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A WIDE PERRON INTEGRAL

D.N. SARKHEL

In terms of an arbitrary limit process T , defined abstractly for
real functions, we define in a novel way a T-continuous integral of
Perron type, admitting mean value theorems, integration by parts and
the analogue of the Marcinkiewicz theorem for the ordinary Perron
integral. The integral is shown to include, as particular cases, the
various known continuous, approximately continuous, Cesaro-continuous,
mean-continuous and proximally Cesdro-continuous integrals of Perron
and Denjoy types. An interesting generalisation of the classical

Lebesgue decomposition theorem is also obtained.

1. Introduction

Bullen and Lee [4] gave a method of unifying various integrals of
Perron type, by introducing the abstract notion of a 'derivate system'.
In an endeavour to find a simpler but more revealing and more concrete
unifying method leading to desirable generalisations, recently in [23] we
introduced the T-continuous Perron integral, (TP) , defined in terms of
the notion of proximal variation and in terms of the limit process T
induced by an orderly connected topology on the real line. This marks a
major modification of the Perron method inasmuch as the difference of a
major (upper) function and a minor (lower) function need no longer be
nondecreasing. However, the (TP)-integral was shown to admit of mean
value theorems, an integration by parts formula and the analogue of the
important Marcinkiewicz theorem for the ordinary Perron integral ([16],

(3.13), p. 253). Besides, it was shown to include, as particular cases,
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various known continuous and approximately continuous integrals ([6]),
{121, (131, (271). Further, T could also be taken to be the proximal
limit process introduced in [22], which is more general than the

approximate limit process.

But, the (TP)-integral could not unify the mean type continuous

integrals, such as the Cesaro-Perron integrals, ChP , of Burkill [7,81,
the CZD and VhD integrals of Sargent (17,18], the mean-continuous
integrals, GMn , of Ellis [10}], and the recently introduced proximally

Cesaro-continuous integral, (PCD) , of Nath and Bose [14]. The failure
is due to the fact that mean type continuity is essentially nontopological

in nature [21].

The purpose of this paper is to show (section 4) that, with new
methods of proofs, the entire theory of the (7P)-integral remains valid
in fact for any limit process T , defined abstractly (section 3) by
assuming only the bare necessities. Quite pleasingly, with appropriate
choice of T , the (IP)-integral now includes (section 5) also each of the
mean type continuous integrals mentioned above. Besides, the (TP)-integral
leads us to an interesting generalisation (Corollary 4.9.1) of the classic
result that the derivative of a function of bounded variation, VB , is
always Lebesgue integrable, which in turn leads to an extensive
generalisation (Corollary 4.9.2) of the classical Lebesqgue decomposition
theorem ({16], p. 120). Convergence theorems for the (TP)-integral can be
deduced, as usual, from those for the Lebesgue integral, and will be
omitted. The (7TP)-integral also admits of a simple Denjoy type constructive

definition, which will be given elsewhere.

We remark in passing that, no single integral can exist which would
include all the integrals mentioned above, because the two integrals

[6,7] of Burkill are not compatible, as shown by Ellis [I]].

2. Preliminaries

Throughout this paper, R will denote the real line, |E| the outer
Lebesgue measure of a subset E C R, and Eo its interior. By
f2E >R [f~E » R] we shall mean that f is an extended real valued

function defined and finite at least for all [almost all] points of the
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set E , and then fb will denote the function defined on R by
fE(x) = f(x) if € (dom ) NE and fE(x) = 0 otherwise. Also, we
denote by ess—supEf [ess-inijj the infimum [supremum] of the numbers r
such that

[ {x € E|f@ >r}| =0 [|{zx € E|fx) < r}| = 0] .

The function f 1is said to satisfy the condition (N) of Lusin ([I6],
p. 224) on E , if |[f(H)| =0 for every HCE with |H| = 0 . For the
notions of approximate continuity and derivative and of functions VB and

AC we refer to [16].

A finite family (possibly void) of pairwise disjoint open intervals
with end points on a set F C B 1is called a subdivision of E . A

sequence {En}. of sets whose union is E is called an FE-form with parts
Eh ; if, moreover, each part En is closed in F , then the F-form is

said to be closed. BAn expanding E-form is called an E-chain ([Z3],

Definition 2.1).

