𝑥𝑘𝑥𝑙 = 𝑎𝑖1𝑎 𝑗1𝑥
2
1 + 𝑎𝑖2𝑎 𝑗2𝑥

2
2 + 𝑎𝑖3𝑎 𝑗3𝑥

2
3 .

From Lemma 2.10, we have then that 𝑎𝑖𝑘𝑎 𝑗𝑘 = 0 for every 𝑘 = 1, 2, 3 and 𝑖 ≠ 𝑗 . From this, one
can easily see that, for every 𝑖 = 1, 2, 3, at least (and at most, by construction) two coefficients among
𝑎𝑖1, 𝑎𝑖2, 𝑎𝑖3 are zero. Hence, the vertices of 𝑇 ′ and of T are the same up to a permutation.
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Fix a triangle 𝑇 = ([𝑥1], [𝑥2], [𝑥3]) in T . We claim now that the differential

𝑑𝑇 𝜓 : 𝑇T ,𝑇 → 𝑇Gr(2,P(𝐴1
𝑓
)) , 〈𝑥1 ,𝑥2 ,𝑥3 〉

of 𝜓 at T is injective. Let us consider a nontrivial vector

𝑣 = (𝑥 ′1, 𝑥
′
2, 𝑥

′
3) ∈ 𝑇T ,𝑇 ⊂ 𝑇P(𝐴1)3 ,𝑇 	

3⊕
𝑖=1

𝐴1/〈𝑥𝑖〉.

Via the isomorphism 𝑇Gr(𝑘,𝑉 ) ,𝑊 	 Hom(𝑊,𝑉/𝑊), we have that 𝑑𝑇 𝜓(𝑣) is the homomorphism

𝑑𝑇 𝜓(𝑣) ∈ Hom
(
〈𝑥1, 𝑥2, 𝑥3〉, 𝐴

1/〈𝑥1, 𝑥2, 𝑥3〉
)

such that 𝑥𝑖 ↦→ 𝑥 ′𝑖 for 𝑖 ∈ {1, 2, 3}.

Hence, if we assume that 𝑑𝑇 𝜓(𝑣) ≡ 0, we have 𝑥 ′𝑖 ∈ 〈𝑥1, 𝑥2, 𝑥3〉, so we can write

𝑥 ′𝑖 =
3∑

𝑚=1
𝑎𝑖𝑚𝑥𝑚 (2.6)

for suitable 𝑎𝑖𝑚 ∈ K. By Lemma 2.11, we have 𝑥𝑖𝑥
′
𝑗 + 𝑥 ′𝑖𝑥 𝑗 = 0 for 𝑖 ≠ 𝑗 , so using the relations in

Equation (2.6), we obtain

0 = 𝑥𝑖

3∑
𝑚=1

𝑎 𝑗𝑚𝑥𝑚 + 𝑥 𝑗

3∑
𝑚=1

𝑎𝑖𝑚𝑥𝑚 = 𝑎 𝑗𝑖𝑥
2
𝑖 + 𝑎𝑖 𝑗𝑥

2
𝑗 for 𝑖 ≠ 𝑗 .

By Lemma 2.10, squares of vertices of a triangle are independent, so we obtain 𝑎𝑖 𝑗 = 0 for 𝑖 ≠ 𝑗 and
𝑥 ′𝑖 = 𝑎𝑖𝑖𝑥𝑖 . This is impossible since 𝑥 ′𝑖 ∈ 𝐴1/〈𝑥𝑖〉, and we would have 𝑣 = 0, whereas 𝑣 is assumed to be
nontrivial. �

3. Characterisation of TS Polynomials

In Section 2, we posed a question about a possible description of cubic forms [ 𝑓 ] ∈ U whose Hessian
locus has singularities in codimension 1 (see Question 2.6). First of all, let us notice that the locus in
P(𝑆3) we are interested in is not empty. Indeed, one can easily exhibit polynomials whose Hessian locus
is reducible.

Definition 3.1. Given 𝑓 ∈ 𝑆𝑑 \ {0}, we say that f is a Thom-Sebastiani Polynomial (TS, for brevity) if

𝑓 = 𝑓1(𝑙0, . . . , 𝑙𝑘 ) + 𝑓2(𝑙𝑘+1, . . . , 𝑙𝑛) (3.1)

for suitable 0 ≤ 𝑘 ≤ 𝑛 − 1, {𝑙0, . . . , 𝑙𝑛} independent linear forms and 𝑓1, 𝑓2 polynomials of degree d in
𝑘 + 1 and 𝑛 − 𝑘 variables, respectively.

We will denote by V the set of smooth hypersurfaces which are not of Thom-Sebastiani type.

Remark 3.2. Notice that the set of Thom-Sebastiani polynomials of degree d is not closed in P(𝑆𝑑).
For instance, one can see Examples 1.3 and 1.4 of [7]. Nevertheless, in Theorem 4.5 of [7], the authors
obtain a normal form for polynomials which are limits of TS polynomials and are not themselves of TS
type (which are called direct sums with their language). All these limits correspond to singular varieties:
this proves that V is an open set inU (i.e., the open set of polynomials corresponding to smooth varieties)
and consequently in P(𝑆𝑑).

Examples of TS polynomials are the ones whose zero locus is a cone. These are all singular, clearly.
It is easy to see that if f is a TS polynomial as in Equation (3.1), 𝑋 = 𝑉 ( 𝑓 ) is smooth if and only if
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𝑉 ( 𝑓1 (𝑙0, . . . , 𝑙𝑘 ), 𝑙𝑘+1, . . . , 𝑙𝑛) and 𝑉 ( 𝑓2(𝑙𝑘+1, . . . , 𝑙𝑛), 𝑙0, . . . , 𝑙𝑘 ) are smooth. This is also equivalent to
ask that both 𝑉 ( 𝑓1) ⊂ P

𝑘 and 𝑉 ( 𝑓2) ⊂ P
𝑛−𝑘−1 are smooth.

For brevity, if {𝑥0, . . . , 𝑥𝑛} are linear forms in P𝑛 and if 𝑓1 and 𝑓2 are polynomials in 𝑘 + 1 and 𝑛 − 𝑘
variables, respectively, let us define

𝑓1(𝑥) := 𝑓1(𝑥0, . . . , 𝑥𝑘 ) and 𝑓2 (𝑥
′) := 𝑓2 (𝑥𝑘+1, . . . , 𝑥𝑛).

Remark 3.3. Let f be a TS polynomial. Then, we can choose coordinates {𝑥0, . . . , 𝑥𝑛} for P𝑛 and write
𝑓 = 𝑓1(𝑥) + 𝑓2(𝑥

′) for suitable polynomials in 𝑘 + 1 and 𝑛 − 𝑘 variables of degree d. Set 𝑔1 := 𝑓1(𝑥)
and 𝑔2 := 𝑓2(𝑥

′) so that 𝑔1, 𝑔2 ∈ 𝑆𝑑 with 𝑔1 that depends only on the variables 𝑥0, . . . , 𝑥𝑘 and 𝑔2 that
depends only on the other variables. Then, it is clear that

𝐻 𝑓 (𝑥, 𝑥
′) =

[
𝐻 𝑓1 (𝑥) 0

0 𝐻 𝑓2 (𝑥
′)

]
,

so ℎ 𝑓 (𝑥, 𝑥
′) = ℎ 𝑓1 (𝑥)ℎ 𝑓2 (𝑥

′). In particular, the Hessian variety H 𝑓 associated to a TS polynomial is
reducible, and it is the union of the two cones 𝑊1 = 𝑉 (𝑔1) and 𝑊2 = 𝑉 (𝑔2). Moreover, Sing(H 𝑓 ) has
dimension 𝑛 − 2 since it contains the intersection 𝑊1 ∩𝑊2.

When 𝑓 = 𝑥𝑑
0 + 𝑓2(𝑥1, . . . , 𝑥𝑛) (in other words, in Definition 3.1, we are taking 𝑘 = 0), one talks

about cyclic polynomials (see also Example 3.8 at the end of this section). The name comes from the
fact that the projection of 𝑋 = 𝑉 ( 𝑓 ) from the point 𝑃0 = (1 : 0 : · · · : 0) to 𝑉 (𝑥0) 	 P

𝑛−1 gives a natural
structure of cyclic cover of P𝑛−1 branched along the hypersurface 𝑉 ( 𝑓2). For a smooth cubic 𝑋 = 𝑉 ( 𝑓 ),
being cyclic gives a strong condition both on the associated Hessian locus and on the Jacobian ideal
of f. Indeed, in [4], it has been proved that being cyclic is equivalent to having a linear component in
the Hessian variety and a point in D1( 𝑓 ). This point corresponds to an element in 𝐽 𝑓 which is a square
of some linear form in 𝑆1 (i.e., it gives a nilpotent element of order 2 in the Jacobian ring of f ).

The main purpose of this section is to give a characterization of these Thom-Sebastiani polynomials
in terms of the existence of suitable linear projective spaces in some Hessian loci. In particular, we will
prove Theorem B:

Theorem 3.4. A polynomial 𝑓 ∈ U is of Thom-Sebastiani type of the form 𝑓 (𝑥0, . . . , 𝑥𝑛) =
𝑓1(𝑥0, . . . , 𝑥𝑘 ) + 𝑓2(𝑥𝑘+1, . . . , 𝑥𝑛) if and only if D𝑘+1( 𝑓 ) contains a P𝑘 .

First of all, if we assume that D𝑘 ( 𝑓 ) ≠ D𝑘−1( 𝑓 ), we can define the map

𝜑 : D𝑘 ( 𝑓 ) � Gr(𝑛 − 𝑘, P𝑛) [𝑥] ∉ D𝑘−1( 𝑓 ) ↦→ 𝜄([𝑥])

whose indeterminacy locus is D𝑘−1( 𝑓 ).

Proposition 3.5. Assume that D𝑘 ( 𝑓 ) ≠ D𝑘−1( 𝑓 ). The injectivity of 𝜑 can only fail on points along
a line contained in D𝑘 ( 𝑓 ) and cutting D𝑘−1( 𝑓 ). In particular, if D𝑘−1( 𝑓 ) = ∅ or if D𝑘 ( 𝑓 ) does not
contain lines, 𝜑 is injective.

Proof. If D𝑘 ( 𝑓 ) \ D𝑘−1( 𝑓 ) is a single point, 𝜑 is clearly injective. Assume then that 𝑧1, 𝑧2 ∈ D𝑘 ( 𝑓 ) \
D𝑘−1( 𝑓 ) are distinct and that 𝜑([𝑧1]) = 𝜑([𝑧2]). Then 𝜄([𝑧1]) = 𝜄([𝑧2]), so 𝐻 𝑓 (𝑧1) and 𝐻 𝑓 (𝑧2) have
the same kernel. Up to a change of coordinates, we can assume that ker(𝐻 𝑓 (𝑧𝑖)) = 〈𝑒0, . . . , 𝑒𝑛−𝑘〉, where
{𝑒0, . . . , 𝑒𝑛} is the basis corresponding to the basis {𝑦0, . . . , 𝑦𝑛} under the identification P𝑛 	 P(𝐴1).
Hence, there exist two square matrices 𝐴1 and 𝐴2 of order k with coefficients in K and maximal rank
such that

𝐻 𝑓 (𝑧𝑖) =

[
0 0
0 𝐴𝑖

]
.

Being 𝑥 ↦→ 𝐻 𝑓 (𝑥) linear, P(〈𝑧1, 𝑧2〉) 	 P
1 is clearly contained in D𝑘 ( 𝑓 ).
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Set 𝑝(𝜆, 𝜇) to be the polynomial det(𝜆𝐴1 + 𝜇𝐴2). Since det(𝐴𝑖) ≠ 0 by assumption, we have that p
is homogeneous of degree k and nontrivial. Hence, there exists [𝜆0 : 𝜇0] such that 𝑝(𝜆0, 𝜇0) = 0 (i.e.,
𝐻 𝑓 (𝜆0𝑧1 + 𝜇0𝑧2) has rank at most 𝑘 − 1). Thus, P(〈𝑧1, 𝑧2〉) cuts D𝑘−1( 𝑓 ), as claimed. �

Proposition 3.6. Let 𝑓 ∈ U and assume that the (𝑛 − 𝑘 − 1)-plane Π = P(𝑉) is contained in D𝑛−𝑘 ( 𝑓 ).
Then there exists P(𝑈) 	 P𝑘 in D1+𝑘 ( 𝑓 ). Moreover, for all [𝑢] ∈ P(𝑈), one has that Π ⊆ 𝜄([𝑢]) with
equality holding for [𝑢] general.

Proof. By assumption, one has Rank(𝐻 𝑓 (𝑣)) ≤ 𝑛−𝑘 for all 𝑣 ∈ 𝑉\{0}. One can see ([6]) that the quadric
of P𝑛 given by the vanishing of the polynomial 𝜕𝑣 ( 𝑓 ) is represented by the square symmetric matrix
𝐻 𝑓 (𝑣). Then the singular locus of the quadric 𝑉 (𝜕𝑣 ( 𝑓 )) contains a P𝑘 . By setting 𝑊 = {𝜕𝑣 ( 𝑓 )}𝑣 ∈𝑉 ,
we can then observe that |𝑊 | is a linear subsystem of dimension 𝑛 − 𝑘 − 1, since the map 𝑣 ↦→ 𝜕𝑣 ( 𝑓 ) is
injective as 𝑉 ( 𝑓 ) is smooth (it would have been enough to ask that 𝑉 ( 𝑓 ) is not a cone).

Let 𝐽 = 𝐽 𝑓 be the Jacobian ideal of f. Since |𝑊 | ⊂ |𝐽2 | and 𝐽2 is spanned by a regular sequence,
we have that 𝐵 := BL(|𝑊 |) has pure dimension k. Indeed, being B cut by 𝑛 − 𝑘 quadrics, we have that
dim(𝐵) ≥ 𝑘 . However, if there were a component of B with dimension at least 𝑘 + 1, then we would be
able to complete a basis of W in such a way that 𝐽2 is not spanned by a regular sequence, against our
assumptions. Indeed, if 𝑞0, . . . , 𝑞𝑛−𝑘−1 is a basis of W, then for any choice of elements 𝑞𝑛−𝑘 , . . . , 𝑞𝑛

in 𝐽2, we would have
⋂

𝑖 𝑉 (𝑞𝑖) ≠ ∅. This cannot happen since f is smooth by assumption.
By Bertini’s theorem, the general element of |𝑊 | is smooth away from B, which has pure dimension k.

However, as observed before, all quadrics of |𝑊 | have a P𝑘 contained in the singular locus. Therefore,
there exists a component of B which is a P𝑘 . Since B has dimension k, it contains at most a finite number
of P𝑘 : there exists a component of B which is a P𝑘 contained in the singular locus of all the elements of
|𝑊 |. Let P(𝑈) 	 P𝑘 be this linear space.

Consider [𝑢] ∈ P(𝑈). Since all the quadrics 𝑉 (𝜕𝑣 ( 𝑓 )) parametrized by W are singular along P(𝑈),
we have

𝜕𝑢𝜕𝑣 ( 𝑓 ) = 0 for all [𝑣] ∈ P(𝑉).

This implies that 𝜕𝑣 (𝜕𝑢 ( 𝑓 )) = 0 for all [𝑣] ∈ P(𝑉):𝑉 (𝜕𝑢 ( 𝑓 )) is a quadric whose singular locus contains
the (𝑛 − 𝑘 − 1)-plane Π = P(𝑉). Therefore, 𝐻 𝑓 (𝑢) has rank at most 𝑘 + 1, and thus, P(𝑈) ⊆ D𝑘+1( 𝑓 ).

Finally, notice that dim(D𝑘 ( 𝑓 )) ≤ 𝑘 − 1 by Proposition 2.5, so P(𝑈) 	 P𝑘 cannot be contained
in D𝑘 ( 𝑓 ). Hence, for the general point [𝑢] ∈ P(𝑈), the singular locus of 𝑉 (𝜕𝑢 ( 𝑓 )) is exactly the
(𝑛 − 𝑘 − 1)-plane Π. In other terms, we have 𝜄([𝑢]) = P(𝑉) for [𝑢] ∈ P(𝑈) general. �

Corollary 3.7. Let 𝑓 ∈ U and assume that there exists 𝑘 ≥ 1 such that D𝑛−𝑘 ( 𝑓 ) contains a (𝑛− 𝑘 − 1)-
plane. Then D𝑘 ( 𝑓 ) ≠ ∅.

Proof. Assume that P(𝑉) is a (𝑛− 𝑘 −1)-plane in D𝑛−𝑘 ( 𝑓 ). By Proposition 3.6, we have that there exist
P𝑘 	 P(𝑈) ⊆ D𝑘+1( 𝑓 ) such that P(𝑉) ⊆ 𝜄([𝑢]) for [𝑢] ∈ P(𝑈) with equality holding for [𝑢] general.
Since, in this case, D𝑘+1( 𝑓 ) and D𝑘 ( 𝑓 ) do not coincide, for dimensional reason (by Proposition 2.5),
we can define the map 𝜑 : D𝑘+1( 𝑓 ) \D𝑘 ( 𝑓 ) → 𝐺 (𝑛− 𝑘 − 1, P𝑛). Then, the injectivity of 𝜑 fails on two
general points of P(𝑈). Finally, by Proposition 3.5, we have that P(𝑈) ∩D𝑘 ( 𝑓 ) ≠ ∅, as claimed. �

We can now prove Theorem 3.4:

Proof. First of all, let us assume that for a fixed 𝑘 ≥ 0, there exists P𝑘 	 P(𝑉) ⊆ D𝑘+1( 𝑓 ). Then,
by Proposition 3.6, there also exists P(𝑈) 	 P𝑛−𝑘−1 contained in the locus D𝑛−𝑘 ( 𝑓 ). Moreover, we
know that for all [𝑢] ∈ P(𝑈), the projective space P(𝑉) is contained in 𝜄([𝑢]). This means that for
every [𝑢] ∈ P(𝑈) and [𝑣] ∈ P(𝑉), we have 𝑢𝑣 = 0, with the identification P𝑛 = P(𝐴1). Let us
notice that the spaces P(𝑈) and P(𝑉) are skew in P𝑛 and of complementary dimension. Indeed, if their
intersection was nontrivial, we could find a point [𝑥] ∈ P(𝑉) ∩ P(𝑈): from above, we would obtain
𝑥2 = 0, against the smoothness of 𝑉 ( 𝑓 ). We can then consider for P𝑛 a coordinate system 𝑥0, . . . , 𝑥𝑛
where P(𝑉) = 𝑉 (𝑥0, . . . , 𝑥𝑘 ) and P(𝑈) = 𝑉 (𝑥𝑘+1, . . . , 𝑥𝑛). Up to a change of coordinates, we can then
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write the polynomial f with respect to these variables: since, by construction, 𝑥𝑖𝑥 𝑗 = 0 in 𝐴2 for every
𝑖 = 0, . . . , 𝑘 and 𝑗 = 𝑘 + 1, . . . , 𝑛, we get the claim.