Given f2F +R and r > 0 , we denote by V(f,E;r) the supremum
of the sums Zlf(bi) - f(ai” for all subdivisions {(a,,b;)} of E
with Z(bi—ai) < r . We define V(f,E) = sup, V(f,E;r) and

V(fIE;O) = inf V(f,E;P)

r>0

We note that f is VB [AC] on E if and only if V(f,E) < o
IV(f,E;0) =0]. 1f f is VB [AC] on each part of a closed FE-form,
then f 1is called (VBG) [(ACG)] on E . The infimum of suan(f,En;O)

for all E-chains {En} , denoted PV(f,E) , is called the proximal
variation of f on E . 1f PV(f,E) < = [PV(f,E) = 0] then f is called
(PVB) [(PAC)] on E . For details about these notions we refer to {[23],
section 3, but summarize below some of the results obtained therein for

ready reference.

(2.1). For all p,g € R and all f,g 2F > R we have
PV(pftqg,E) < |p|-PV(f,E) + |q|-PV(g,E)

(2.2). 1f PVi(g,E) = 0 , then PV(f+g,E) = PV(f.E) .
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(2.3). If f and g are both (PVB) [(PAC)] on E , then pf + qg
is also (PVB) [(PAC)] on E for all p,g €R.

(2.4). 1£f |E| =0, then |f&| <PV(f,E) . In particular, if f

is (PAC) on E , then f satisfies Lusin's condition (N) on E .

(2.5). 1f f is (PVB) on E , then f is (VBG) on E ; if,
further, the set FE 1is measurable, then flE is measurable and f has a

finite approximate derivative, (ap)f'(x) , at almost all points x of Z .

(2.6). If f is (PAC) on each part of a closed E-form, then f

is necessarily (PAC) on FE .
(2.7). If f and g are both (PAC) on E , so is fg .

(2.8). 1f f is (PVB) on E , then PV(f,E N I) is an additive

continuous function of intervals I C R .

(2.9). If f is (ACG) on E , then f is necessarily (PAC) on

E ; the converse is true if F is closed and f|E is continuous.
(2.10). Let {p } and {g,} denote two sequences in R such that
ZIPnI < ® and q; # qj for 7 # j , and let F:R > R be defined by
F(x) = z<xpn or F(x) = ngp” .
Iy Uy
Then F is (PAC) on R and, further, F' =0 a.e. on R.

The following lemma greatly extends Lemma 5.1 in [23]. It is, in fact,

more powerful than we shall actually need in the sgequel.

LEMMA 2.1. Let f21I = l[a,bl + R be such that
(i) PV(f,I) < , that is, f is (PVB) on I,

(iz) if f is VB on every closed subinterval of an open interval
(x,y) €I and if flxt) and fly-) exist (finitely or
infinitely), then f(z) < f(x+) and fly-) < fly) , and

(iii) there is a subset B C I with |B| =0 such that, if =z € I\B

and f is continuous at x, then D+f(ac) >0 .

Then, for every set A 2 B , the function gl(z) = f(x) + PV(f,A N [a,x])
18 nondecreasing on I .
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Proof. we first assert that, if f is VB on an open interval

J C I, then g is nondecreasingon J .

Suppose, for a contradiction, that g¢g(d) < g{(e) for some [e,dl ©J .
Choose € > 0 so small that g(d) < g(e) - e(d-e¢) . Then, using (2.8),
we have PV(f,A N [e,d]) = PV(f,A N la,dl) - PV(f,A N [a,e)) = gld) - f(d
- gle) + fle) < F(e) - F(d) , where

F(x) = f(x) + ex for all xz €I .

But, since |BN [e,dl| =0 and F - f is AC on [e,d] , by (2.4) and
(2.2) we have |F(B N [c,d])| < PV(F,B N [e,d]) = PV(f,B N [e,d]) <

PV(f,A N [e,d]) because B C A . Hence it follows that

0< |F(BN {e,d])| < F(e) - F(d) . Then, select any r € (F(d),F(c)) with
r & F(B N [e,d)) , and set

t = supl{x € (e,d) |F(x) > r} .