Let us now assume that f is TS: as in Remark 3.3, we can write it (up to a possible change of
coordinates) as 𝑓 = 𝑓1(𝑥) + 𝑓2(𝑥

′). As already observed, the Hessian matrix of f is of the form

𝐻 𝑓 (𝑥, 𝑥
′) =

[
𝐻 𝑓1 (𝑥) 0

0 𝐻 𝑓2 (𝑥
′)

]
. (3.2)

Hence, by defining P(𝑉) := 𝑉 (𝑥0, . . . , 𝑥𝑘 ) 	 P
𝑘 , one easily sees that Rank(𝐻 𝑓 (𝑣)) ≤ 𝑘 + 1 for every

[𝑣] ∈ P(𝑉) (i.e., P(𝑉) ⊆ D𝑘+1( 𝑓 ), as claimed). �

To end this section, let us present some key examples of TS polynomials.

Example 3.8 (Cyclic cubics). The simplest examples of TS polynomials are the cyclic polynomials. We
recall that a polynomial 𝑓 ∈ 𝑆𝑑 , where 𝑆 = K[𝑥0, · · · , 𝑥𝑛] is cyclic if, up to a change of coordinates, it
can be written as 𝑓 = 𝑥𝑑

0 + 𝑔(𝑥1, . . . , 𝑥𝑛), where 𝑔 ∈ K[𝑥1, . . . , 𝑥𝑛]𝑑 .
As observed before, 𝑋 = 𝑉 ( 𝑓 ) is smooth exactly when 𝑉 (𝑔) ⊂ P𝑛−1 is smooth and ℎ 𝑓 =

𝑑 (𝑑 − 1)𝑥𝑑−2
0 · ℎ𝑔 (𝑥1, . . . , 𝑥𝑛), so the Hessian variety splits as the union of a hyperplane and a hy-

persurface of degree 𝑛(𝑑 − 2), namely

𝐻 = 𝑉 (𝑥0) and 𝑊 = 𝑉 (ℎ𝑔 (𝑥1, . . . , 𝑥𝑛)).

Notice that W does not need to be irreducible, but this is the case if g is general (and 𝑛 ≥ 3). Under
the identification P𝑛−1 	 𝑉 (𝑥0), we can say that the Hessian loci D𝑘 (𝑔) live in 𝐻 = 𝑉 (𝑥0). We denote
by D̂𝑘 (𝑔) the cone over D𝑘 (𝑔) ⊆ 𝑉 (𝑥0) with vertex the coordinate point 𝑃0 = (1 : 0 : · · · : 0). For
example, one has 𝑊 = D̂𝑛−1(𝑔). Then, using the explicit description of the Hessian matrix of f as block
matrix such as in Equation (3.2), one can easily prove that

D𝑘 ( 𝑓 ) = D𝑘 (𝑔) ∪ D̂𝑘−1(𝑔) ∪ {𝑃0}. (3.3)

It is well known that the general cubic surface 𝑆 = 𝑉 (𝑔) ⊆ P3 has an irreducible Hessian variety
which is a quartic with 10 nodes as the only singularities. This was known already by B. Segre (see [28]),
but one can also refer to the more recent [10]. In particular,

D3 (𝑔) = H𝑔 D2(𝑔) = Sing(H𝑔) = {𝑄1, . . . , 𝑄10} D1(𝑔) = ∅.

Using this observation and Equation (3.3), one can describe the stratification given by the Hessian loci
of a general cyclic cubic threefold 𝑋 = 𝑉 ( 𝑓 ):

D5( 𝑓 ) = P
4 D4( 𝑓 ) = H 𝑓 = 𝐻 ∪𝑊 D3( 𝑓 ) = H𝑔 ∪

10⋃
𝑖=1

〈𝑃0, 𝑄𝑖〉

D2( 𝑓 ) = {𝑃0} ∪ {𝑄1, . . . , 𝑄10} D1( 𝑓 ) = {𝑃0}.

Among these, only 𝐻,𝑊 ⊂ D4( 𝑓 ), 𝐻 ∩ 𝑊 = H𝑔 ⊂ D3( 𝑓 ) and {𝑃0} ⊂ D1( 𝑓 ) give irreducible
components of Γ 𝑓 (this will be clear from Lemma 4.1).

Since smooth binary cubic forms can be written as sum of 2 cubes, every TS polynomial in 𝑛 + 1
variables, with 𝑛 ≤ 4, is necessarily cyclic (see [4] for details). Let us now describe a new phenomenon
arising in P5.

Example 3.9 (A TS cubic which is not cyclic). Let 𝑔1, 𝑔2 ∈ 𝑆𝑤 = K[𝑤0, 𝑤1, 𝑤2] be such that 𝑉 (𝑔1)
and 𝑉 (𝑔2) are smooth cubic curves in P2 which are not projectively equivalent to the Fermat curve.
A classical result implies that this is equivalent to ask that 𝑉 (𝑔𝑖) is a cubic whose Hessian 𝑉 (ℎ𝑔𝑖 ) is
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irreducible. This equivalence also follows easily from the main result of this paper (see Theorem 5.1 or,
more specifically, Proposition 5.6) and can be found in [8].

A smooth cubic fourfold X of TS type is not cyclic if and only if, up to a change of coordinates, it
is defined by a polynomial 𝑓 = 𝑔1 (𝑥0, 𝑥1, 𝑥2) + 𝑔2(𝑥3, 𝑥4, 𝑥5). From the point of view of moduli, such
fourfolds form a dimension 2 variety in the moduli space of smooth cubic fourfolds.

Consider the subvarieties of P5 defined by

𝑊1 = 𝑉 (ℎ𝑔1 (𝑥0, 𝑥1, 𝑥2)) 𝑊2 = 𝑉 (ℎ𝑔2 (𝑥3, 𝑥4, 𝑥5)) Π1 = 𝑉 (𝑥0, 𝑥1, 𝑥2) Π2 = 𝑉 (𝑥3, 𝑥4, 𝑥5)

𝐶1 = Π2 ∩𝑊1 𝐶2 = Π1 ∩𝑊2 𝐽 = 𝐽 (𝐶1, 𝐶2),

where 𝐽 (𝐶1, 𝐶2) is the joint variety of 𝐶1 and 𝐶2 (namely, the union of all lines joining a point of 𝐶1
and a point of 𝐶2). Notice that, by construction, for {𝑖, 𝑗} = {1, 2}, the variety 𝑊𝑖 is a cone over 𝐶 𝑗

with vertex Π𝑖 and 𝐶𝑖 is isomorphic to the curve 𝑉 (ℎ𝑔𝑖 ). Moreover, by the assumptions on the curves
𝑉 (𝑔1) and 𝑉 (𝑔2), 𝑊𝑖 is irreducible. Being f a TS polynomial, one has that H 𝑓 is indeed reducible.
More precisely, since ℎ 𝑓 = ℎ𝑔1 (𝑥0, 𝑥1, 𝑥2)ℎ𝑔2 (𝑥3, 𝑥4, 𝑥5), one has that

D5 ( 𝑓 ) = H 𝑓 = 𝑊1 ∪𝑊2.

The other strata of the stratification induced by f are

D4( 𝑓 ) = Sing(H 𝑓 ) = 𝐽 D3( 𝑓 ) = Π1 ∪ Π2 D2 ( 𝑓 ) = 𝐶1 ∪ 𝐶2,

whereas D1( 𝑓 ) = ∅ as X is not cyclic (by the results in [4]).
It is worth highlighting two facts. First of all, Π1 and Π2 are two 2-planes contained in D3( 𝑓 ). These

are exactly the k-planes contained in D𝑘+1( 𝑓 ) whose existence is guaranteed by Theorem 3.4 since f
is a TS polynomial. Moreover, note that for all 𝑘 ∈ {2, 3, 4, 5}, the dimension of D𝑘 ( 𝑓 ) equals 𝑘 − 1
(i.e., the maximum predicted by Proposition 2.5). In particular, Γ 𝑓 splits as the union of 7 irreducible
fourfolds (this follows from Lemma 4.1).

4. Families of triangles of high dimension

In this section, we focus on the study of suitable families of triangles for H 𝑓 arising naturally, as we will
see in a moment, when Sing(H 𝑓 ) exceeds the expected dimension. Moreover, we prove Theorem C.

Let us now set some notations and prove some technical results.
We recall that, given a smooth cubic 𝑉 ( 𝑓 ) ⊆ P𝑛 	 P(𝐴1), a family of triangles for H 𝑓 is a subvariety

F of

T = {([𝑥], [𝑦], [𝑧]) ∈ (P(𝐴1))3 | 𝑥𝑦 = 𝑦𝑧 = 𝑥𝑧 = 0}.

We will denote by 𝜋𝑖 the natural projections from F on the factors. For simplicity, if F is a family of
triangles forH 𝑓 , we will set𝑌𝑖 = 𝜋𝑖 (F) for 𝑖 ∈ {1, 2, 3}. Notice that dim(𝑌𝑖) ≤ 𝑛−2 since𝑌𝑖 ⊆ D𝑛−1( 𝑓 )
which has dimension at most 𝑛 − 2 by Proposition 2.5.

Moreover, recall that if [ 𝑓 ] ∈ U , by Proposition 2.5, all components of Γ 𝑓 come from the Hessian
loci of f. More precisely, if Z is an irreducible component of D𝑘 ( 𝑓 ) of dimension 𝑘 − 1, there exists a
unique irreducible component of Γ 𝑓 which dominates Z by first projection. We will denote by �̃� such
component.

Lemma 4.1. Let [ 𝑓 ] ∈ U and assume 𝑘 ∈ {1, . . . , 𝑛− 1}. Consider an irreducible component W of H 𝑓

and an irreducible component Z of D𝑘 ( 𝑓 ) of dimension 𝑘 − 1 which is contained in W. Then �̃� ∩ �̃�
dominates Z via the first projection pr1. In particular, there exists a family of triangles F for H 𝑓 of
dimension at least 𝑘 − 1. Moreover, if 𝑘 = 𝑛 − 1, then every family of triangles as above has dimension
exactly 𝑛 − 2.
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Proof. Notice that Z is not contained in D𝑘−1( 𝑓 ) by Proposition 2.5, as we are assuming dim(𝑍) =
𝑘 − 1. Hence, the general point 𝑧 ∈ 𝑍 lies in D𝑘 ( 𝑓 ) \ D𝑘−1( 𝑓 ), and thus, 𝜄([𝑧]) 	 P𝑛−𝑘 . Since the
general fiber of pr1 |�̃� : �̃� → 𝑍 has dimension 𝑛 − 𝑘 by construction, one has that the whole fiber
pr−1

1 ([𝑧]) = {[𝑧]} × 𝜄([𝑧]) is contained in �̃� . However, pr1 |�̃� : �̃� → 𝑊 is surjective and 𝑍 ⊆ 𝑊 by
assumption, so there exists at least a point 𝑝 = ([𝑧], [𝑦]) of the whole fiber 𝜋−1

1 ([𝑧]) with 𝑝 ∈ �̃� . Then
𝑝 ∈ 𝑈 = �̃� ∩ �̃� and pr1 |𝑈 : 𝑈 → 𝑍 is such that pr1 |𝑈 (𝑝) = 𝑧. In particular, pr1 |𝑈 dominates Z.

By the above argument, we have that �̃� and �̃� are irreducible components of Γ 𝑓 which meet in a
variety U of dimension at least 𝑘 − 1. Then, we have a family of dimension 𝑘 − 1 since this variety is
contained in Sing(Γ 𝑓 ) by construction and each point yields (at least) a triangle by Lemma 2.9.

Let 𝑍 ⊆ D𝑛−1 ( 𝑓 ) be an irreducible component of dimension 𝑛 − 2 and let F be a family of triangles
dominating Z via 𝜋1, so that dim(F) ≥ 𝑛 − 2. By construction, the general point [𝑥] of Z is such that
𝜄([𝑥]) 	 P1 so 𝜋−1

1 ([𝑥]) ⊂ {[𝑥]} × P1 × P1. If the general fiber 𝜋−1
1 ([𝑥]) has positive dimension, we

would have that 𝜋−1
1 ([𝑥]) ∩ {[𝑥]} ×ΔP1 is not empty, thus giving rise to a singular point of 𝑉 ( 𝑓 ). Then

the general fiber of 𝜋1 has dimension 0, and thus, dim(F) = 𝑛 − 2. �

Remark 4.2. If H 𝑓 is not normal, we have that there exists at least a family of triangles of dimension
𝑛 − 2. Indeed, we have that the singular locus of H 𝑓 has dimension 𝑛 − 2 and equals D𝑛−1 ( 𝑓 ) by
Theorem 2.3. Hence, given an irreducible component Z of Sing(H 𝑓 ) of dimension 𝑛 − 2, we have that
Z yields a family of triangles of dimension 𝑛 − 2 as a consequence of Lemma 4.1.

Lemma 4.3. Let 𝑋 = 𝑉 ( 𝑓 ) ⊂ P𝑛 be a smooth cubic hypersurface and let F be an irreducible family of
triangles. Then the following hold:

1. If dim(𝑌𝑖) ≥ 1 and 𝑌𝑖 ⊂ 𝑋 , then dim(𝑌𝑖) ≤ 𝑛 − 3;
2. If 𝑛 ≥ 3 and dim(𝑌𝑖) = 𝑛 − 2 for some i, then no projection has dimension 0 unless 𝑉 ( 𝑓 ) is of

Thom-Sebastiani type.

Proof. For (𝑎), w.l.o.g. we can assume dim(𝑌1) ≥ 1 and 𝑌1 ⊂ 𝑉 ( 𝑓 ). If 𝑇 = ([𝑥], [𝑦], [𝑧]) ∈ F is a
general triangle, then the differential 𝑑𝜋1,𝑇 : 𝑇F ,𝑇 → 𝑇𝑌1 , [𝑥 ] is surjective and it sends a tangent vector
(𝑥 ′, 𝑦′, 𝑧′) to 𝑥 ′. By Lemma 2.11, 𝑥 ′ ∈ Ann𝐴1 (𝑦2, 𝑧2)/〈𝑥〉. Moreover, since 𝑌1 ⊂ 𝑋 , by Proposition 2.1,
we have 𝑋 = {[𝑥] | 𝑥3 = 0} so 𝑇𝑋, [𝑥 ] = Ann𝐴1 (𝑥2)/〈𝑥〉. Hence,

𝑇𝑌1 , [𝑥 ] ⊆ Ann𝐴1 (𝑥2, 𝑦2, 𝑧2)/〈𝑥〉.

Since T is a triangle, by Lemma 2.10, one has that 〈𝑥2, 𝑦2, 𝑧2〉 has dimension 3, and thus, by the
Gorenstein duality, dim(Ann𝐴1 (𝑥2, 𝑦2, 𝑧2)) = 𝑛 + 1 − 3 = 𝑛 − 2. Moreover, being [𝑥] ∈ 𝑋 , one has
𝑥 ∈ Ann(𝑥2, 𝑦2, 𝑧2), so Ann𝐴1 (𝑥2, 𝑦2, 𝑧2)/〈𝑥〉 has dimension 𝑛 − 3.

For (𝑏), w.l.o.g. assume that𝑌3 is of dimension 𝑛−2. By contradiction, let us assume that𝑌1 = {[𝑥]}
and that f is not of TS type. Hence, 𝑌3 ⊆ 𝜄([𝑥]), and this implies that 𝜄(𝑥) = P𝑠 with 𝑠 ∈ {𝑛 − 2, 𝑛 − 1}.

Then, we would get 𝜄([𝑥]) = P𝑛−2 = 𝑌3 ⊆ D𝑛−1 ( 𝑓 ) and [𝑥] ∈ D1( 𝑓 ), respectively. Both cases yield
a contradiction by Theorem 3.4. �

Before proving Theorem C (Theorem 4.6), let us focus on (families of) triangles with all vertices on
the cubic X. These are linked to families of 2-planes in the cubic hypersurface:

Remark 4.4. First of all, recall that if 𝑇 = ([𝑥], [𝑦], [𝑧]) is a triangle for H 𝑓 , then 〈[𝑥], [𝑦], [𝑧]〉 = P2,
by Lemma 2.10. If we assume, moreover, that all the vertices of T belong to the cubic hypersurface X,
we have 𝑥3 = 𝑦3 = 𝑧3 = 0 and also 𝑥𝑦 = 𝑦𝑧 = 𝑧𝑥 = 0; this implies that the 2-plane is actually contained
in X. Hence, a triangle with three vertices on X cannot exist if X is a smooth cubic hypersurface of
dimension at most 3. Furthermore, since on smooth cubic fourfolds one has at most a finite number of
2-planes (see, for example, [11]), by Proposition 2.12, we can have at most a finite number of triangles
with all the vertices on the cubic X.