Now, by (ii), for all x € J we have F(x-) = f(z-) + ex S f(x) + ex
= F(x) and F(xt) = flxt) + ex 2 f(x) + ex = F(x) . In particular,
F(ct) 2 F(e) >r and F(d-) SF(d) <r , so that t is well defined and
¢ <t <d . Then recalling the definition of t , we have F(t) < F(t+)<r
and, hence, further »r < F(t-) < F(t) . Therefore F is continuous at ¢,
F(t) =r @ F(B N [e,d]) but t€ (¢,d) , and D'F(t) <0 since
F(lx) < r = F(t) for all € (¢,d) . So, f 4is continuous at ¢ ,
t€1°\ B ana D'f(t) = D'F(t) - € <0 . This is contrary to (iii), and

our assertion is proved.

Now, let E denote the set of points of I having no neighbourhood
in I on which g is nondecreasing. Then E is closed. Clearly g is
nondecreasing on any component (p,q) of Io\ E . 8Since, further,
PV(f,A N [a,x]) is nondecreasing and bounded on I , clearly f is VB
on every closed subinterval of (p,q) and both f(p+) and f(g-) exist.
Therefore, by (ii), f(p) < f(pt) and flg-) < f(q) , whence we readily
obtain that g(p) < g(p+) and gl(g-) <g(g) . So, ¢g is in fact
nondecreasing on [p,q] . In particular, therefore, E is perfect, and g

is nondecreasingon I if E =@ .

Suppose E # @ . Since f is (PVB) on I , by (2.5) it is (VBG)
on I . So, by the Baire category theorem ((I6}, p. 54), there is an open
interval J € I intersecting E such that f is VB on ENJ .
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Clearly then g is VB on E NJ . Since, further, by above g is
nondecreasing on the closure of each component of J \ E , it follows that
g is VB on J . Therefore f is VB on J . So, by the initial
assertion, g is nondecreasing on J . This contradicts the condition

ENJ # @ , and the proof is complete.

REMARK. The lemma remains valid if in (iii) we replace D+f(x) by
D f(x) . The initial assertion in the proof can then be verified by

setting t = inf{x € (e,d) |F(x) < r} .

3. Abstract limit process

DEFINITION 3.1. rLet R(+) denote the set of ordered pairs (f,x)
such that £ € R and f 2 (x,y) * R for some y > x . A right-hand limt

process in R 1is a real valued operator T with dom T € R(+) such that

(i) if f2 (x,y) >R is (VBG) on (x,y) and if the ordinary
limit f(x+) exists finitely, then (f,x) € dom T ,

(ii) if (f,x) €Edom T and if (g,x) € R(+) 4is such that g(t) = f(2)
for all t € (x,y) for some Yy > x , then (g,x) € dom I and,
further, T(g,x) = T(f,x) ,

(iii) if (f,x) , (g,x) €dom T and p,g € R, then (pf+qg,x) € dom T
and, further, T(pf+qg,x) =pT(f,x) + q*T(g,x) , and
(iv) 1lim inf f(¢) < 7(f,x) < lim sup f(t) for all (f,x) € dom L.
trxt ot
A left-hand limit process in R is defined similarly. By a limit
process T in R we shall mean a pair of a right-hand limit process T+
and a left-hand limit process T in R , and we shall write Tf(x+) for
7' (f,x) and Tf(z-) for T (f,x) . 1f Tf(x+), Tf(z-) and f(x) all

exist and are equal to one another, we say that f is T-continuous at X .

Conventionally, speaking about ZT-continuity of f on a closed

interval [a,b] , we shall always exempt Tf(a-) and Tf(b+) .

DEFINITION 3.2. A limit process T in R is said to be Darboux, if
every function which is T-continuous on a closed interval is Darboux (has

the intermediate value property) on the interval.

Every orderly connected topology on R induces a Darboux limit

process ([23], section 4); in particular, the ordinary, the approximate
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and the proximal limit processes are Darboux. The notions of
Ch-continuity (81, M%-continuity {101 and PC-continuity (141 are

defined directly in terms of certain types of limits. The reader can
easily frame the immediate formal definitions of the corresponding limit
processes, in agreement with the above definition. Sargent [19] has shown

that the Ch- and Mh—limit processes are Darboux. Again, by definition,

a PC-continuous function on an interval is necessarily a finite proximal
derivative. Hence by a result of Sinharoy ([Z25], Theorem 4, p. 322), the

PC-limit process is also Darboux.

Limit processes can also be defined in a natural way in terms of
'selections' [15] and 'bilateral systems of paths' (2], and, more generally,
in terms of any topology on R which is such that every point of every
open set is an ordinary bilateral limit point of the set. A selective
limit process is necessarily Darboux ([!5], Theorem B, p. 85), but the
others need not be. However, we have the following useful result, which

extends Theorem 5.3 in ([2], p. 111).

LEMMA 3.1. Let T be any limit process in R . If f:la,bl >R 1is

Baire 1 and T-continuous on la,bl, then f <is Darboux on Ila,b] .

Proof. By T-continuity, f lies between its ordinary upper and lower
unilateral limits on either side in [a,b] , and this is precisely the
condition for a Baire 1 function to be Darboux [24] (see, also, [1],

Theorem 6.1, p. 103).

4, The (TP)-integral

Throughout this section, we shall deal with an arbitrary but fixed

limit process T in R , and with arbitrary functions f,g ~ I = [a,b] - R.

DEFINITION 4.1. A function u 2 I +» R is called a (IP)-upper
function of f on I , in symbols u € U(f;I) , if

(i) wuta) =0,
(ii) Tu(x+) exists and wu(x) < Tu(x+) for all =x € [a,b) ,

(iii) Tu(x-) exists and Tu(xz-) < u(x) for all x € (a,b]
(iv) u is (PVB) on I , and

’

(V) (ap)u' > f a.e. on I .
(By (2.5), (ap)u' exists finitely a.e. on T .)
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A function £ 2 I » R is called a (TP)~lower function of f on I ,
in symbols & € L(f;I) , if -2 € U(-f;I) .

DEFINITION 4.2. For every € > 0 we define

U(fiD) = {u€ U(F:I) |PV,I) <€},
L (f;) = {2 € Lf;D|Pvr,I) < e},
fiIie) = influd) |w € U_(f:D))

LTie) = sup{a(d) |2 € L_(fiDD} .

If the two monotone limits
£y = 1lim +f(I;e) and f(I) = lim +f(I;e)
>0+ >0+
have a common finite value, then the function f is said to be (IP)-
integrable on I , in symbol f € (IP)(I) , and the common finite limit,
denoted f*I , is called the definite (TP)-integral of f on I .

REMARK. By definition, inf @ =« and sup @ = -« . Therefore, if
Ue(f';I) = g for some € >0 then f(I) == , and if Le(f;I) =@ for

some € > 0 then f(I) = -» .

THEOREM 4.1. Let u € U(f:I) and & € L{f;I) . Then there is a
subset B C I with |B| =0 such that, for every A 2B ,

u(x) - L(x) + PV(u-%, A N [a,x]) is nondecreasing and nonnegative on I .

Proof. By (2.3), u-%2 is (PVB) on I . Also, for all zx € [a,b)
we have u(x) - 2(x) < Tu(ax+) + T(-L) (x+) = T(u-2)(x+) , and for all
¥y € (a,b] we have T(u-2)(y-) = Tu(y-) + T(-2) (y-) < uly) - 2(y)
Finally, we have (ap)u' 2 f a.e. on I and (ap)(-%)' 2 -f a.e. on I .
So, there is a subset B C I with |B| = 0 such that (ap){(u-2)'(x) =0
for all x € I0 \ B . Hence Lemma 2.l certainly applies to u - £ , and

the required result follows.
COROLLARY 4.1.1. Let u € U(f;I) and & € L(f;I) . Then
() u-2 is VB on I,
(iZ) u) - L(b) + PV(u-2,I) =20 , and
(121) wu(d) + PV(u,I) = L(b) - PV(,I)

Proof. By Theorem 4.1 with 4 =TI , the function H(x) = u(x) - L(x)

+ PV(u-%,la,x]) is nondecreasing on I . Since, further, PV(u-%,la,xl)

https://doi.org/10.1017/50004972700010108 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700010108

A wide Perron integral 241

is nondecreasing on I , it follows at once that u - & is VB on I .
Also, we have u(b) - &(b) + PV{(u-2,I) = H(b) = H(a) = 0 ; whence again
u) + PV(u,Iy = 2(b) - PV(2,I) , since PV(u-2,I) < PV(u,I) + PV(2,I) by
(2.1).