Lemma 4.5. Assume that F is a family of triangles for H 𝑓 with dim(𝑌1) = dim(F) > dim(𝑌3). Then,
none of the fibers of the projection 𝜋3 can be contracted to points via 𝜋1.
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Proof. This follows from a more general fact: if 𝑔 : 𝑋 → 𝑍 is a surjective morphism between irreducible
varieties and 𝑓 : 𝑋 → 𝑌 is a morphism, the locus

𝐴 = {𝑧 ∈ 𝑍 | dim( 𝑓 (𝑔−1(𝑧))) = 0}

is an open Zariski set of Z. In order to prove this, let us consider the map 𝐹 = ( 𝑓 , 𝑔) : 𝑋 → 𝑌 × 𝑍
and denote by 𝑋 ′ ⊆ 𝑌 × 𝑍 the image of X under the morphism F. Moreover, let 𝑝1 and 𝑝2 be the two
projections from 𝑋 ′ to Y and Z, respectively. It is then clear that

𝐴 = {𝑧 ∈ 𝑍 | dim(𝑝1 (𝑝
−1
2 (𝑧))) = 0} = {𝑧 ∈ 𝑍 | dim(𝑝−1

2 (𝑧)) = 0},

and thus, it is an open subset of Z. In our situation, if we assume that a fiber of 𝜋3 is contracted to points
via 𝜋1, then the same is true for the general one, contradicting the assumption dim(𝑌1) = dim(F). �

We are now ready to prove Theorem C, one of the main ingredients in the proof of Theorem A.

Theorem 4.6. Assume 𝑛 ≤ 5 and consider a smooth cubic 𝑉 ( 𝑓 ) not of TS type. If F is an irreducible
family of triangles for H 𝑓 with dim(F) = dim(𝜋1 (F)) = 𝑛 − 2, then the general element in F is such
that none of its vertices belongs to 𝑋 = 𝑉 ( 𝑓 ).

Proof. Notice that the proof follows easily if none of the three projections of F is contained in X.
Indeed, in this case, 𝜋−1

𝑖 (𝑌𝑖 ∩ 𝑋), the locus where the triangles of F have the i-th vertex on the cubic
X, is a proper closed subset of F . We would like to show that also for 𝑛 ≤ 5, this is indeed the only
possible case (i.e., no projection of F can be contained in X). For 𝑛 = 3, This is an easy consequence
of Lemma 4.3, so we can assume 𝑛 ≥ 4.

By hypothesis, 𝜋1 is generically finite (and thus, by Lemma 4.3, 𝑌1 is not contained in X) and,
by contradiction, 𝑌3 ⊂ 𝑋 . Notice that, under these assumptions, 𝑌2 is not contained in X. Otherwise,
𝜋−1

1 (𝑌1 ∩ 𝑋) would be an (𝑛 − 3)-dimensional family of triangles with all the vertices contained in X.
Then, we would have a contradiction as observed in Remark 4.4. For brevity, set F𝑐 = F ∩ (𝑋 × 𝑋 × 𝑋)
(i.e., F𝑐 is the locus of the triangles of F with all 3 vertices on the cubic hypersurface X).

Assume that 𝑛 = 4. By Lemma 4.3, since 𝑌3 ⊂ 𝑋 and 𝑌1 has dimension 2 = 𝑛 − 2 = dim(F), we
have that dim(𝑌3) = 1. Then, since F is irreducible, all the fibers of 𝜋3 have pure dimension 1. The
dimension of 𝑌2 is either 1 or 2. If the dimension of 𝑌2 is 1, all the fibers of 𝜋2 are curves too and
𝑌2 ∩ 𝑋 is not empty. Consider [𝑦0] ∈ 𝑌2 ∩ 𝑋 and its fiber 𝐶 = 𝜋−1

2 ([𝑦0]). By Lemma 4.5, C cannot be
contracted by 𝜋1, so 𝜋1 (𝐶) is a curve. Then, 𝜋1 (𝐶) ∩ 𝑋 is not empty, and we can consider a point [𝑥0]
in this intersection. Hence, any element in 𝜋−1

1 ([𝑥0]) ∩ 𝐶 ≠ ∅ is a triangle in F𝑐 . This is impossible by
Remark 4.4. Then we have necessarily dim(𝑌2) = 2.

Let Y be an irreducible component of 𝑌2 ∩ 𝑋 . Being 𝑌2 � 𝑋 and of dimension 2, Y is a curve, and
there exists an irreducible component C in 𝜋−1

2 (𝑌 ) of dimension 1 (since F is irreducible) dominating Y
via the second projection. If either 𝜋1 (𝐶) is a curve or 𝜋1 (𝐶) = [𝑥0] with [𝑥0] ∈ 𝑋 , we have an element
in F𝑐 , so the only possible case is 𝜋1 (𝐶) = [𝑥0] with [𝑥0] ∉ 𝑋 .

Looking at the third projection, we have that 𝜋3 (𝐶) either is a point [𝑧] or it coincides with 𝑌3.
Moreover, let us observe that 𝜄([𝑥0]) 	 P𝑠 with 𝑠 ∈ {1, 2} such that Y and 𝜋3 (𝐶) are contained in
𝜄([𝑥0]). To rule out the first case, namely 𝜋3 (𝐶) = [𝑧], first of all, observe that [𝑧] ∉ 𝑌 ; otherwise, we
would have a singular point for the cubic X. Then s is forced to be 2. Moreover, by construction, we have
𝑦𝑧 = 0 and 𝑦3 = 𝑧3 = 0 for any [𝑦] ∈ 𝑌 : by reasoning as in Remark 4.4, all the lines 〈[𝑦], [𝑧]〉 lie in X.
This implies that the whole 𝜄([𝑥0]) 	 P

2 is contained in the smooth threefold X, but this is not possible,
as observed in Remark 4.4.

For the remaining case, we have that 𝜋3 (𝐶) = 𝑌3, and by construction, both the curves Y and 𝑌3 are
contained in 𝜄([𝑥0]). Then, if 𝑠 = 1, we necessarily have 𝑌 = 𝑌3 	 P1 and C is a family of triangles of
dimension 1 in {[𝑥0]} ×𝑌 ×𝑌 . This yields a contradiction since C has to meet {[𝑥0]} ×Δ𝑌 , thus giving
a singular point for X. Hence, we have necessarily 𝑠 = 2, and we can assume 𝑌 ≠ 𝑌3 or 𝑌 = 𝑌3 ≠ P1.
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In both cases, as done above, considering the lines 〈[𝑦], [𝑧]〉 with [𝑦] ∈ 𝑌, [𝑧] ∈ 𝑌3 and 𝑦𝑧 = 0, we get
that the 2-plane 𝜄([𝑥0]) is contained in the cubic threefold X, which is not possible.

Assume now that 𝑛 = 5. We are working in the following framework: F is an irreducible
3-dimensional family of triangles with 𝜋1 generically finite, 𝑌1, 𝑌2 not contained in X and 𝑌3 ⊆ 𝑋
(this will lead to a contradiction). Being 𝑌3 ⊆ 𝑋 by assumption, F𝑐 is cut out from F by two divisors,
so its expected dimension is 𝑛− 4 = 1. Then, either F𝑐 is empty or dim(F𝑐) ≥ 1. However, as observed
in Remark 4.4, under the above-mentioned hypotheses, we have that dim(F𝑐) ≤ 0, so F𝑐 is necessarily
empty. We will now prove that F𝑐 is not empty, thus leading to a contradiction.

First of all, notice that dim(𝑌2) ∈ {1, 2, 3} by Lemma 4.3. If dim(𝑌2) ≤ 2, the general fiber of 𝜋2
has positive dimension and cannot be contracted to a point by 𝜋1 by Lemma 4.5. Then, its image meets
X, and thus, we produce a triangle in F𝑐 as the analogous case for the threefold. We can then assume
dim(𝑌2) = 3 so that 𝜋2 is generically finite as 𝜋1.

Denote by Y an irreducible component of 𝑌2 ∩ 𝑋 . The preimage 𝜋−1
2 (𝑌 ) has dimension 2, and we can

consider an irreducible component 𝑆 ⊂ 𝜋−1
2 (𝑌 ) dominating Y. If 𝜋1 (𝑆) is not a point or is a point on

the cubic fourfold, as in the threefold case, one can easily construct an element in F𝑐: we can assume
𝜋1 (𝑆) = [𝑥0] ∉ 𝑋 . As done in the previous case, we have that 𝜄([𝑥0]) 	 P𝑠 containing Y and 𝜋3 (𝑆)
(thus, 𝑠 ∈ {2, 3} since X is not of TS type), where 𝜋3 (𝑆) ⊆ 𝑌3 can be either a point [𝑧], a curve 𝐶 ⊄ 𝑌3
(with dim(𝑌3) = 2) or the whole 𝑌3 (with dim(𝑌3) ∈ {1, 2}). To conclude the proof, let us study these
distinguished cases.

◦ 𝜋3 (S) = [z0]: since [𝑧0] ∉ 𝑌 (otherwise we would have a singular point in X), s is forced to be equal
to 3. Considering again the lines 〈[𝑦], [𝑧0]〉 with [𝑦] varying in Y, we have that the whole 3-space
𝜄([𝑥0]) is contained in the smooth cubic fourfold X, which is clearly not possible.

◦ 𝜋3 (S) = C: In this case, one has 𝜄([𝑥0]) 	 P3 since, otherwise, we would have 𝐶 ⊆ 𝑌 = P2

and 𝑆 ⊆ {[𝑥0]} × 𝑌 × 𝑌 and then a singular point for X as in a previous case. If we assume
𝐶 ⊄ 𝑌 ⊂ 𝜄([𝑥0]) = P3, then one easily sees that the lines 〈[𝑦], [𝑧]〉 with [𝑦] ∈ 𝑌, [𝑧] ∈ 𝐶 and
𝑦𝑧 = 0 cover 𝜄([𝑥0]): we have a contradiction since we would have a projective 3−space in X. The
only remaining case to analyse is then the one where 𝐶 ⊂ 𝑌 ⊂ P3 with Y surface which is not a P2.
In this case, S is a surface in {[𝑥0]} × 𝑌 × 𝐶 with the projections 𝑝2 = 𝜋2 |𝑆 and 𝑝3 = 𝜋3 |𝑆 which are
surjective. Then, for all [𝑧] ∈ 𝐶, 𝑝−1

3 ([𝑧]) has pure dimension 1. Let [𝑧] be a point in C and let D
be an irreducible component of one of those fibers. For all [𝑦] ∈ 𝑝2 (𝐷), we have 𝑦𝑧 = 𝑦3 = 𝑧3 = 0
and [𝑧] ∉ 𝑝2 (𝐷), so the joint variety 𝐽 (𝑝2 (𝐷), [𝑧]) has dimension 2, is a cone with vertex [𝑧] and is
completely contained in 𝜄([𝑥0]) ∩ 𝑋 . Since 𝜄([𝑥0]) 	 P

3 cannot be contained in X, these cones have
to vary at most discretely, when [𝑧] moves in C. Notice that Y lies, by construction, in the union of
these cones, so [𝑧] is in the vertex Vert(𝑌 ) of Y. Then 𝐶 ⊆ Vert(𝑌 ), and this forces Y to be a P2,
which is against our assumptions.

◦ 𝜋3 (S) = Y3: As in the previous case, we necessarily have 𝜄([𝑥0]) 	 P
3 containing both the surface Y

and 𝜋3 (𝑆), which can be either a curve or a surface. We can assume, moreover 𝑌3 = 𝜋3 (𝑆) ⊆ 𝑌 , since
otherwise, proceeding as above, we would have 𝜄([𝑥0]) ⊂ 𝑋 . In particular, Y is not a 2-plane. If 𝑌3 is
a curve, we can obtain a contradiction as in the previous case by considering the cones with vertex
[𝑧] ∈ 𝑌3 spanned by the curves in Y whose elements annihilate [𝑧]. Hence, we can assume 𝑌 = 𝑌3
(and thus, 𝜋3 is generically finite). By construction, for any element [𝑦] ∈ 𝑌 , there exists at least one
element [𝑧] ∈ 𝑌 such that 𝑦𝑧 = 0; hence, again, the line 〈[𝑦], [𝑧]〉 is contained in 𝜄([𝑥0]) ∩ 𝑋 . If, for
[𝑦] general, at least one of these lines is not contained in Y, one can see that the whole 3-space 𝜄([𝑥0])
is contained in X, yielding a contradiction. We can then assume that for [𝑦] ∈ 𝑌 general, the above-
mentioned lines are contained in Y. Our aim is now to show that 𝑌 	 P2, against our assumptions.
First of all, let us show that the union Λ of these lines as subset in the Grassmannian Gr(1, P3) has
dimension 2. If, by contradiction, dim(Λ) = 1, this would mean that for all ℓ ∈ Λ and for all [𝑦] ∈ ℓ,
there exists [𝑧] ∈ ℓ with 𝑦𝑧 = 0. In other words, this would yield a correspondence in P1 × P1, which
intersects the diagonal ΔP1 nontrivially: the cubic X would be singular, which is not possible. Let us
finally consider the incidence variety
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Ψ := {(𝑦, ℓ) | 𝑦 ∈ ℓ ∈ Λ} ⊂ 𝑌 × Gr(1, P3)

and denote by 𝜓1 and 𝜓2 the two projections. We have just shown that Im(𝜓2) = Λ, and moreover, it
is clear that if ℓ ∈ Λ, then 𝜓−1

2 (ℓ) is described by ℓ itself; hence, such a fiber has dimension 1. Then
dim(Ψ) = 3, and looking at the first projection 𝜓1, we have that there exist infinitely many lines in
Λ contained in Y and passing through the general point [𝑦] ∈ 𝑌 . Hence, Y has to be a cone with
[𝑦] ∈ Vert(𝑌 ): from the generality of [𝑦], it follows that 𝑌 	 P2, as claimed. �

Remark 4.7. Observe that if 𝑛 = 2, the hypotheses of Theorem cannot be realized since the existence
of a triangle implies that the locus D1 ( 𝑓 ) is nonempty. Hence, by Theorem 3.4, the cubic f is of TS
type, against our assumption.

5. Proof of main theorem: the cubic threefold case

In this section, we state and begin to prove the main result of this article – namely, the following.

Theorem 5.1 (Theorem A). Assume that 2 ≤ 𝑛 ≤ 5 and consider 𝑓 ∈ K[𝑥0, . . . , 𝑥𝑛] defining a smooth
cubic. Then, the singular locus of the Hessian hypersurface H 𝑓 ⊂ P𝑛 has the expected dimension if
and only if f is not of TS type. In particular, 𝑓 ∈ V if and only if H 𝑓 is irreducible and normal.

As we observe now, the assumptions on the degree and the smoothness of the hypersurface 𝑋 = 𝑉 ( 𝑓 )
are essential.

Remark 5.2. Let us stress that the result stated in Theorem 5.1 is false for smooth hypersurfaces of
degree 𝑑 ≥ 4 and for non-smooth cubics. We provide here two simple examples proving these claims.

◦ Let 𝑓 (𝑥, 𝑦, 𝑧) = 𝑥4 + 𝑦4 + 𝑧4 + 𝑥(𝑦3 + 𝑧3) and consider 𝐶 = 𝑉 ( 𝑓 ). Then one easily sees that C is a
smooth quartic plane curve and that

ℎ 𝑓 = 54 · 𝑦𝑧
(
8𝑥4 + 16𝑥3 (𝑦 + 𝑧) + 32𝑥2𝑦𝑧 − 𝑥(𝑦3 + 𝑧3) − 2𝑦𝑧(𝑦2 + 𝑧2)

)
.

The quartic factor in the above factorization of ℎ 𝑓 yields a smooth quartic by the Jacobian criterion
and thus an irreducible one. This also implies that f is not of TS type since, otherwise, we would have
the Hessian polynomial which is product of linear factors: there are smooth hypersurfaces of degree
𝑑 ≥ 4, which are not of TS type, with reducible Hessian variety.

◦ Let 𝑓 (𝑥0, 𝑥1, 𝑥2, 𝑥3) = 𝑥0𝑥
2
1 + 𝑥1𝑥

2
2 + 𝑥2𝑥

2
3 and consider the cubic surface 𝑆 = 𝑉 ( 𝑓 ). One can see that

S is an irreducible cubic surface whose singular locus coincides with the point 𝑝0 = (1 : 0 : 0 : 0),
which is a singularity of type 𝐷5. Its associated Hessian variety is a reducible and non-reduced
quartic surface 𝑉 (𝑥2

1 (𝑥1𝑥2 − 𝑥2
3)). Notice that the quadratic factor of the Hessian polynomial ℎ 𝑓 is

irreducible so, reasoning as in the previous example, one can see that 𝑓 ≠ 𝑓1(𝑧0, 𝑧1) + 𝑓2(𝑧2, 𝑧3) for
suitable coordinates {𝑧0, . . . , 𝑧3}. With a direct and easy computation, also the cyclic case is ruled
out as follows. If we assume that f is cyclic, then 𝑉 ( 𝑓 ) would be projectively equivalent to 𝑉 (𝑔)
where 𝑔 = 𝑥3

0 + 𝑚(𝑥1, 𝑥2, 𝑥3). Notice that ℎ𝑔 = 𝑥0 · ℎ𝑚 (𝑥1, 𝑥2, 𝑥3). Since a linear form has to appear
in the factorization of ℎ𝑔 with multiplicity 2 (since 𝑥2

1 divides ℎ 𝑓 ) we have that ℎ𝑚 is the product of
3 linear forms, which is incompatible with the above description. Hence, f is not of TS type although
its Hessian is reducible (and thus non-normal) and non-reduced. The same phenomenon happens for
the cuspidal cubic curve (see, for example, [8]).

Nevertheless, not every type of singularity gives the same behaviour as in the last example above. Indeed,
the nodal cubic curve and the 1-nodal cubic surface 𝑉 (𝑥0 (𝑥

2
1 + 𝑥2

2 + 𝑥2
3) + 𝑥2

1𝑥3 + 𝑥2𝑥
2
3) have irreducible

and normal associated Hessian variety (and thus, they are not of TS type). One can easily construct
examples of 1-nodal cubic threefolds and fourfolds with the same property.
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Going back to the case of smooth cubic hypersurfaces, we make the following:

Conjecture 5.3. The same result stated in Theorem 5.1 holds for smooth cubic hypersurfaces in P𝑛 for
every 𝑛 ≥ 2.

The techniques used in the proof of Theorem 5.1 do not seem to adapt to an argument that could be
valid in any dimension: already for cubic fourfolds, one can see the large amount of cases one has to
consider. For this reason, we will give the proof of the Theorem for 𝑛 ≤ 4 at the end of this section,
while the case of cubic fourfolds is treated in the subsequent one, since it is more involved, even if the
techniques are similar.

We stress that, for a smooth cubic 𝑉 ( 𝑓 ), the implication

H 𝑓 irreducible and normal =⇒ 𝑓 not of TS type

is always true for all 𝑛 ≥ 2 as we have seen in Remark 3.3: the hard part of the conjecture is to prove
the other implication.

Let us now explain the strategy that will be used for the proof of the Theorem for the various values
of 𝑛 ≤ 5.

Framework 5.4. Assume that f defines a smooth cubic 𝑋 = 𝑉 ( 𝑓 ) which is not of TS type (i.e., [ 𝑓 ] ∈ V)
such that H 𝑓 is not normal. Then by Lemma 4.1 and Remark 4.2, we have a family F of dimension
𝑛 − 2 of triangles for H 𝑓 dominating, via the first projection, a component 𝑌1 of D𝑛−1( 𝑓 ) of the same
dimension. As we have done in the previous sections, we denote by 𝑌𝑖 the images of the projections 𝜋𝑖 .
As just observed, 𝜋1 : F → 𝑌1 is generically finite.

If 𝑇 = ([𝑥], [𝑦], [𝑧]) = ([𝑥1], [𝑥2], [𝑥3]) is a general point of F , by generic smoothness, we can
assume that the differentials 𝑑𝑇 𝜋𝑖 : 𝑇F ,𝑇 → 𝑇𝑌𝑖 , [𝑥𝑖 ] are surjective; in particular, 𝑑𝑇 𝜋1 is an isomorphism.
Moreover, since we are assuming 𝑛 ≤ 5, by Theorem 4.6, we have that none of the vertices of T belongs
to the cubic 𝑉 ( 𝑓 ) (i.e., 𝑥3

𝑖 ≠ 0 for 𝑖 ∈ {1, 2, 3}). If we set

𝑉1 = 〈𝑥, 𝑦, 𝑧〉 ⊂ 𝐴1 and 𝑉2 = Ann𝐴1 (𝑥2, 𝑦2, 𝑧2) ⊂ 𝐴1, (5.1)

by Lemma 2.10 and by Gorenstein duality, we have that dimK (𝑉1) = 3 and dimK (𝑉2) = 𝑛−2. Moreover,
since 𝑥3, 𝑦3, 𝑧3 ≠ 0, we also have 𝑉1 ∩𝑉2 = {0}. Hence, by dimension reason, one has

𝐴1 = 𝑉1 ⊕ 𝑉2. (5.2)

If {𝑖, 𝑗 , 𝑘} = {1, 2, 3}, by Lemma 2.10 and Lemma 2.11, one has also

dimK Ann𝐴1 (𝑥2
𝑗 , 𝑥

2
𝑘 ) = 𝑛 − 1 dimK Ann𝐴1 (𝑥2

𝑗 , 𝑥
2
𝑘 )/〈𝑥𝑖〉 = 𝑛 − 2. (5.3)

By dimension reason and since 𝑥𝑖 ∉ 𝑉2, we have a canonical isomorphism 𝑉2 	 Ann𝐴1 (𝑥2
𝑗 , 𝑥

2
𝑘 )/〈𝑥𝑖〉

induced by the inclusion 𝑉2 ↩→ Ann𝐴1 (𝑥2
𝑗 , 𝑥

2
𝑘 ) followed by the quotient by 〈𝑥𝑖〉. By Lemma 2.11 and

since we have that 𝑑𝑇 𝜋𝑖 is surjective, we have

𝑇𝑌𝑖 , [𝑥𝑖 ] ⊆ Ann𝐴1 (𝑥2
𝑗 , 𝑥

2
𝑘 )/〈𝑥𝑖〉 	 𝑉2,

so we can interpret 𝑑𝑇 𝜋𝑖 as maps 𝑇T ,𝑇 → 𝑉2. Being 𝑑𝑇 𝜋1 an isomorphism, we have then the endomor-
phisms

𝜓𝑚 = 𝑑𝑇 𝜋𝑚 ◦ (𝑑𝑇 𝜋1)
−1 : 𝑉2 → 𝑇𝑌𝑚 , [𝑥𝑚 ] ↩→ 𝑉2 for 𝑚 ∈ {2, 3}. (5.4)

Our approach is to analyse obstructions for such a configuration, by studying the Zariski tangent spaces.
These information can be naturally codified by looking at the operators 𝜓𝑚; this strategy can be followed
a priori in every dimension and in the cases of our interest yield to a direct and conclusive computation.

https://doi.org/10.1017/fms.2025.36 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.36


Forum of Mathematics, Sigma 19

In the proof of Theorem 5.1, we will start by analyzing these specific maps, ruling out both the cases
where 𝜓2 (or 𝜓3) can be diagonalized or not and ultimately proving that a family of triangles of dimension
𝑛 − 2 cannot exist.

As we have done in the proof of Lemma 2.11, to a tangent vector 𝑣 = (𝑥 ′, 𝑦′, 𝑧′) ∈ 𝑇T ,𝑇 , we can
associate the ‘first-order deformation’ of T in the direction of 𝑣 (for brevity, 𝑣-deformation of T), which
we write in a compact way as

𝑇 + 𝑣 = (𝑥 + 𝑡𝑥 ′, 𝑦 + 𝑡𝑦′, 𝑧 + 𝑡𝑧′). (5.5)

Lemma 5.5. Let F be a family of triangles. Assume furthermore that both F and 𝑌1 have dimension
𝑛 − 2. If the general element 𝑇 = ([𝑥], [𝑦], [𝑧]) ∈ F has no vertices on 𝑋 = 𝑉 ( 𝑓 ), then 𝑥· : 𝑉2 → 𝐴2 is
injective.

Proof. Since 𝑌1 has dimension 𝑛 − 2, its general point [𝑥] is in D𝑛−1 ( 𝑓 ) \ D𝑛−2( 𝑓 ) (i.e., the kernel
of the multiplication map 𝑥· : 𝐴1 → 𝐴2 has dimension 2). The point [𝑥] is also the vertex of an
element 𝑇 = ([𝑥], [𝑦], [𝑧]) of F , and thus, ker(𝑥·) = 〈𝑦, 𝑧〉 ⊆ 𝑉1. However, by the assumptions, one has
𝑉1 ∩𝑉2 = 0, as observed above. �

Let us now show the Theorem 5.1 in the first cases.

Proposition 5.6. Theorem 5.1 is true for 𝑛 ∈ {2, 3}.

Proof. By contradiction, let us assume that [ 𝑓 ] ∈ V and dim(Sing(H 𝑓 )) = 𝑛 − 2. Notice that if 𝑛 = 2,
since Sing(H 𝑓 ) = D1( 𝑓 ), we have a contradiction by Theorem 3.4. Hence, we can assume 𝑛 = 3.

Fix the notation explained in the framework (see 5.4). Since 𝑛 = 3, we have that

Ann𝐴1 (𝑥2, 𝑦2, 𝑧2) = 𝑉2 = 〈𝑢〉

for suitable 𝑢 ∈ 𝐴1 \ {0}. All projections of F have dimension exactly 1 by Lemma 4.3, so 𝑇F ,𝑇 =
〈(𝐴𝑢, 𝐵𝑢, 𝐶𝑢)〉 with 𝐴, 𝐵, 𝐶 ∈ K∗. By Lemma 2.11, the associated first-order deformation𝑇+𝑢(𝐴, 𝐵, 𝐶)

has to satisfy

𝐵𝑢𝑥 + 𝐴𝑢𝑦 = 0, 𝐶𝑢𝑥 + 𝐴𝑢𝑧 = 0, 𝐶𝑢𝑦 + 𝐵𝑢𝑧 = 0.

We can then observe that the three independent points 𝐵𝑥 + 𝐴𝑦, 𝐶𝑥 + 𝐴𝑧, 𝐶𝑦 + 𝐵𝑧 belong to the kernel
of the multiplication by u. In other words, 𝜄(𝑢) ⊇ P2, so that [𝑢] ∈ D1( 𝑓 ). Hence, as before, we have a
contradiction. �

Proposition 5.7. Theorem 5.1 is true for 𝑛 = 4: for a smooth cubic threefold 𝑋 = 𝑉 ( 𝑓 ), the Hessian
quintic threefold H 𝑓 is normal if and only if f is not of TS type.

Proof. By contradiction, let us assume that [ 𝑓 ] ∈ V and dim(Sing(H 𝑓 )) = 2. Then we are in the
situation described in 5.4: 𝑇 = ([𝑥], [𝑦], [𝑧]) will denote a general triangle in F (recall that by
Theorem 4.6 none of its vertices belongs to the cubic 𝑋 = 𝑉 ( 𝑓 )). Since 𝑛 = 4, we have that dim(𝑉2) = 2.
Recall that we have the endomorphisms

𝜓𝑖 = 𝑑𝑇 𝜋𝑖 ◦ (𝑑𝑇 𝜋1)
−1 : 𝑉2 	 𝑇𝑌1 , [𝑥 ] → 𝑉2 𝑖 ∈ {2, 3},

which have image 𝑇𝑌2 , [𝑦 ] and 𝑇𝑌3 , [𝑧 ] , respectively. We have that either one of the two is diagonalizable
or that none is. We treat differently the two cases.

Case (I): Let us suppose that at least one of the two above endomorphisms is diagonalizable. W.l.o.g.
we can assume that {𝑢, 𝑤} is a basis of𝑉2 whose elements are eigenvectors for 𝜓2. Then two independent
tangent vectors to F in T are given as

𝑣 = (𝑢, 𝐴𝑢, 𝐶𝑢 + 𝐷𝑤) and 𝑣′ = (𝑤, 𝐵𝑤, 𝐸𝑢 + 𝐹𝑤) (5.6)
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for suitable 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 scalars depending on the triangle, where, in particular, A and B are the
eigenvalues corresponding respectively to u and w.

We recall that, for a given tangent vector 𝑣 = (𝑥 ′, 𝑦′, 𝑧′) at 𝑇 = ([𝑥], [𝑦], [𝑧]), we have the relation
𝑥𝑦′ + 𝑦𝑥 ′ = 0 by Lemma 2.11. For brevity, we refer to this relation with the notation (𝑣)𝑥𝑦 . We denote
by (𝑣)𝑥𝑧 and (𝑣)𝑦𝑧 the analogous relations.

For example, using the vectors in (5.6), we have the corresponding first-order deformations

𝑇 + 𝑡𝑣 = (𝑥 + 𝑡𝑢, 𝑦 + 𝑡𝐴𝑢, 𝑧 + 𝑡 (𝐶𝑢 + 𝐷𝑤)) 𝑇 + 𝑠𝑣′ = (𝑥 + 𝑠𝑤, 𝑦 + 𝑠𝐵𝑤, 𝑧 + 𝑠(𝐸𝑢 + 𝐹𝑤)),

which yield

(𝑣)𝑥𝑦 : 𝐴𝑢𝑥 + 𝑦𝑢 = 0 (𝑣′)𝑥𝑦 : 𝐵𝑤𝑥 + 𝑦𝑤 = 0
(𝑣)𝑥𝑧 : 𝐶𝑢𝑥 + 𝐷𝑤𝑥 + 𝑧𝑢 = 0 (𝑣′)𝑥𝑧 : 𝐸𝑢𝑥 + 𝐹𝑤𝑥 + 𝑧𝑤 = 0
(𝑣)𝑦𝑧 : 𝐶𝑢𝑦 + 𝐷𝑤𝑦 + 𝐴𝑢𝑧 = 0 (𝑣′)𝑦𝑧 : 𝐸𝑢𝑦 + 𝐹𝑤𝑦 + 𝐵𝑤𝑧 = 0.

(5.7)

By elementary operations, one gets two new relations:

2𝐴𝐶𝑢𝑥 + 𝐷 (𝐴 + 𝐵)𝑤𝑥 = 0 𝐸 (𝐴 + 𝐵)𝑢𝑥 + 2𝐹𝐵𝑤𝑥 = 0.

For example, the former relation is obtained by substituting in (𝑣)𝑦𝑧 of Equation (5.7), the products
𝑢𝑦, 𝑤𝑦, and 𝑢𝑧 obtained respectively from (𝑣)𝑥𝑦 , (𝑣′)𝑥𝑦 and (𝑣)𝑥𝑧 of Equation (5.7).

By Lemma 5.5, the multiplication map 𝑥· : 𝑉2 → 𝐴2 is injective, so

𝐴𝐶 = 0 𝐷 (𝐴 + 𝐵) = 0 𝐸 (𝐴 + 𝐵) = 0 𝐹𝐵 = 0. (5.8)

Let us now observe that A and B cannot be simultaneously zero when evaluated in a general triangle
T; otherwise, the second projection of F would be zero-dimensional, contradicting Lemma 4.3.

Lemma 5.8. In this situation, for T general, none of the two eigenvalues of the endomorphism 𝜓2 can
be zero.

Proof. Let 𝑇 = ([𝑥], [𝑦], [𝑧]) be a general triangle of F . W.l.o.g. we can assume by contradiction that
𝐴 ≠ 0 and 𝐵 = 0. We claim that 𝑌2 ⊆ 𝜄(𝑧) and 𝑌3 ⊆ D2( 𝑓 ).

Since 𝐴 ≠ 0, we also get that 𝐶 = 𝐷 = 𝐸 = 0 by Equation (5.8). Hence, the first-order deformations
of T are given by

𝑇 + 𝑡𝑣 = (𝑥 + 𝑡𝑢, 𝑦 + 𝑡𝐴𝑢, 𝑧) and 𝑇 + 𝑠𝑣′ = (𝑥 + 𝑠𝑤, 𝑦, 𝑧 + 𝑠𝐹𝑤). (5.9)

Since the differential maps of the projections from F are surjective, we have dim(𝑌1) = 2 and dim(𝑌2) =
dim(𝑌3) = 1.

Consider the curve 𝐶𝑇 = 𝜋−1
3 ([𝑧]). By construction, the tangent to 𝐶𝑇 in T is spanned by 𝑣 which

is projected to u and 𝐴𝑢 via 𝑑𝑇 (𝜋1 |𝐶𝑇 ) and 𝑑𝑇 (𝜋2 |𝐶𝑇 ), respectively. Hence, 𝜋1 (𝐶𝑇 ) is a curve in 𝑌1
and 𝜋2 (𝐶𝑇 ) = 𝑌2. In particular, 𝜋1 (𝐶𝑇 ) ∪ 𝑌2 ⊆ 𝜄([𝑧]), as claimed. Moreover, since D1( 𝑓 ) = ∅, by
assumption (by Theorem 3.4), we get that 𝜄([𝑧]) 	 P2 up to the case where it is a projective line
coinciding both with 𝑌2 and 𝜋1 (𝐶𝑇 ). But in this last case, we would have an involution on 𝑌2 	 P1,
which yields a fixed point and then a singular point for 𝑉 ( 𝑓 ). Hence, 𝑌3 ⊆ D2( 𝑓 ), as claimed.

Notice that the same argument can be used to prove that 𝑌3 ⊆ 𝜄([𝑦]) and thus that 𝑌2 ⊆ D2 ( 𝑓 ). By
Proposition 3.5, one can see that for two general points [𝑧] and [𝑧′] in 𝑌3, we have that 𝜄([𝑧]) ≠ 𝜄([𝑧′]).
Hence, 𝑌2 ⊆ 𝜄([𝑧]) ∩ 𝜄([𝑧′]) = P1, and thus, 𝑌2 = P1 ⊆ D2( 𝑓 ). This is impossible by Theorem 3.4 since
f is not of TS type. �

From the above Lemma 5.8, since T is general, we have that both A and B are not zero; hence, by
Equation 5.8, we also get 𝐵 = −𝐴. Indeed, if 𝐴 + 𝐵 ≠ 0, we would obtain 𝐶 = 𝐷 = 𝐸 = 𝐹 = 0, which
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is not possible by Lemma 4.3. Since 𝐴 = −𝐵 ≠ 0, from Equations (5.8), we have 𝐶 = 𝐹 = 0. Then, the
first-order deformation, in this case, can be written as

𝑇 + 𝑡𝑣 = (𝑥 + 𝑡𝑢, 𝑦 + 𝑡𝐴𝑢, 𝑧 + 𝑡𝐷𝑤) 𝑇 + 𝑠𝑣′ = (𝑥 + 𝑠𝑤, 𝑦 − 𝑠𝐴𝑤, 𝑧 + 𝑠𝐸𝑢), (5.10)

and the conditions (5.7) are equivalent to

𝑢(𝑦 + 𝐴𝑥) = 0 𝑧𝑤 + 𝐸𝑥𝑢 = 0 𝑤(𝑦 − 𝐴𝑥) = 0 𝑧𝑢 + 𝐷𝑥𝑤 = 0. (5.11)

Moreover, we cannot have 𝐷 = 𝐸 = 0 as observed above, so we can assume 𝐷 ≠ 0.
Since these equations hold, by assumption, for the general point 𝑇 ∈ F , by deforming T at the first

order in the direction of 𝑣, that is, by considering a curve

𝑇 (𝑡) = ([𝑥(𝑡)], [𝑦(𝑡)], [𝑧(𝑡)]) = 𝑇 + 𝑡𝑣 + 𝑡2(· · · ),

also the corresponding eigenvectors of 𝜓2 ‘move’. More precisely, we have two curves

𝛾𝑢 : 𝑈 → 𝐴1 𝛾𝑤 : 𝑈 → 𝐴1

defined in a neighbourhood of 0 such that 𝛾𝑢 (0) = 𝑢, 𝛾𝑤 (0) = 𝑤 and {𝛾𝑢 (𝑡), 𝛾𝑤 (𝑡)} is a basis of
eigenvectors of 𝑑𝑇 (𝑡)𝜋2 ◦ 𝑑𝑇 (𝑡)𝜋

−1
1 . These eigenvectors satisfy equations analogous to the ones in (5.7)

where the coefficients depend on t. As observed above, the sum of the two eigenvalues of 𝜓2 is 0 also
in a neighbourhood of T, so that the Equations (5.11) hold also locally.