From Corollary 4.1.1(iii) we readily obtain:

COROLLARY 4.1.2. We have
(i) f(I) = 2(b) - PV(L,I) for all & € L(f;I) ,
(it) fI) < wd) + PVu,I) for all uw € U(f;I) , and

(iii) £ () = £(D)

Using Theorem 4.1 and its corollaries and, of course, the properties

of T and PV , the reader can now easily prove:

THEOREM 4.2.
(i) Ff€ (IP)(I) <if and only if there exist, for every € > 0 , at
least one u € Ue (f;:I) and at least one L € Le (f;I) such

that |u() - 2(b)| <€ .

(i1) If FE€ (TP)(TI) then (b) - PV, I) < f4I < ub) + PV(u,I)
for all & € L(f;I) and all wu € U(f;I)

(iii) If f€ (IPYI) and if g=f a.e. on I , then g € (TP)(I)
and, further, gaI = f+I .

(iv) If f,g € (IP)(I) , then (pf+qg) € (IP)(I) for all p,q € R
and, further, (pf+qg)+I = p*(f+I) + q-(g*I)

(v) If J = la,el and K = l[e,b] where cGIO , then f € (IP)(I)

i1f and only if f € (TPY(J) N (TPY(K) , and then I = f*J + f*K .

We see that when f € (TP)(I) then f € (IP)(la,x]) for all x € Io .
We shall write F = (TP)(f:I) to mean that [ € (IP)(I) and that F is
the indefinite (TP)-integral of f on I , defined on the entire real
line by F(x) = fila,x] for a<zxz<b , F(x) =0 for x<a and
Flxy = F(b) for x > b .

THEOREM 4.3. Let F = (TP)(f:I) . Then
() u(x) ~ F(x) + PV(u,la,xl) <is nondecreasing on I and
V(u-F,I) < u(b) - F(b) + 2PV(u,I) for all u € U(f;I) ,and
(i1) F(x) - 2{x) + PV(%,la,x]) <is nondecreasing on I and
V(F-¢,I) < F(b) - 2(b) + 2PV(R,I) for all & € L(f;I)
(In particular, both u-F ad F- % are VB on I . )
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Proof. similar to the proof of Theorem 5.3 in [Z3].

The following theorem provides an interesting descriptive definition
of the (TP)-integral, similar to those of the Denjoy integrals ([16],
p. 241).

THEQREM 4.4. 1et F:R > R be such that F(x) =0 for x<a and
F(z) = F(b) for x>b . Then F= (IP)(f:I) if and only if F 1is
T-continuous and (PAC) on I and (ap)F' = f a.e. on I (that is,
FEU (fiI) NL_(fiI) for every ¢ >0 ).

Proof. The 'if' part is obvious. To prove the 'only if' part,
suppose F = (IP) (f:I)

Consider any ¢ € [a,b) . Given € > 0 , we can find u € UE(f;I)
and & € Le(f;I) such that u(b) - F(b) <€ and Fb) - 2(b) < e . Then

by Theorem 4.3, for all * € I we have -¢ < u(x) - F(x) < 2¢ and

- < F(x) - 2(x) < 2¢ ; also, u - F and F - & being VB on I possess
finite ordinary right-hand limits at ¢ . Since, further, by definition
Tu(e+) and T(c+) exist and satisfy u(e) < Tu(e+) and T{et) < L(ec) ,

it follows from the definition of T that ZTF(c+) exists and, further,

that
F(e) - 3¢ < u(e) - 2¢e < Tu(e+) - 2¢
= T(u-F) (c+) +TF(c+) - 2¢ < TF(c+) < TF(c+) - T(F-2) (e+) + 2¢
= T2(c+) + 2e < 2(c) + 2e < F(e) + 3¢
Thus |TF(c+) - F(c)l < 3& . Since € > 0 1is arbitrary, we have
TF(c+) = F(e) . Similarly, TF(e-) = F(¢) for ¢ € (a,bl] . Hence F is

T-continuous on I .