We can then consider an expansion of the curves

𝛾𝑢 (𝑡) = 𝑢 + 𝑡𝑢′ + 𝑡2(· · · ) 𝛾𝑤 (𝑡) = 𝑤 + 𝑡𝑤′ + 𝑡2(· · · )

and substitute them in the Equations (5.11) in order to get new relations. We write 𝐴(𝑡) = 𝐴+𝐴′𝑡+𝑡2(· · · )
for the curve following the eigenvalue relative to 𝛾𝑢 (𝑡) with an analogous notation for the coefficients
that appear in Equations (5.11).

For example, from the condition 𝑢(𝑦 + 𝐴𝑥) = 0, one has

0 ≡ 𝛾𝑢 (𝑡) (𝑦(𝑡) + 𝐴(𝑡)𝑥(𝑡)) = (𝑢 + 𝑡𝑢′ + 𝑡2(· · · )) (𝑦 + 𝐴𝑥 + 𝑡 (2𝐴𝑢 + 𝐴′𝑥) + 𝑡2(· · · )),

so we get 2𝐴𝑢2 + 𝐴′𝑥𝑢 + 𝑢′(𝐴𝑥 + 𝑦) = 0. One can do the same reasoning for the 𝑣′-deformation, and we
also can use two ‘parameters’ to take into account in a compact description the deformation of T in the
direction of 𝑡𝑣 + 𝑠𝑣′. In this way, u and w ‘deform’ at first order as

𝑢 + 𝑡𝑢′ + 𝑠𝑢′′ and 𝑤 + 𝑡𝑤′ + 𝑠𝑤′′,

respectively. Moreover, we can assume that 𝑢′, 𝑢′′ and 𝑤′, 𝑤′′ do not depend on u and w, respectively.
This argument yields the relations

2𝐴𝑢2 + 𝐴′𝑥𝑢 + (𝐴𝑥 + 𝑦)𝑢′ = 0 𝑢′′(𝑦 + 𝐴𝑥) + 𝐴′′𝑥𝑢 = 0 (5.12)

𝑤′𝑧 + 𝐷𝑤2 + 𝐸𝑢2 + 𝐸 ′𝑢𝑥 + 𝐸𝑢′𝑥 = 0 2𝐸𝑢𝑤 + 𝑤′′𝑧 + 𝐸 ′′𝑢𝑥 + 𝐸𝑢′′𝑥 = 0 (5.13)

𝑤′(𝑦 − 𝐴𝑥) − 𝐴′𝑥𝑤 = 0 𝑤′′(𝑦 − 𝐴𝑥) − 𝐴′′𝑥𝑤 − 2𝐴𝑤2 = 0 (5.14)

2𝐷𝑢𝑤 + 𝐷 ′𝑥𝑤 + 𝐷𝑤′𝑥 + 𝑢′𝑧 = 0 𝐷𝑤2 + 𝐷𝑥𝑤′′ + 𝐷 ′′𝑥𝑤 + 𝐸𝑢2 + 𝑧𝑢′′ = 0. (5.15)
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First of all, observe that multiplying by x Equation (5.14)𝐼 , since 𝑥𝑦 = 0 = 𝑥2𝑤, we get

𝑥2𝑤′ = 0.

Hence, multiplying by x Equation (5.15)𝐼 , we obtain

𝑥𝑢𝑤 = 0. (5.16)

Since 𝑥𝑢𝑤 = 0, from Equation (5.11), one can easily see that also

𝑧𝑢2 = 𝑧𝑤2 = 𝑦𝑢𝑤 = 0. (5.17)

We claim now that 𝐴′ = 𝐴′′ = 0 and 𝑥𝑢2, 𝑥𝑤2 ≠ 0. Indeed, let us observe that the product 𝑥𝑢 vanishes
if multiplied by 𝑥, 𝑦, 𝑧, 𝑤. If 𝑥𝑢2 = 0 too, then by the Gorenstein duality in the apolar ring 𝐴 𝑓 , we
would get that 𝑥𝑢 = 0, which is not possible as observed with Lemma 5.5.

In the same way, one sees that 𝑥𝑤2 ≠ 0. Then, recalling that 𝑢(𝐴𝑥 + 𝑦) = 0 = 𝑤(𝑦 − 𝐴𝑥), we can
multiply by u and by w, respectively, Equations (5.12)𝐼 𝐼 and (5.14)𝐼 , getting 𝐴′′𝑥𝑢2 = 0 and 𝐴′𝑥𝑤2 = 0,
and so the claim:

𝐴′ = 𝐴′′ = 0 𝑥𝑢2, 𝑥𝑤2 ≠ 0. (5.18)

Lemma 5.9. The tangent vectors 𝑤′ and 𝑢′′ are trivial.

Proof. Let us prove it for 𝑤′. Since we can assume that 𝑤′ does not depend on w, we can write it as
𝑤′ = 𝛼𝑥 + 𝛽𝑦 + 𝛾𝑧 + 𝛿𝑢. Multiplying Equation (5.14)𝐼 by x and y, we get 𝑥2𝑤′ = 0 and 𝑦2𝑤′ = 0
respectively. Moreover, multiplying by z Equation (5.13)𝐼 , we have also 𝑧2𝑤′ = 0. These last conditions
yield

𝛼𝑥3 = 𝛽𝑦3 = 𝛾𝑧3 = 0,

but since no vertex for the general triangle T belongs to 𝑉 ( 𝑓 ), we have that 𝛼 = 𝛽 = 𝛾 = 0. Finally,
since we have just shown that 𝐴′ = 0, from Equation (5.14)𝐼 , we get

𝛿𝑢(𝑦 − 𝐴𝑥) = 0.

Since, from Equations (5.11), we get 𝑢𝑦 = −𝐴𝑢𝑥, we would have −2𝛿𝐴𝑥𝑢 = 0, which implies that 𝛿 = 0,
by Lemma 5.5.

Then 𝑤′ = 0, as claimed. The same reasoning can also be used to prove that 𝑢′′ = 0. �

Remark 5.10. From the above lemma, one can see that we can assume that also 𝐸 ≠ 0. Indeed, if 𝐸 ≡ 0
locally (and thus, we can simply set 𝐸 ′ = 𝐸 ′′ = 0 in the above equations), from Equation (5.13)𝐼 we
would have 𝑤2 = 0. Hence, [𝑤] would be a singularity for 𝑉 ( 𝑓 ), which is not possible.

We claim now that 𝑤𝑢2 = 0 and 𝑤2𝑢 = 0. Multiplying by u Equation (5.15)𝐼 , one gets

2𝐷𝑢2𝑤 + 𝑧𝑢𝑢′ = 0. (5.19)

Since we have just shown that for T general, also the condition 𝑧𝑢2 = 0 is satisfied (see Equation
(5.17)), we can deform it at the first order:

0 ≡ (𝑧 + 𝑡𝐷𝑤 + 𝑠𝐸𝑢) (𝑢 + 𝑡𝑢′)2 mod 〈𝑡, 𝑠〉2 and so 𝐷𝑢2𝑤 + 2𝑧𝑢𝑢′ = 0. (5.20)

Putting together Equations (5.19) and (5.20), one gets

𝑢2𝑤 = 0.
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Let us now do the same for the second claim. Multiplying by w the Equation (5.13)𝐼 𝐼 , we get
2𝐸𝑢𝑤2 + 𝑧𝑤𝑤′′ = 0. Moreover, by deforming the condition 𝑧𝑤2 = 0 (see Equation (5.17)), we get
𝐸𝑢𝑤2 + 2𝑧𝑤𝑤′′ = 0. As before, putting together these last conditions, one gets

𝑢𝑤2 = 0

by using 𝐸 ≠ 0 (see Remark 5.10).
We claim now that 𝑧𝑢𝑤 = 0. In order to show this last claim, let us deform the condition just obtained

(i.e., 𝑢2𝑤 = 0):

0 ≡ (𝑢 + 𝑡𝑢′)2(𝑤 + 𝑠𝑤′′) mod 〈𝑡, 𝑠〉2 and so 𝑢𝑤𝑢′ = 0.

Write 𝑢′ as 𝛼𝑥 + 𝛽𝑦 + 𝛾𝑧 + 𝛿𝑤 for simplicity. Since 𝑥𝑢𝑤 = 𝑦𝑢𝑤 = 𝑢𝑤2 = 0 and since 𝑧2𝑤 = 0 by
definition of w, one has

0 = 𝑢𝑤𝑢′ = 𝛾𝑧𝑢𝑤 𝑧2𝑢′ = 𝛾𝑧3.

If 𝛾 ≠ 0 we have done, let us then assume 𝛾 = 0: we get 𝑧2𝑢′ = 0, and multiplying by z Equation (5.15)𝐼
we get 2𝐷𝑧𝑢𝑤 = 0, as desired.

Finally, having 𝑧𝑢𝑤 = 0 yields a contradiction: in this case, from Equations (5.11), we would have
𝑥𝑤2 = 0, which is not possible by Equation (5.18). Hence, neither 𝜓2 nor 𝜓3 can be diagonalizable for
T general.

Case(II): For T general, the map 𝜓2 is not diagonalizable. We can choose a basis {𝑢, 𝑤} of 𝑉2 in
such a way that 𝜓2 is written in its Jordan normal form[

𝐴 1
0 𝐴

]
.

As done before, the corresponding first-order deformations are

𝑇 + 𝑡𝑣 = (𝑥 + 𝑡𝑢, 𝑦 + 𝑡𝐴𝑢, 𝑧 + 𝑡 (𝐶𝑢 + 𝐷𝑤)) 𝑇 + 𝑠𝑣′ = (𝑥 + 𝑠𝑤, 𝑦 + 𝑠(𝑢 + 𝐴𝑤), 𝑧 + 𝑠(𝐸𝑢 + 𝐹𝑤)),

with 𝐶, 𝐷, 𝐸, 𝐹 not all simultaneously zero (by Lemma 4.3).
These, using Lemma 2.11, yield

(𝑣)𝑥𝑦 : 𝐴𝑥𝑢 + 𝑦𝑢 = 0 (𝑣′)𝑥𝑦 : 𝑥𝑢 + 𝐴𝑥𝑤 + 𝑦𝑤 = 0
(𝑣)𝑥𝑧 : 𝐶𝑥𝑢 + 𝐷𝑥𝑤 + 𝑧𝑢 = 0 (𝑣′)𝑥𝑧 : 𝐸𝑥𝑢 + 𝐹𝑥𝑤 + 𝑧𝑤 = 0
(𝑣)𝑦𝑧 : 𝐶𝑦𝑢 + 𝐷𝑦𝑤 + 𝐴𝑧𝑢 = 0 (𝑣′)𝑦𝑧 : 𝐸𝑦𝑢 + 𝐹𝑦𝑤 + 𝑧𝑢 + 𝐴𝑧𝑤 = 0.

(5.21)

Again, by elementary operations, one gets:

(2𝐴𝐶 + 𝐷)𝑢𝑥 + (2𝐴𝐷)𝑤𝑥 = 0 (2𝐴𝐸 + 𝐶 + 𝐹)𝑢𝑥 + (2𝐴𝐹 + 𝐷)𝑤𝑥 = 0

By Lemma 5.5, the multiplication map 𝑥· : 𝑉2 → 𝐴2 is injective so

𝐴𝐷 = 0 2𝐴𝐶 + 𝐷 = 0 2𝐴𝐹 + 𝐷 = 0 2𝐴𝐸 + 𝐶 + 𝐹 = 0. (5.22)

Notice that in the case where 𝐴 ≠ 0, from the above relations, one easily sees that also 𝐷 = 𝐶 = 𝐹 =
𝐸 = 0, which is not possible, as we have stressed before, so we can assume

𝐴 = 0, 𝐷 = 0 and 𝐹 = −𝐶.
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One can then observe that the matrix associated to the endomorphism 𝜓3 with respect to the basis
𝑢, 𝑤 is of the form [

𝐶 𝐸
0 −𝐶

]
If 𝐶 ≠ 0, the map 𝜓3 would be diagonalizable: this is not possible for T general as proved in Case (I).
We can then assume that

𝐶 = 𝐹 = 0 and 𝐸 ≠ 0.

We are then considering the first-order deformations

𝑇 + 𝑡𝑣 = (𝑥 + 𝑡𝑢, 𝑦, 𝑧)) 𝑇 + 𝑠𝑣′ = (𝑥 + 𝑠𝑤, 𝑦 + 𝑠𝑢, 𝑧 + 𝑠𝐸𝑢),

with 𝐸 ≠ 0, and the relations (5.21) are then equivalent to

𝑦𝑢 = 0 𝑧𝑢 = 0 𝑥𝑢 + 𝑦𝑤 = 0 𝐸𝑢𝑥 + 𝑧𝑤 = 0. (5.23)

By considering the 𝑣-deformation and the 𝑣′-deformation of the first two equations, we obtain

𝑦𝑢′ = 0 𝑦𝑢′′ + 𝑢2 = 0 𝑧𝑢′ = 0 𝑧𝑢′′ + 𝐸𝑢2 = 0. (5.24)

We claim now that

Ann𝐴1 (𝑢2) = 〈𝑥, 𝑦, 𝑧, 𝑢〉 𝑢2𝑤 ≠ 0. (5.25)

Conditions 𝑦𝑢2 = 𝑧𝑢2 = 0 and 𝑥𝑢2 = 0 follow easily by multiplying by u or by x the equations in (5.23).
One obtains 𝑢3 = 0 from Equation (5.24)𝐼 𝐼 after multiplying by u and by remembering that 𝑦𝑢 = 0.
Since 𝑢2 annihilates 𝑥, 𝑦, 𝑧 and u, it cannot annihilate w too, since, otherwise, from the perfect pairing
induced by the Gorenstein duality in 𝐴 𝑓 , [𝑢] would give a singular point for 𝑉 ( 𝑓 ).

As a consequence of the above relation, notice that ([𝑦], [𝑧], [𝑢]) is a triangle for H 𝑓 since 𝑦𝑧 =
𝑦𝑢 = 𝑧𝑢 = 0. Hence, by Lemma 2.10, we have dim(〈𝑦2, 𝑧2, 𝑢2〉) = 3. Being ([𝑥], [𝑦], [𝑧]) a triangle
and by Equation (5.25), we can conclude

Ann𝐴1 (𝑦2, 𝑧2, 𝑢2) = 〈𝑥, 𝑢〉. (5.26)

We claim now that 𝑢′′ ∈ 〈𝑥, 𝑢〉. By the above relation, it is enough to show that 𝑦2𝑢′′ = 𝑧2𝑢′′ =
𝑢2𝑢′′ = 0. The first relation comes from (5.24)𝐼 𝐼 if we multiply both terms by y and use (5.26). One
gets the second relation working on the Equation (5.24)𝐼𝑉 and using 𝐸 ≠ 0. To get the third and last
relation, let us simply observe that we have shown that the equation 𝑢3 = 0 holds for the general triangle
T in F and so, we can write its 𝑣′-deformation:

0 ≡ (𝑢 + 𝑠𝑢′′)3 mod 𝑠2 which yields 𝑢2𝑢′′ = 0,

as claimed.
As a consequence of the last claim, we can write 𝑢′′ = 𝛼𝑥 + 𝛽𝑢 for suitable 𝛼, 𝛽 ∈ K. Now consider

Equation (5.24)𝐼 𝐼 and recall that 𝑦𝑢 = 0 by Equation (5.23). By substituting, one obtains

0 = 𝑦𝑢′′ + 𝑢2 = 𝑦(𝛼𝑥 + 𝛽𝑢) + 𝑢2 = 𝑢2,

which is impossible by Proposition 2.1, since 𝑉 ( 𝑓 ) is smooth. This concludes the analysis of Case (II)
and, consequently, the proof of the main theorem for the case of cubic threefolds. �
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6. Proof of main theorem: the cubic fourfold case

In this section, we prove Theorem A in the last remaining case: given any smooth cubic fourfold
𝑋 = 𝑉 ( 𝑓 ), the Hessian variety H 𝑓 is normal and irreducible if and only if f is not of TS type.

We set ourselves in the framework described in 5.4. We assume by contradiction that given 𝑋 = 𝑉 ( 𝑓 ),
a smooth cubic fourfold, with f which is not of TS type the associated variety H 𝑓 is not normal.
Then there exists an irreducible 3-dimensional family F of triangles for H 𝑓 with the first projection
dominating a 3-dimensional component of Sing(H 𝑓 ). Fixing a general triangle 𝑇 = ([𝑥], [𝑦], [𝑧]) ∈ F
for H 𝑓 , let us now study the behaviour of 𝜓2 and 𝜓3 as endomorphisms of 𝑉2. We distinguish the
following mutually exclusive cases:

1. for the general T, 𝜓2 (or 𝜓3) has a Jordan decomposition with one Jordan block;
2. for the general T, 𝜓2 (or 𝜓3) has a Jordan decomposition with two Jordan blocks;
3. for the general T, 𝜓2 and 𝜓3 are diagonalizable.

We will rule out all the possibilities, by proving the following Lemmas 6.1 (for the case (𝑎)), 6.2 (for
(𝑏)), 6.3 and 6.4 (both of them dealing with the case (𝑐)). The last one, concerning a particular subcase
of (𝑐), is proved in the dedicated subsection 6.1.

Let us start by ruling out case (𝑎).

Lemma 6.1. For T general, neither the map 𝜓2 nor 𝜓3 can have a Jordan decomposition with only one
block.