The remaining parts of the proof are exactly similar to those for

Theorem 5.4 in [23].
COROLLARY 4.4.1. If F = (TP)(f:I) , then F 1is Darboux on I .

Proof. since F is (PAC) on I , by (2.5) it is (VBG) on I . So
F is Baire 1l on I . Since, further, F is T-continuous on I , by

Iemma 3.1 it is Darboux on I .

Referring to (2.6) and to Corollaries 5.4.1, 5.4.2 in (23] and to the

https://doi.org/10.1017/50004972700010108 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700010108

A wide Perron integral 243

remarks preceding them, we omit the simple proofs of the following

corollaries.

COROLLARY 4.4.2.
(i) If fE€ (TP)(la,x]) for all z € I° and if TFP(b-) exists,
where F(x) = fsla,x] , then fE€ (TP)(I) and [l = TF(b-) .
(i2) If f € (TP)(lx,b]l) for all =z € ° and if TG(a+) exists,
where G(x) = filz,b] , then f€ (TP)(I) and f*I = TGlat) .
(iii) If f€ (TPY(I) , then f|I is measurable and the (IP)-upper
and lower functions of f on I are T-continuous n.e.

(that is, except at a countable number of points) on I.

COROLLARY 4.4.3. If f <s Lebesgue (L-) integrable on I , then it
ts (IP)-integrable on I . Conversely, if f is (TP)-integrable on I
and if g is L-integrable on I and either f<g ae. on I or gs< f§f
a.e. on I , then f 1is L-integrable on I to the value fxI .

THEOREM 4.5 (Integration by parts). Let F = (TP)(f:I) where F 1is
bounded, and let G = L(g:I) . Then fG € (TP)(I) and (fG)*I = F(b)G(b)
- (Fg) sl .

Proof. since G is the indefinite L-integral of g on I , it is
AC on I . Also, by Theorem 4.4, F is (PAC) on I . So, by (2.7),
FG is (PAC) on I . BAlso, FG is T-continuous on I . For, given
c€ I, F(G-G(e)) is (VBG) on I by (2.5), and it has an ordinary limit
0O at ¢ , since F is bounded and (¢ 1is continuous at ¢ . Since,
further, F 1is DT-continuous at ¢ by Theorem 4.4, it follows from the

definition of T that FG = F+(G-G(c)) + F+G(e¢) is T-continuous at ¢ .

Therefore, by Theorem 4.4 we have FG = (TP) ((ap) (FG)':I) . But Fg
is L-integrable on I , since g is and F is bounded and measurable
by (2.5). Hence, recalling Corollary 4.4.3, the required results follow
at once by noting that (ap)(FG)' = fG + Fg a.e. on I .

THEOREM 4.6 (First mean value theorem). Let H = (IP)(fg:I)
G = (TPY(g:I) , Gb) # 0 , and either ess-inf;g > 0 or ess-sup,g < 0 .

’

Set p = H(DY/Gb) and E = {x € I|g(x) # 0} . Then either
(1) ess-inf;f <p < ess-sup f or (ii) f=p ae. on E, |E|>0,

and p has one of the values ess-ianf or ess—supr . (G)y =0

implies H(b) =0 .)
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Proof. Similar to the proof of Theorem 5.6 in [23].

THEOREM 4.7 (Second mean value theorem). Let F = (TP)(f:I) where
F 18 bounded, and let G = (TP)(g:I) , G(b) # O , and either
ess-inf g =20 or ess-sup g < 0. Then fGE€ TP(I) and there is a point

¢ € I such that (fG)*I = G(b)(F(b) - F(e)) and such that either
(i) inf F < F(e) < sup F or (ii) F = F(¢) a.e. on E = {z € I|g(x) # 0},

[E| > 0, and F(e) has one of the values inf F or sup.F .