Proof. Let us suppose, w.l.o.g, that 𝜓2 has a Jordan decomposition with one Jordan block. We can
choose a basis {𝑢, 𝑣, 𝑤} of 𝑉2 = Ann𝐴1 (𝑥2, 𝑦2, 𝑧2) in such a way that 𝜓2 is written in its Jordan normal
form with w as eigenvector. Then we have a basis {𝑥, 𝑦, 𝑧, 𝑢, 𝑣, 𝑤} of 𝐴1 with the first three vectors such
that 𝑥3, 𝑦3, 𝑧3 ≠ 0. Then three independent tangent vectors to F in T are given as

𝑣 = (𝑢, 𝐴𝑢 + 𝑣, 𝐵𝑢 + 𝐶𝑣 + 𝐷𝑤), 𝑣′ = (𝑣, 𝐴𝑣 + 𝑤, 𝐸𝑢 + 𝐹𝑣 + 𝐺𝑤), 𝑣′′ = (𝑤, 𝐴𝑤, 𝐻𝑢 + 𝐼𝑣 + 𝐿𝑤)

for suitable scalars depending on the triangle.
As done in the case of threefolds, one uses Lemma 2.11 in order to obtain conditions from the first-

order deformations associated to 𝑣, 𝑣′ and 𝑣′′. By elementary operations between these equations and by
using Lemma 5.5, one gets the following relations on the coefficients appearing in the above description
of the tangent vectors:

2𝐴𝐵 + 𝐸 = 2𝐴𝐶 + 𝐵 + 𝐹 = 2𝐴𝐷 + 𝐶 + 𝐺 = 2𝐴𝐸 + 𝐻 = 0
2𝐴𝐹 + 𝐸 + 𝐼 = 2𝐴𝐺 + 𝐹 + 𝐿 = 2𝐴𝐻 = 2𝐴𝐼 + 𝐻 = 2𝐴𝐿 + 𝐼 = 0.

Note that if 𝐴 ≠ 0, then one has that all the other coefficients have to be 0, which is not possible
since the second and third projections cannot send F to a point by Lemma 4.3. Hence, 𝐴 = 0 and then
𝐸 = 𝐻 = 𝐼 = 𝐶 + 𝐺 = 𝐵 + 𝐹 = 𝐹 + 𝐿 = 0. We can then write the above tangent vectors as

𝑣 = (𝑢, 𝑣, 𝐿𝑢 − 𝐺𝑣 + 𝐷𝑤), 𝑣′ = (𝑣, 𝑤,−𝐿𝑣 + 𝐺𝑤), 𝑣′′ = (𝑤, 0, 𝐿𝑤).

Then, the above-mentioned equations can be reduced to the following system of equations:

(𝑣)𝑥𝑦 : 𝑥𝑣 + 𝑦𝑢 = 0 (𝑣)𝑥𝑧 : 𝐿𝑥𝑢 − 𝐺𝑥𝑣 + 𝐷𝑥𝑤 + 𝑧𝑢 = 0
(𝑣′)𝑥𝑦 : 𝑥𝑤 + 𝑦𝑣 = 0 (𝑣′)𝑥𝑧 : −𝐿𝑥𝑣 + 𝐺𝑥𝑤 + 𝑧𝑣 = 0
(𝑣′′)𝑥𝑦 : 𝑦𝑤 = 0 (𝑣′′)𝑥𝑧 : 𝐿𝑥𝑤 + 𝑧𝑤 = 0.

(6.1)

As usual, if T is deformed in the direction of 𝑡𝑣 + 𝑠𝑣′ + 𝑟𝑣′′, we have the corresponding deformation
𝑢 + 𝑡𝑢′ + 𝑠𝑢′′ + 𝑟𝑢′′′ of u (and analogously the ones for v and w).
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Claim: 𝑢𝑤2 ≠ 0, 𝐿 = 0 and 𝑧𝑤 = 0.
First of all, let us study ker(𝑤2· : 𝐴1 → 𝐴3). Clearly, 𝑦𝑤2 = 0 by Equation (𝑣′′)𝑥𝑦 . Moreover, if we

multiply by w Equation (𝑣′)𝑥𝑦 and use Equation (𝑣′′)𝑥𝑦 , we get 𝑥𝑤2 = 0. Similarly, one gets 𝑧𝑤2 = 0
upon multiplying by w Equation (𝑣′′)𝑥𝑧 . Since Equation (𝑣′′)𝑥𝑦 holds for T general, one can deform it
in the direction of 𝑡𝑣 + 𝑠𝑣′ + 𝑟𝑣′′ and obtain

0 = (𝑦 + 𝑡𝑣 + 𝑠𝑤) (𝑤 + 𝑡𝑤′ + 𝑠𝑤′′ + 𝑟𝑤′′′) mod (𝑡, 𝑠, 𝑟)2.

This yields

𝑦𝑤′ + 𝑤𝑣 = 0 𝑦𝑤′′ + 𝑤2 = 0.

If we multiply by w these relations, we get 𝑤2𝑣 = 0 and 𝑤3 = 0. Hence, we have

〈𝑥, 𝑦, 𝑧, 𝑣, 𝑤〉 ⊆ ker(𝑤2· : 𝐴1 → 𝐴3).

Observe now that 𝑢𝑤2 ≠ 0. Indeed, if 𝑢𝑤2 = 0, then we would also have 𝑤2 · 𝐴1 = {0} so, by Gorenstein
duality, this would imply 𝑤2 = 0, which contradicts the smoothness of the cubic fourfold 𝑉 ( 𝑓 ).

Finally, by deforming Equation (𝑣′′)𝑥𝑧 and multiplying by w, using the various vanishings obtained
before, we get 2𝐿𝑢𝑤2 = 0, and thus, 𝐿 = 0. Then one has the claim by Equation (𝑣′′)𝑥𝑧 .

Claim: 𝑧𝑣 = 0, 𝐺 = 0 and 𝐷 ≠ 0.
By deforming equations (𝑣)𝑥𝑦 in the direction of 𝑡𝑣 + 𝑠𝑣′ we get, respectively,

𝑥𝑣′ + 2𝑢𝑣 + 𝑦𝑢′ = 0 and 𝑥𝑣′′ + 𝑣2 + 𝑦𝑢′′ + 𝑢𝑤 = 0.

If one multiplies these by z, one obtains 𝑧𝑢𝑣 = 𝑧𝑣2 = 0. One can now observe that ker(𝑧𝑣· : 𝐴1 →

𝐴3) = 𝐴1, so by Gorenstein duality, one has 𝑧𝑣 = 0, as claimed. Since 𝑥𝑤 ≠ 0 (by Lemma 5.5), from
Equation (𝑣′)𝑥𝑧 one obtains 𝐺 = 0 and, consequently, by Lemma 4.3, also 𝐷 ≠ 0.

Claim: 𝑢𝑤2 = 0.
Since 𝑧𝑣 = 0 for T general, we can deform this equation in the direction of 𝑡𝑣. We get 𝑧𝑣′ +𝐷𝑣𝑤 = 0,

and so 𝐷𝑣2𝑤 = 0, if we multiply by v. Being 𝐷 ≠ 0, one has also 𝑣2𝑤 = 0. Let us now deform (𝑣)𝑥𝑧
and (𝑣′)𝑥𝑦 in the direction of 𝑡𝑣 in order to get

𝐷 ′𝑥𝑤 + 𝐷𝑥𝑤′ + 2𝐷𝑢𝑤 + 𝑧𝑢′ = 0 and 𝑥𝑤′ + 𝑤𝑢 + 𝑦𝑣′ + 𝑣2 = 0.

Upon multiplying by w, one gets 𝑥𝑤𝑤′ + 2𝑢𝑤2 = 𝑥𝑤𝑤′ + 𝑢𝑤2 = 0, which yields 𝑥𝑤𝑤′ = 𝑢𝑤2 = 0. This
is impossible as observed in the first claim above. �

Let us now prove that case (𝑏) cannot be realised.

Lemma 6.2. For T general, neither the map 𝜓2 nor 𝜓3 can have a Jordan decomposition with two blocks.

Proof. Let us suppose, w.l.o.g, that 𝜓2 has a Jordan decomposition with two Jordan blocks. As done in
Lemma 6.1, we can choose a basis {𝑢, 𝑣, 𝑤} of 𝑉2 = Ann𝐴1 (𝑥2, 𝑦2, 𝑧2) in such a way that 𝜓2 is written in
its Jordan normal form with v and w as eigenvectors. Then, in this case, we can write three independent
tangent vectors to F in T as

𝑣 = (𝑢, 𝐴𝑢 + 𝑣, 𝐶𝑢 + 𝐷𝑣 + 𝐸𝑤), 𝑣′ = (𝑣, 𝐴𝑣, 𝐹𝑢 + 𝐺𝑣 + 𝐻𝑤), 𝑣′′ = (𝑤, 𝐵𝑤, 𝐼𝑢 + 𝐿𝑣 + 𝑀𝑤)

for suitable scalars depending on the triangle.

https://doi.org/10.1017/fms.2025.36 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.36


Forum of Mathematics, Sigma 27

As done in the previous cases, one gets the following relations involving the coefficients appearing
in the above description of the tangent vectors:

2𝐴𝐶 + 𝐹 = 2𝐴𝐷 + 𝐶 + 𝐺 =𝐴𝐹 = 2𝐴𝐺 + 𝐹 = 𝐵𝑀 = 0
𝐸 (𝐴 + 𝐵) + 𝐻 = 𝐻 (𝐴 + 𝐵) =𝐼 (𝐴 + 𝐵) = 𝐿(𝐴 + 𝐵) + 𝐼 = 0.

We distinguish four cases, depending on the vanishing of the two eigenvalues.
Case (I): A = B = 0.
Since 𝐴 = 𝐵 = 0, we also have 𝐹 = 𝐻 = 𝐼 = 𝐶 + 𝐺 = 0. Among the various equations obtained by

deforming at first order the general triangle T, one gets

𝑦𝑣 = 0 𝑦𝑤 = 0. (6.2)

We claim now that 𝑢𝑣2 ≠ 0. By deforming at first order the equation 𝑦𝑣 = 0 in the direction of 𝑡𝑣,
one gets 𝑦𝑣′ + 𝑣2 = 0, which implies that

〈𝑥, 𝑦, 𝑧, 𝑣, 𝑤〉 ⊆ ker(𝑣2). (6.3)

However, this has to be an equality; otherwise, we would have 𝑣2 = 0 by Gorenstein duality. In particular,
𝑢𝑣2 ≠ 0.

From the Equation 𝑦𝑣′ + 𝑣2 = 0, one can also see that 𝑦𝑣′ ≠ 0; otherwise, we would contradict the
smoothness of 𝑉 ( 𝑓 ). We claim now that 𝑦𝑣′ = 0, so we conclude Case (I).

Since T is a triangle and by Equations (6.2), we have 〈𝑥, 𝑧, 𝑣, 𝑤〉 ⊆ ker(𝑦· : 𝐴1 → 𝐴2), so in
order to prove 𝑦𝑣′ = 0, it is enough to show that 𝑣′ does not depend on y and u. One easily sees that
0 = 𝑦(𝑦𝑣′ + 𝑣2) = 𝑦2𝑣′. Since, by assumption, 〈𝑥, 𝑧, 𝑢, 𝑣, 𝑤〉 = ker(𝑦2· : 𝐴1 → 𝐴3), we get that 𝑣′

does not depend on y. Moreover, since we have just shown in Equation (6.3) that for T general, also the
equation 𝑣3 = 0 holds, we can deform it and in the same way, one proves that 𝑣′ does not depend on u.

Case (II): A = 0, B ≠ 0.
In this case, we also have 𝐸 = 𝐹 = 𝐶 + 𝐺 = 𝐻 = 𝐼 = 𝐿 = 𝑀 = 0 so that

𝑣 = (𝑢, 𝑣, 𝐶𝑢 + 𝐷𝑣), 𝑣′ = (𝑣, 0,−𝐶𝑣), 𝑣′′ = (𝑤, 𝐵𝑤, 0).

Among the equations deduced by deforming the general triangle, one gets the conditions

𝑦𝑣 = 0 𝑧𝑤 = 0 𝑥𝑣 + 𝑦𝑢 = 0 𝐵𝑥𝑤 + 𝑦𝑊 = 0 − 𝐶𝑥𝑣 + 𝑧𝑣 = 0 𝐶𝑥𝑢 + 𝐷𝑥𝑣 + 𝑧𝑢.
(6.4)

We claim now that 𝐶 = 0. First of all, notice that

〈𝑥, 𝑦, 𝑧, 𝑣, 𝑤〉 ⊆ ker(𝑥𝑣).

Indeed, we have 𝑣 ∈ 𝑉2 by assumption so 𝑥2𝑣, and since T is a triangle, we also have 𝑥𝑦𝑣 = 𝑥𝑧𝑣 = 0.
The last two vanishing can be easily obtained form Equations (6.4) upon a multiplication by v and w
(and by recalling that we are assuming 𝐵 ≠ 0). In particular, we have 𝑥𝑢𝑣 ≠ 0, by Lemma (5.5).

Then by taking the fifth and sixth equations in (6.4) multiplied by u and v, respectively, one has

−𝐶𝑥𝑢𝑣 + 𝑧𝑢𝑣 = 𝐶𝑥𝑢𝑣 + 𝑧𝑢𝑣 = 0

so 𝐶𝑥𝑢𝑣 = 0. Then, since 𝑥𝑢𝑣 ≠ 0, we have necessarily 𝐶 = 0 for the general triangle, and so 𝐷 ≠ 0
by Lemma 4.3. In particular, we have 𝜓3(𝑢) = 𝐷𝑣 ≠ 0 and 𝜓3(𝑣) = 𝜓3 (𝑤) = 0. Hence, for the general
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triangle T, 𝜓3 is not diagonalizable and has two Jordan blocks with eigenvalues both equal to 0. This is
impossible, as seen in Case (I).

Case (III): A ≠ 0, B = 0.
This case can be treated in a ‘geometric’ way as done in Lemma 5.8. Indeed, since 𝐴 ≠ 0 and 𝐵 = 0,

we have also all the other variables, besides M, are zero. Moreover, by Lemma 4.3, 𝑀 ≠ 0. In particular,
the tangent vectors to F in T are spanned by

𝑣 = (𝑢, 𝐴𝑢 + 𝑣, 0), 𝑣′ = (𝑣, 𝐴𝑣, 0), 𝑣′′ = (𝑤, 0, 𝑀𝑤),

and the varieties 𝜋𝑖 (F) = 𝑌𝑖 have dimension 3, 2 and 1, respectively. As done in the other cases,
by studying the relations coming from the deformation at the first order, one can easily see that 𝑌3
is contained in D2 ( 𝑓 ) and 𝑌2 is a surface living in D3( 𝑓 ). Since 𝑌2 cannot be contained in D2( 𝑓 )
(otherwise, we would have singular points for 𝑉 ( 𝑓 ) by Proposition 2.5), for the general [𝑦] ∈ 𝑌2, we
have that 𝜄([𝑦]) 	 P2.

For a general triangle 𝑇 = ([𝑥], [𝑦], [𝑧]), consider the curve 𝐶𝑇 = 𝜋−1
2 ([𝑦]). The tangent to 𝐶𝑇 in T

is generated by 𝑣′′ which is projected to w and 𝑀𝑤 via 𝑑𝑇 (𝜋1 |𝐶𝑇 ) and 𝑑𝑇 (𝜋3 |𝐶𝑇 ), respectively. Hence,
𝜋1 (𝐶𝑇 ) is a curve in 𝑌1 and 𝜋3 (𝐶𝑇 ) = 𝑌3.

In particular, 𝜋1 (𝐶𝑇 ) ∪ 𝑌3 ⊆ 𝜄([𝑦]) 	 P2. By varying the point [𝑦], the kernel has to move, since
the curve 𝜋1 (𝐶𝑇 ) has to cover the threefold 𝑌1. Hence, 𝑌3 lies in the intersection of distinct projective
planes: we have P1 	 𝑌3 and thus a line in D2( 𝑓 ). This implies, by Theorem 3.4, that f is of TS type,
against our assumptions.

Case (IV): A, B ≠ 0.
First of all, notice that assuming 𝐴, 𝐵 ≠ 0 implies that 𝐴+𝐵 = 0. Indeed, if we assume also 𝐴+𝐵 ≠ 0,

we would obtain that all the other coefficients are equal to 0. This is impossible by Lemma 4.3. Then

𝑣 = (𝑢, 𝐴𝑢 + 𝑣, 𝐸𝑤), 𝑣′ = (𝑣, 𝐴𝑣, 0), 𝑣′′ = (𝑤, 𝐵𝑤, 𝐿𝑣),

with 𝐸, 𝐿 not both zero. In particular, 𝜓3 is not diagonalizable for the general triangle T and all its
eigenvalues are zero. This is impossible as seen in the previous cases. �

As a consequence of Lemmas 6.1 and 6.2, the maps 𝜓2 and 𝜓3 have to be diagonalizable. In what
follows, we rule out this remaining case, splitting it up into two lemmas, the second of which is postponed
in the following subsection.
Lemma 6.3. For T general, neither the map 𝜓2 nor 𝜓3 can be diagonalizable.
Proof. As a consequence of Lemma 6.1 and 6.2, we have that 𝜓2 and 𝜓3 are both diagonalizable for the
general triangle. We can choose a basis {𝑢, 𝑣, 𝑤} of 𝑉2 = Ann𝐴1 (𝑥2, 𝑦2, 𝑧2) in such a way that 𝜓2 is in
diagonal form. Thus, three independent tangent vectors to F in T are

𝑣 = (𝑢, 𝐴𝑢, 𝐷𝑢 + 𝐸𝑣 + 𝐹𝑤), 𝑣′ = (𝑣, 𝐵𝑣, 𝐺𝑢 + 𝐻𝑣 + 𝐼𝑤), 𝑣′′ = (𝑤,𝐶𝑤, 𝐿𝑢 + 𝑀𝑣 + 𝑁𝑤)

for suitable coefficients depending on the triangle.
As done so far, one gets the following relations:

𝐴𝐷 = 𝐵𝐻 = 𝐶𝑁 = 0 𝐸 (𝐴 + 𝐵) = 𝐺 (𝐴 + 𝐵) = 0
𝐹 (𝐴 + 𝐶) = 𝐿(𝐴 + 𝐶) = 0 𝐼 (𝐵 + 𝐶) = 𝑀 (𝐵 + 𝐶) = 0.