Proof. similar to the proof of Theorem 5.7 in [23].
THEOREM 4.8. Let {In = [an’bn]} be a sequence of nonoverlapping
closed subintervals of I and G = UnISz . Suppose F = (IP)(f:I) and

) IFn (bn)| <w . Defining S(x) =) F (x) , suppose further that both
n n

IS(x-) and TS(x+) extst for all x and that
(%) y {los,r-) | + [0S, rh) |} < =,
r€R

where
0 ,r-) = TS(r-) - S(r) , O(S,r+) = S(r) - TS(r+) .

Then we have F = (IP) (f'G:I) where F 1is defined on R by

F(z) = S(x) + J 0(S,r-) + } O(S,r+)
r<c r<x

Proof. The condition ZIFh(bn)l < ® implies that | F (z) is

absolutely convergent for all x , and so S is well defined. Also, the
condition (*) implies that S 1is T-continuous n.e. and that F is well

defined.

Now, noting that ZIS5(x-~) and TIS(x+) exist for all & and that the
second and third parts in the expression for F are VB on R, it
follows from the definition of T that both TF(x-) and TF(w+) exist

for all x and, further,

TF (x-)

TS(x-) + ) O(S,r-) + ) O(S,r+)
r<x r<x

S@) + ] 0(S,r-) + ) 0(S,r+) = F(x)
Al

Mo
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and
TF(x+) = TS(x+) + ) O(S,r=) + ) O(S,r+)
r<c <c
=S(x) + ) O0(S,r-) + ] 0(S,r+) = F(x)
r<c r<x
Again, since F(x) = F(an) + Fn(x) for all x € In , it follows from
Theorem 4.4 that, for each n , F is (PAC) on In and (ap)F' = (ap)Fr:

= f a.e. on In . On the other hand, for all £z € I \ G we have
Fx) = ) F (b)) + Y 0, r-) + ] O(S,r¥) ,
bnéx r<c r<x

which by (2.10) implies that F is (PAC) on I\ G and that (ap)F' =0

a.e. on I\ G, since G has density 0 a.e. on I\ G.

Summing up, we see that F is T-continuous on I , it is (PAC) on

I by (2.6), and (ap)F' = fG a.e. on I ; which by Theorem 4.4 completes

the proof, since evidently F(z) =0 for x<aq and F(x) = F(b) for

x>Db.

We are now ready to prove the much coveted analogue of the
Marcinkiewicz theorem for the ordinary Perron integral ((16], (3.13),
p. 253; [28], p. 648; [20]). skvorcov [26] obtained a similar result for
the C(P-integral of Burkill.

THEOREM 4.9. If there exist at least one u € U(f;I) and at least
one % € L(f;I) , and if f|I is measurable, then f € (ITP)(I) .

Proof. Let E’o denote the set of points « € I such that f & (TP)
(I N J) for all closed intervals J with x € J0 . Clearly E‘O is

closed, and it is enough to derive a contradiction by assuming that E'O #@.

We first show that, if [p,q] is the closure of a component of I \ Eo,

then f € (IP)(ip,ql) . Evidently f € (IP)(J) for every closed interval

JE (p,q) . Fix c € (p,q) , and set F(x) = f4le,x] for x € (e,q) and
F(x) =0 for x< ¢ . Clearly u, = u- u(e) € U(f;le,b]) and
L. =L ~ L(c) € L(f;[e,b]) . Therefore Theorem 4.3 implies that the

1
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function h(x) = ul(:c) - F(x) + PV(ul,[c,x]) is nondecreasing on (e,q)

Since, further, by Corollary 4.1.1(i) and Theorem 4.2(ii) we have

= - - < -
hi{x) {ul(x) 2, (x)} + {21 (x) - Flx)} + PV(u, ,le,x]) < Vi zl,lc,b]) +
PV(ll,[c,il) + PV(ul,[c,x]) < V(u-2,I) + PV(R,I) + PV(u,I) <~ , it follows
that the monotone limit h(g~) is finite. Since, further, Tul (g-)
exists and PV(ul, {e,x]) = PV(u,le,x]) 1is nondecreasing and bounded on

(¢,q) , it follows from the definition of T that TF(q-) exists. Hence
f € (IP)(le,q]) by Corollary 4.4.2(i). Similarly f € (IP)([p,e])

Hence f € (TP)([p,q)}) . In particular, therefore, E'0 is perfect.