Notice that 𝐴, 𝐵 and C cannot be all equal to zero by Lemma 4.3. Hence, we distinguish three cases,
depending on the vanishing of the three eigenvalues.

Case (I): A = B = 0 and C ≠ 0.
In this case, one can easily see that three tangent vectors to F at T can be written as

𝑣 = (𝑢, 0, 𝐷𝑢 + 𝐸𝑣), 𝑣′ = (𝑣, 0, 𝐺𝑢 + 𝐻𝑣), 𝑣′′ = (𝑤,𝐶𝑤, 0)

for suitable coefficients so that dim(𝑌1) = 3, dim(𝑌2) = 1 and dim(𝑌3) ∈ {1, 2}.
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◦ Claim: dim(𝑌3) = 1 and 𝑌2 ⊆ D2( 𝑓 ).
Among the equations obtained by deforming the general triangle T, one has 𝑦𝑢 = 𝑦𝑣 = 0. Moreover,

by definition of triangle, we clearly have also 𝑦𝑥 = 𝑦𝑧 = 0: the general [𝑝] ∈ 𝑌2 lives in D2( 𝑓 ); that
is, for [𝑝] ∈ 𝑌2, one has 𝜄([𝑝]) 	 P3 (since D1( 𝑓 ) is empty by hypothesis). In the same way, since one
gets 𝑧𝑤 = 0, one also has 𝑌3 ⊆ D3( 𝑓 ). Notice that the surface 𝜋−1

2 ([𝑝]) = 𝑆𝑇 projects onto a surface
in𝑌1 via 𝜋1 and dominates 𝑌3 via 𝜋3. This means that 𝑌3 ⊂ 𝜄([𝑝]) 	 P3. Observe that if [𝑞1] and [𝑞2]
are distinct points of 𝑌2, then their kernels have to be distinct: indeed, if Λ := 𝜄([𝑞1]) = 𝜄([𝑞2]), then
by symmetry, 𝜄(Λ) ⊃ P(〈[𝑞1], [𝑞2]〉 (i.e., Λ ⊆ D4( 𝑓 )), which is not possible by Theorem 3.4. Then,
for [𝑞1] and [𝑞2] two distinct general points of 𝑌2, one gets that 𝑌3 ⊆ 𝜄([𝑞1]) ∩ 𝜄([𝑞2]) 	 P

𝑠 with
𝑠 ∈ {1, 2}. From this, one can see that dim(𝑌3) = 1: indeed, if 𝑌3 is a surface, then we necessarily
have 𝑠 = 2 and 𝑌3 	 P2, but this means there exists a projective plane in D3( 𝑓 ), which is impossible
by Theorem 3.4

◦ Claim: 𝑌3 ⊆ D2( 𝑓 ).
Since 𝑌3 is a curve, the endomorphism 𝜓3 | 〈𝑢,𝑣 〉 has necessarily rank 1 (i.e., there exists a vector

𝑎𝑢 + 𝑏𝑣 that is sent to 0 by 𝜓3). Among the first-order conditions given by the tangent vectors above,
one has

(𝐷𝑢 + 𝐸𝑣)𝑥 + 𝑧𝑢 = (𝐺𝑢 + 𝐻𝑣)𝑥 + 𝑧𝑣 = 0.

Then, since 𝜓3 (𝑎𝑢+𝑏𝑣) = 𝑎(𝐷𝑢+𝐸𝑣) +𝑏(𝐺𝑢+𝐻𝑣) = 0, one has 𝑧(𝑎𝑢+𝑏𝑣) = 0. Hence, 𝜄([𝑧]) 	 P3,
and we have that 𝑌3 is contained in D2( 𝑓 ) too.

Being f not of TS type, and being 𝑌3 a curve in D2( 𝑓 ), we have that 𝑌3 is not a line. However, for
[𝑞1] and [𝑞2] distinct general points in𝑌2 as above,𝑌3 ⊆ 𝜄([𝑞1])∩𝜄([𝑞2]) 	 P

2, so the general triangle
𝑇 = ([𝑥], [𝑦], [𝑧]) is such that 𝜄([𝑦]) 	 P3 contains a fixed P2, denoted by Π, which coincides with
the projective plane spanned by 𝑌3. To conclude, let us take a general point [𝜂] ∈ Π: by symmetry,
the general [𝑝] ∈ 𝑌2 is such that [𝑝] ∈ 𝜄([𝜂]), and so 𝑌2 ⊂ 𝜄([𝜂]) 	 P𝑟 . Since 𝑌2 � P1, we have that
𝑟 ≥ 2: this means that Π 	 P2 ⊆ D3( 𝑓 ), which yields a contradiction as above.

Let us stress that having a P2 contained in D3( 𝑓 ) is a phenomenon that happens exactly when 𝑉 ( 𝑓 )
is a smooth, non-cyclic cubic of 𝑇𝑆 type as described in the specific Example 3.9.

Case (II): A = 0 and B, C ≠ 0.
This case cannot occur. It will be treated in Lemma 6.4.
Case (III): A, B, C ≠ 0.
Being 𝐴, 𝐵, 𝐶 ≠ 0, one has 𝐷 = 𝐻 = 𝑁 = 0. Notice that the three values 𝐴 + 𝐵, 𝐴 + 𝐶 and 𝐵 + 𝐶

cannot be simultaneously zero; moreover, at least one of them has to be 0, since otherwise we would
get 𝐷 = 𝐸 = 𝐹 = 𝐺 = 𝐻 = 𝐼 = 𝐿 = 𝑀 = 𝑁 = 0, which is impossible by Lemma 4.3. W.l.o.g, we
distinguish 2 cases: either 𝐴 + 𝐶 = 0 and 𝐴 + 𝐵, 𝐵 + 𝐶 ≠ 0 or 𝐴 + 𝐵 = 𝐴 + 𝐶 = 0 and 𝐵 + 𝐶 ≠ 0. In
the first case, 𝜓3 is diagonalizable with one zero eigenvalue, whereas in the second case, one has the
same conclusion or that 𝜓3 is not diagonalizable and its Jordan normal form has 1 Jordan block with 0
as the only eigenvalue. Both conclusions yield a contradiction as observed in the previous cases or in
Lemma 6.1. �

6.1. The end of the proof

To end the proof of Theorem 5.1, we have to rule out a last remaining possibility which could arise in
the case where the both the maps 𝜓2 and 𝜓3 are diagonalizable (case (𝑐), as stated at the beginning of
Section 6). This subsection is devoted to this subcase, which is ruled out with the following Lemma 6.4,
which yields also the end of the proof of the main theorem. To prove this last Lemma, we start by
analyzing the usual framework 5.4 and obtaining different relation that both the vertices of the general
triangle and the tangent vectors to it have to satisfy. After that, we will use these conditions to reconstruct
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the cubic fourfolds which the framework is, in this case, associated with, showing that these do not
actually satisfy the hypotheses we are setting.

Lemma 6.4. For T general, neither the map 𝜓2 nor 𝜓3 can be diagonalizable with dimension of the
kernel equal to 1.

Proof. We refer to the notations introduced at the beginning of Lemma 6.3. W.l.o.g, we can set 𝐴 = 0
so that 𝐵,𝐶 ≠ 0 by hypothesis. Then, one has 𝐸 = 𝐹 = 𝐺 = 𝐻 = 𝐿 = 𝑁 = 0. First of all, notice that
𝐵 + 𝐶 = 0. Indeed, otherwise, we would get 𝐼 = 𝑀 = 0, so v and w would be two eigenvectors for 𝜓3
with associated eigenvalue 0. This is impossible as observed in Case (I).

Then, the tangent vectors to F at T can be written as

𝑣 = (𝑢, 0, 𝐷𝑢), 𝑣′ = (𝑣, 𝐵𝑣, 𝐼𝑤), 𝑣′′ = (𝑤,−𝐵𝑤, 𝑀𝑣)

with 𝐵 ≠ 0 and (𝐷, 𝐼, 𝑀) ≠ (0, 0, 0) by Lemma 4.3. Moreover, notice that 𝐼, 𝑀 ≠ 0 since, otherwise,
we would have that 𝜓3 is not diagonalizable (and this cannot happen for T general by Lemma 6.2).

The first-order conditions obtained as a consequence of Lemma 2.11 are

(𝑣)𝑥𝑦 : 𝑦𝑢 = 0 (𝑣)𝑥𝑧 : (𝐷𝑥 + 𝑧)𝑢 = 0
(𝑣′)𝑥𝑦 : (𝐵𝑥 + 𝑦)𝑣 = 0 (𝑣′)𝑥𝑧 : 𝐼𝑥𝑤 + 𝑧𝑣 = 0
(𝑣′′)𝑥𝑦 : (−𝐵𝑥 + 𝑦)𝑤 = 0 (𝑣′′)𝑥𝑧 : 𝑀𝑥𝑣 + 𝑧𝑤 = 0

(6.5)

Consider the following subsets of L = K[𝑥, 𝑦, 𝑧, 𝑢, 𝑣, 𝑤]:

M𝑛𝑣 = {𝑥3, 𝑦3, 𝑧3, 𝑥𝑢2, 𝑥𝑣2, 𝑥𝑤2, 𝑦𝑣2, 𝑦𝑤2, 𝑧𝑣𝑤, 𝑢𝑣2}

𝑀0 = {𝑥𝑦, 𝑥𝑧, 𝑦𝑧} ∪
(
{𝑥2, 𝑦2, 𝑧2} · {𝑢, 𝑣, 𝑤}

)
𝑀1 = {𝑦𝑢, 𝑥𝑢𝑣, 𝑥𝑢𝑤, 𝑧𝑢𝑣, 𝑧𝑢𝑤}

𝑀2 = {𝑢2𝑣, 𝑢2𝑤} 𝑀3 = {𝑥𝑣𝑤, 𝑦𝑣𝑤, 𝑧𝑣2, 𝑧𝑤2} 𝑀4 = {𝑣3, 𝑤3} 𝑀5 = {𝑣2𝑤, 𝑣𝑤2}

and the elements

𝑟1 = 𝑥(𝐼𝑤2 − 𝑀𝑣2) 𝑟2 = 𝑢(𝑀𝑣2 − 𝐼𝑤2) and 𝑟3 = 𝑢(𝐷𝑤2 + 𝑀𝑣𝑤).

Notice that all the monomials in 𝑀0 are 0 in 𝐴 𝑓 = L/AnnL ( 𝑓 ) by the conditions imposed by our
framework. We want to prove that the same holds for all the elements in 𝑀𝑖 for 𝑖 ∈ {1, . . . , 5} and for
𝑟1, 𝑟2 and 𝑟3, whereas all the monomials in M𝑛𝑣 are not 0 (in 𝐴 𝑓 ).

If T is deformed in the direction of 𝑡𝑣 + 𝑠𝑣′ + 𝑟𝑣′′, the corresponding first-order deformation of u is
written as 𝑢 + 𝑡𝑢′ + 𝑠𝑢′′ + 𝑟𝑢′′′ (and analogously the ones for 𝑣, 𝑤, 𝐵, 𝐷, 𝐼 and M).

Claim: All the monomials in 𝑀1 and in 𝑀2 are 0.
One has 𝑦𝑢 = 0 from Equation (𝑣)𝑥𝑦 . Upon multiplying by u, the other equations in (6.5), one gets the

vanishing for the monomials in 𝑀1. By deforming Equation (𝑣)𝑥𝑦 in the direction of 𝑠𝑣′ + 𝑟𝑣′′, we get

𝑦𝑢′′ + 𝐵𝑢𝑣 = 𝑦𝑢′′′ − 𝐵𝑢𝑤 = 0.

Multiplying by u these relations and by using the vanishing 𝑦𝑢 = 0, one gets the claim.
Claim: All the monomials in 𝑀3 are 0.
Observe that it is enough to show hat 𝑥𝑣𝑤 = 0: all the other vanishings come from Equations (6.5)

after multiplication by v or w and vanishing in 𝑀1 or 𝑀2.
Let us deform Equation (𝑣′)𝑥𝑦 in the direction of 𝑟𝑣′′:

𝐵′′′𝑥𝑣 + 𝐵𝑥𝑣′′′ + 𝑦𝑣′′′ = 0. (6.6)
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Multiplying by x, we get the relation 𝑥2𝑣′′′ = 0. Recalling that 𝑉2 = 〈𝑢, 𝑣, 𝑤〉 = Ann𝐴1 (𝑥
2, 𝑦2, 𝑧2), let us

consider the vanishing 𝑥2𝑣 = 0: its deformation in the direction of 𝑟𝑣′′ yields 𝑥2𝑣′′′ + 2𝑥𝑣𝑤 = 0. Since,
as just shown, 𝑥2𝑣′′′ = 0, we get 𝑥𝑣𝑤 = 0, as claimed.

Claim: All the monomials in M𝑛𝑣 besides 𝑢𝑣2 are not 0 and 𝐵′′ = 𝐵′′′ = 0.
We have 𝑥3, 𝑦3, 𝑧3 ≠ 0 by assumption, since the general triangle of F cannot have a vertex on the

cubic fourfold. As a consequence of the framework and since the monomials in 𝑀1 and 𝑀3 are 0, we get
that 〈𝑥, 𝑦, 𝑧, 𝑢, 𝑤〉 ⊆ ker(𝑥𝑣· : 𝐴1 → 𝐴3). Hence, 𝑥𝑣2 cannot be zero; otherwise, by Gorenstein duality,
also 𝑥𝑣 would be 0, which is not possible as observed in Lemma 5.5. In the same way, one gets that also
𝑥𝑢2 and 𝑥𝑤2 are not 0. For the remaining monomials, they have to be different from 0; otherwise, one
would get a contradiction multiplying the equations in (6.5) by 𝑢, 𝑣 or w.

For the second claim, observe that multiplying by v Equation (6.6), since (𝐵𝑥 + 𝑦)𝑣 = 0 by Equation
(𝑣′)𝑥𝑦 , one gets 𝐵′′′𝑥𝑣2 = 0. Being 𝑥𝑣2 ≠ 0, as just shown, we have also that 𝐵′′′ = 0, as claimed. In
order to show that 𝐵′′ = 0, one proceeds in an analogous way by deforming Equation (𝑣′′)𝑥𝑦 in the
direction of 𝑠𝑣′:

−𝐵′′𝑥𝑤 − 𝐵𝑥𝑤′′ + 𝑦𝑤′′ = 0. (6.7)

One gets the claim by multiplying by w.
Claim: The monomials in 𝑀4 are 0.
Let us consider the first-order deformation of (𝑣′)𝑥𝑦 and (𝑣′′)𝑥𝑦 in the direction of 𝑠𝑣′ and 𝑟𝑣′′,

respectively:

𝐵′′𝑥𝑣 + 𝐵𝑥𝑣′′ + 2𝐵𝑣2 + 𝑦𝑣′′ = 0 − 𝐵′′′𝑥𝑤 − 𝐵𝑥𝑤′′′ − 2𝐵𝑤2 + 𝑦𝑤′′′ = 0. (6.8)

Since 𝐵′′ = 𝐵′′′ = 0 as shown in the previous claim, if one multiplies the above Equations (6.8) by v
and w, respectively, one gets the claim.

Claim: One has 𝑤′′ = 𝑣′′′ = 0 as tangent vectors.
Let us start by proving that 𝑤′′ = 0. Since, by construction, we have that 𝑤 ∈ 𝑉2, one can deform in

the direction of 𝑠𝑣′ the relations 𝑥2𝑤 = 𝑦2𝑤 = 𝑧2𝑤 = 0. Recalling that 𝑥𝑣𝑤 = 𝑦𝑣𝑤 = 𝑧𝑤2 = 0 by the
previous claims, one obtains that 𝑤′′ ∈ 𝑉2, so we can write 𝑤′′ = 𝛼𝑢 + 𝛽𝑣 + 𝛾𝑤. By substituting this
expression in Equation (6.7), one has

−𝛼𝐵𝑥𝑢 + 𝛽(−𝐵𝑥 + 𝑦)𝑣 = 0,

which, if multiplied by u, gives 𝛼𝐵𝑥𝑢2 = 0. Since 𝐵𝑥𝑢2 ≠ 0, one has 𝛼 = 0.
Being 𝛼 = 0, it follows 𝛽(−𝐵𝑥 + 𝑦)𝑣 = 0 from the above equation. However, one has (𝐵𝑥 + 𝑦)𝑣 = 0

(see Equation (𝑣′𝑥𝑦)), so 𝛽 = 0. Indeed, otherwise, we would get 𝑥𝑣 = 0, which is not possible by
Lemma 5.5. This means that 𝑤′′ = 0 in 𝐴1/〈𝑤〉.

In order to get 𝑣′′′ = 0, one proceeds in a similar way: first of all, one proves 𝑣′′′ ∈ 𝑉2 starting from
𝑣 ∈ 𝑉2 and by using previous vanishings. Then, by substituting in Equation (6.6) and by using Equation
(𝑣′)𝑥𝑦 , one concludes as above.

Claim: The monomials in 𝑀5 are 0.
We have shown that 𝑧𝑣2 = 0 and 𝑥𝑣𝑤 = 0 for the general triangle T, so we can deform these equations

in the direction of 𝑠𝑣′. By using Equation (𝑣)𝑥𝑧 and 𝑤′′ = 0, one can write these relations as

𝐼𝑣2𝑤 + 2𝑣𝑧𝑣′′ = 𝐼 (𝑣2𝑤 − 2𝑥𝑤𝑣′′) = 0 𝑣2𝑤 + 𝑥𝑤𝑣′′ = 0.

As observed above, I is not 0; thus, we deduce 𝑣2𝑤 = 0.
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For the vanishing 𝑣𝑤2 = 0, one works in a similar way by deforming 𝑧𝑤2 = 0 and 𝑥𝑣𝑤 = 0 in the
direction of 𝑟𝑣′′, and by using Equation (𝑣′′)𝑥𝑧 , 𝑣

′′′ = 0 and 𝑀 ≠ 0.
Claim: 𝑣′ ∈ 〈𝑣, 𝑤〉 and 𝑢′ does not depend on y.
Proceeding as we have done above for proving 𝑣′′′, 𝑤′′ ∈ 𝑉2, one can also obtain that 𝑣′ ∈ 𝑉2 =

〈𝑢, 𝑣, 𝑤〉. Consider the first-order deformation of the Equation (𝑣′)𝑥𝑦 in the direction of 𝑡𝑣, namely

𝐵′𝑥𝑣 + 𝐵𝑥𝑣′ + 𝐵𝑢𝑣 + 𝑦𝑣′ = 0.

Upon multiplication by u, using 𝐵 ≠ 0 and the various vanishing shown above, one gets 𝑥𝑢𝑣′ = 0. Since
𝑥𝑢2 ≠ 0 and 𝑥𝑢 · 〈𝑥, 𝑦, 𝑧, 𝑣, 𝑤〉 = 0, one has that 𝑣′ ∈ 〈𝑣, 𝑤〉.

For the second claim, by deforming (𝑣)𝑥𝑦 in the direction of 𝑡𝑣, one gets 𝑦𝑢′ = 0 so 𝑦2𝑢′ = 0, and
this implies that 𝑢′ does not depend on y, since 𝑦3 ≠ 0 and 𝑦2 · 〈𝑥, 𝑧, 𝑢, 𝑣, 𝑤〉 = 0.

Claim: 𝑢𝑣2 ≠ 0 in 𝐴 𝑓 .
Assume, by contradiction, that 𝑢𝑣2 = 0. We claim that 𝑣′ = 0 as tangent vector. Consider the first-

order deformation of the Equation 𝑧𝑣2 = 0 in the direction of 𝑡𝑣 – that is,

0 = 𝐷𝑢𝑣2 + 2𝑧𝑣𝑣′ = 2𝑧𝑣𝑣′.

Since 𝑣′ ∈ 〈𝑣, 𝑤〉 (by the previous claim), 𝑧𝑣2 = 0 and 𝑧𝑣𝑤 ≠ 0, one has that 𝑣′ = 0 as tangent vector.
Since we are assuming that 𝑢𝑣2 = 0 for the general triangle in F , we can deform this equation in

the direction of 𝑡𝑣. This operation yields the relation 0 = 𝑣2𝑢′ + 2𝑢𝑣𝑣′ = 𝑣2𝑢′. Now recall that 𝑢′ does
not depend on y, 𝑣2 · 〈𝑧, 𝑣, 𝑤〉 by previous vanishings and 𝑢𝑣2 = 0, by assumption. Since 𝑥𝑣2 ≠ 0, from
𝑣2𝑢′ = 0, one has that 𝑢′ does not depend on x.

This yields a contradiction by deforming 𝑥2𝑢 = 0 in the direction of 𝑡𝑣. Indeed, one has 0 =
𝑥2𝑢′ + 2𝑥𝑢2 = 2𝑥𝑢2 but 𝑥𝑢2 ≠ 0.

Claim: Elements 𝑟1, 𝑟2 and 𝑟3 are 0.
The relation 𝑟1 = 𝑥(𝐼𝑤2 − 𝑀𝑣2) = 0 is easily obtained from Equations (𝑣′)𝑥𝑧 and (𝑣′′)𝑥𝑧 upon

multiplication by w and v, respectively.
We prove now that 𝑟2 = 𝑢(𝑀𝑣2 − 𝐼𝑤2) = 0. Consider the first-order deformation in the direction of

𝑠𝑣′ of the Equations 𝑧𝑢𝑤 = 0 and 𝑥𝑢𝑣 = 0, together with Equation (6.8)𝐼 multiplied by u, namely

𝐼𝑢𝑤2 + 𝑧𝑢𝑤′′ + 𝑧𝑤𝑢′′ = 0 𝑢𝑣2 + 𝑥𝑢𝑣′′ + 𝑥𝑣𝑢′′ = 0 𝐵𝑥𝑢𝑣′′ + 2𝐵𝑢𝑣2 + 𝑦𝑢𝑣′′ + 𝐵′′𝑥𝑢𝑣 = 0. (6.9)

Now, since 𝑤′′ = 𝑧𝑤 + 𝑀𝑥𝑣 = 0, and 𝐵′′ = 𝑦𝑢 = 0 ≠ 𝐵, we have

𝐼𝑢𝑤2 − 𝑀𝑥𝑣𝑢′′ = 0 𝑥𝑢𝑣′′ + 2𝑢𝑣2 = 0,

which give the desired relation, if substituted into Equation (6.9)𝐼 𝐼 .
The other relation, namely 𝑟3 = 𝑢(𝐷𝑤2 +𝑀𝑣𝑤) = 0, is obtained in a similar way from the first-order

deformation in the direction of 𝑟𝑣′′ of the Equations (𝑣)𝑥𝑦 and (𝑣)𝑥𝑧 upon multiplication by suitable
elements (more precisely, the first one by w and 𝑀𝑣 and the second one by w, respectively).

To sum up, we have proved that if we define

R = {𝑟1, 𝑟2, 𝑟3} ∪

( 5⋃
𝑖=0

𝑀𝑖

)
∪ {LHS of relations in (6.5)},

then

R ⊆ AnnL( 𝑓 ) and M𝑛𝑣 ∩ AnnL ( 𝑓 ) = ∅. (6.10)
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Now we would like to partially reconstruct the cubic fourfold f from the information about its
apolar ring 𝐴 𝑓 obtained so far. For simplicity, we are using the same symbols for the indeterminates in
𝑆 = K[𝑥0, . . . , 𝑥5] and in L = K[𝑦0, . . . , 𝑦5] = K[𝑥, 𝑦, 𝑧, 𝑢, 𝑣, 𝑤]. Consider the following cubics in 𝑆3:

𝑠0 = 𝑥3 𝑠1 = 𝑦3 𝑠2 = 𝑧3 𝑠3 = (𝑥 − 𝐷𝑧)𝑢2 𝑠6 = 𝑢3

𝑠4 = 𝑥(𝐼𝑣2 + 𝑀𝑤2) + 𝑦𝐵(𝑀𝑤2 − 𝐼𝑣2) − 2𝐼𝑀𝑧𝑣𝑤 𝑠5 = −2𝐷𝑢𝑣𝑤 + 𝑢(𝐼𝑣2 + 𝑀𝑤2).

It is easy to see that

𝑊 = 〈𝑠𝑖〉
5
𝑖=0 = { 𝑓 ∈ 𝑆3 |R ⊆ Ann𝐷 ( 𝑓 )}.

This can be checked directly by hand by writing 𝑓 =
∑

𝛼𝑚 ·𝑚, where m runs over the set of monomials
of degree 3 in S. Each element in R is a linear differential equation satisfied by f and thus gives a linear
closed condition on the vector space 𝑆3. For example, since 𝑟2 = 𝑢(𝑀𝑣2 − 𝐼𝑤2) ∈ R, we have the
corresponding condition 2𝑀𝛼𝑢𝑣2 − 2𝐼𝛼𝑢𝑤2 = 0 on the coefficients of f.

Hence, any cubic polynomial that we are analysing in this case can be written as 𝑓 =
∑6

𝑖=0 𝑝𝑖𝑠𝑖 for
suitable 𝑝𝑖 ∈ K. Having proved that M𝑛𝑣 ∩ AnnL( 𝑓 ) = ∅ gives nontrivial open conditions, indeed, it
is translated into

𝑝0, 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5 ≠ 0, (6.11)

so all the cubic fourfolds satisfying Conditions (6.10) live in a dense open subset of |𝑊 |. Notice that the
base locus of |𝑊 | is the line 𝐿 = 𝑉 (𝑥, 𝑦, 𝑧, 𝑢). Moreover, as 𝑝4, 𝐵, 𝐼, 𝑀 ≠ 0 and since

𝑦0 ( 𝑓 ) |𝐿 = 𝑝4 (𝐼𝑣
2 + 𝑀𝑤2) 𝑦1 ( 𝑓 ) |𝐿 = 𝑝4𝐵(𝑀𝑤2 − 𝐼𝑣2),

we have that the general cubic in |𝑊 | is indeed smooth on the points of L and thus smooth everywhere
by Bertini.

Claim: One has 𝐷 ≠ 0.
Consider the first-order deformation of 𝑣2𝑤 and of 𝑧2𝑣 in the direction of 𝑠𝑣′, namely

2𝑣𝑤𝑣′′ + 𝑤′′𝑣2 = 2𝑣𝑤𝑣′′ = 0 𝑧2𝑣′′ + 2𝐼𝑧𝑣𝑤 = 0, (6.12)

where we also used 𝑤′′ = 0. Assume, by contradiction, that 𝐷 = 0. Then, from the expression of f and
as 𝑝5 ≠ 0, we have that 𝑢𝑣𝑤 = 0 in 𝐴 𝑓 . Hence, 𝑣𝑤 · 〈𝑥, 𝑦, 𝑢, 𝑣, 𝑤〉 = 0. Then, by previous vanishings and
since 𝑧𝑣𝑤 ≠ 0, from Equation (6.12)𝐼 , we get that 𝑣′′ does not depend on z. This implies that 𝑧2𝑣′′ = 0,
so Equation (6.12)𝐼 𝐼 yields 2𝐼𝑧𝑣𝑤 = 0, and thus, 𝐼 = 0, which is impossible.

Claim: If f satisfies the Conditions in (6.10), then Sing(H 𝑓 ) is of dimension 2 near [𝑥].
By changing coordinates, we can simplify a little the expression of f. Indeed, as B, D, I, M, 𝑝4 and

𝑝5 are not 0, by an easy change of coordinates, and by redefining the 𝑝𝑖s, one can write

2 𝑓 = 𝑝0

(
𝑥3

)
+ 𝑝1

(
𝑦3

)
+ 𝑝2

(
𝑧3

)
+ 𝑝3

(
(𝑥 − 𝑧)𝑢2

)
+ 𝑝6

(
𝑢3

)
+

+(𝑥 + 𝑢) (𝑤2 + 𝑣2) + 𝑦(𝑤2 − 𝑣2) − 2
(
𝜆𝑧 + 𝜆−1𝑢

)
𝑣𝑤 (6.13)

with 𝜆, 𝑝0, 𝑝1, 𝑝2, 𝑝3 ≠ 0.
By construction, [𝑥] ∈ P(𝐴1) � (1 : 0 : 0 : 0 : 0 : 0) ∈ P𝑛 is a vertex of a triangle for H 𝑓 so

[𝑥] ∈ Sing(H 𝑓 ). We are assuming also that there exists a family of dimension 5 − 2 = 3 whose general
element is a triangle dominating via the first projection a component of dimension 3 of Sing(H 𝑓 ). Then,
in order to conclude the proof of the lemma, it is enough to show that the local dimension of Sing(H 𝑓 )

near [𝑥] is actually 2.
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The Hessian matrix of f is

𝐻 𝑓 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3𝑝0𝑥 0 0 𝑝3𝑢 𝑣 𝑤
0 3𝑝1𝑦 0 0 −𝑣 𝑤
0 0 3𝑝2𝑧 −𝑝3𝑢 −𝜆𝑤 −𝜆𝑣

𝑝3𝑢 0 −𝑝3𝑢 𝑝3𝑥 − 𝑝3𝑧 + 3𝑝6𝑢 𝑣 − 𝜆−1𝑤 −𝜆−1𝑣 + 𝑤
𝑣 −𝑣 −𝜆𝑤 𝑣 − 𝜆−1𝑤 𝑥 − 𝑦 + 𝑢 −𝜆𝑧 − 𝜆−1𝑢
𝑤 𝑤 −𝜆𝑣 −𝜆−1𝑣 + 𝑤 −𝜆𝑧 − 𝜆−1𝑢 𝑥 + 𝑦 + 𝑢

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.14)

Since f is smooth, we have that Sing(H 𝑓 ) = D4 ( 𝑓 ). In particular, Sing(H 𝑓 ) is cut out by 21 quintic
equations corresponding to the minors of order 5 of the Hessian matrix (there are 36 minors but 15
appear twice since 𝐻 𝑓 is symmetric). Let 𝑚𝑖 𝑗 be the minor obtained by removing the i-th row and the
j-th column. We are interested in the local expression of Sing(H 𝑓 ) near [𝑥]. Notice that the linear form
(𝑦𝑖𝑦 𝑗 ) ( 𝑓 ) (defined as the second partial derivative of f as in Equation (2.1)), depends on x if and only if
(𝑖, 𝑗) ∈ {(0, 0), (3, 3), (4, 4), (5, 5)}, so no term of ℎ 𝑓 can have as exponent of x an integer greater than
4: this is a confirmation of the fact that [𝑥] ∈ Sing(H 𝑓 ). By differentiating 𝑚𝑖 𝑗 , it is easy to see that [𝑥] is
singular for 𝑉 (𝑚𝑖 𝑗 ) if (𝑖, 𝑗) ∉ {(1, 1), (1, 2), (2, 1), (2, 2)}. Consider the variety 𝑍 = 𝑉 (𝑚11, 𝑚12, 𝑚22)
and notice that Sing(H 𝑓 ) ⊆ 𝑍 by construction. Being defined by 3 equations, one has that dim(𝑍) ≥ 2.
We claim that Z has dimension 2 near [𝑥]; to do that, we will show that (1 : 0 : 0 : 0 : 0 : 0) is isolated
in 𝑍 ∩𝑉 (𝑢, 𝑣) = 𝑉 (𝑚11, 𝑚12, 𝑚22, 𝑢, 𝑣).

We compute now the local expression of 𝑚11, 𝑚12 and 𝑚22 modulo (𝑢, 𝑣) in the local ring 𝐴𝑚, where
𝐴 = K[𝑦, 𝑧, 𝑢, 𝑣, 𝑤] and m is the maximal ideal of the origin in A5. By the explicit expression of 𝐻 𝑓 in
Equation (6.14), one can easily see that

𝑚12 (1, 𝑦, 𝑧, 0, 0, 𝑤) = −3𝑝0 · 𝑤
2 · (𝑤2 − 𝑝3𝜆

2𝑧(1 − 𝑧)) = 0, (6.15)

so one between w and 𝑤2 − 𝑝3𝜆
2𝑧(1 − 𝑧) is zero.

Assume first that 𝑤 = 0. By a direct computation, one can see that

𝑚11 (1, 𝑦, 𝑧, 0, 0, 0) = 9𝑝0𝑝2𝑝3 · 𝑧(𝑧 − 1) (𝑦2 + 𝜆2𝑧2 − 1) ∼ 𝑧

𝑚22(1, 𝑦, 𝑧, 0, 0, 0) = 9𝑝0𝑝1𝑝3 · 𝑦(𝑧 − 1) (𝑦2 + 𝜆2𝑧2 − 1) ∼ 𝑦

since 𝑝0, 𝑝1, 𝑝3 ≠ 0 by assumption and since both 𝑧 − 1 and 𝑦2 + 𝜆2𝑧2 − 1 are invertible in 𝐴𝑚. This
shows that [𝑥] is isolated in 𝑍 ∩𝑉 (𝑢, 𝑣, 𝑤).

Assume now that 𝑤2 = 𝑝3𝜆
2𝑧(1 − 𝑧). Again, by a direct computation, one can show that w appears

only with even powers in 𝑚𝑖 𝑗 (1, 𝑦, 𝑧, 0, 0, 𝑤) for 𝑖, 𝑗 ∈ {1, 2}, so one can substitute 𝑝3𝜆
2𝑧(1 − 𝑧) to 𝑤2

in order to obtain the two expressions

𝑟11 = 𝑝3 · 𝑧(𝑧 − 1) ·
(
3𝑝2𝑦 + (3𝑝2 − 𝑝3𝜆

4) (𝑧 − 1)
)
·
(
3𝑝0𝑦 + (𝑝3𝜆

2)𝑧2 − 𝜆2(3𝑝0 + 𝑝3)𝑧 + 3𝑝0

)

𝑟22 = 9𝑝0𝑝1𝑝3 · (𝑧 − 1) · (𝑦 + 𝑧 − 1) ·
(
𝑦2 +

𝑝3𝜆
2

3𝑝0
𝑦𝑧2 − 𝜆2 3𝑝0 + 𝑝3

3𝑝0
𝑦𝑧 + 𝑦 +

𝑝3𝜆
2

3𝑝1
𝑧(𝑧 − 1)

)
.

In 𝐴𝑚, one has

𝑟11 ∼ 𝑧 ·
(
3𝑝2𝑦 + (3𝑝2 − 𝑝3𝜆

4) (𝑧 − 1)
)

𝑟22 ∼ 𝑦 · 𝑔(𝑦, 𝑧) +
𝑝3𝜆

2

3𝑝1
𝑧(𝑧 − 1)

with 𝑔(0, 0) ≠ 0. Since 𝑤2 = 𝑝3𝜆
2𝑧(1 − 𝑧), if we assume 𝑧 = 0, we also have that 𝑤 = 0, so we can

conclude by the previous case. We can then suppose that 3𝑝2𝑦 + (3𝑝2 − 𝑝3𝜆
4) (𝑧 − 1) = 0 in the local

ring. This can happen if and only if 3𝑝2 = 𝜆4𝑝3 and 𝑦 = 0. However, if 𝑦 = 0, from the expression of
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𝑟11, one has that 𝑧(𝑧 − 1) = 0, and thus again, 𝑤2 = 0. This shows that [𝑥] is isolated in 𝑍 ∩𝑉 (𝑢, 𝑣) too
and thus that the local dimension of D4( 𝑓 ) = Sing(H 𝑓 ) near [𝑥] is 2. �

With this lemma, we also conclude the proof of Theorem 5.1 in the case of cubic fourfolds.
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