Now, by (2.5) both # and 2 are (VBG) on I . So, using Baire

theorem we can find an interval J = [e,d] with e,d € EO , such that

E'OﬁJO#QJ and such that both # and 2% are VB on E'=E'OF\J. Iet

{Jn = [pn'qn]} denote the sequence of closures of the components of J \ E,
and let uo and 2,0 denote respectively the functions obtained by
extending u|E’ and JL|E linearly on each of the intervals Jn . Then
both u, and 2, are VB on J . Evidently (ap)u'’ = u(’) and

(ap) ' = 2.6 , a.e. on E . since, further, (ap)u' > f2 (ap)t' a.e. on

E and since f|E is measurable, it follows that fE’ is L-integrable.
In particular fE’ € (IP)(J) (and, hence, E is nondense).
We shall now verify the hypotheses of Theorem 4.8 on J . BAs already
shown, f € (TP) (Jn) for each n . Writing Fn = (TP) (f‘:Jn) , Theorem
Cay s , _ _ < < _
4.2(ii) implies that l(qn) l(pn) PV(IL,Jn) Fn(qn) u(qn) u(pn) +
PV(u,J,) for all n . Therefore Zan(qn)l < » , since both u and &
are VB on E and (PVB) on I . Hence the function S(x) = ZFn(x) is

well defined. We further define

H(x) = u(x) - S(x) + PViu,fle,x]) , € J .

Now, for all x € Jk = [pk’qk] we clearly have
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H(x) + Z Fn(qn) - PV(u,[c,pk]) = u(x) - Fk(x) + PV(u,[pk,x]) ’
4, <Py

which is nondecreasing on Jk by Theorem 4.3. Therefore H 1is
nondecreasing on Jk for each k . Further, since for all x € F we

have

Hx) = u (@) - Sy(@) + PV(u,le,x]) , S, (x) =qz<xF"(q”) '
n

clearly H is VB on E . Hence H is in fact VB on J . Clearly
then u-S is VB on J . Since, further, Tu(xt) and Tu(y-) exist
for all z € [e,d) and y € (e,d] , it follows from the definition of T
that both TS(x+) and TS(y-) exist.

Now, let r € F be a limit point of E on the right. Then, since
u-S5 is VB on J and u-S=uo—So on E , we clearly have
Tu(r+) - TS(r+) = T{u-S) (r+) = (u-5) (r+) = (uo—So)(H-) = uO(H-) - SO(H—) =

uo(1=+) - So(r) . Therefore,
So(r) - IS(r+) = Uy (r+) - Tu(r+)

Similarly, showing that S - 2 is VB on J , we get

SO(I’) - IS(r+) 20(1/#-) - T (r+)

But, since r € E , we have So(r) S(r) , Tu(r+) 2 u(r) = uo(r) and
T (r+) < 2(r) = Ro(r) . It follows therefore that R,O(H-) - Zo(r) < S(r)

- TS(r+) < N (r+) - uo(l") , whence

(1) fos,rH) | < luo(m - uo(r)|+|20(r+) - Eo(r)l .

Again, since S{x) S(pk) + Fk(x) for x€J, , for all x € U[pn'qn)
n

we clearly have IS (x+)

S(x) . So (1) holds in fact for all r € [(e,d) .

Similarly, for all r € (e¢,d] we have
(2) los,r-y| < luo(r) - uo(r—)|+|20(r) - zo(r-)l .

Since Uy and 20 are VB on J , and since S(x) = 0 for xS ¢
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and S(z) =S(d) for x>d , it follows from (1) and (2) that ) |0(S,r#)| <=
r€R

and 2 |0(S,r—)| < ® , Hence by Theorem 4.8, f, € (IP)(J) where G = U Jo.
reR ¢ n "

Since, moreover, fb € (TP) (J) and fb = fb + fb , it follows that

f € (IP)(J) . This contradicts the condition EO n J0 # @ , and the

proof is complete.

COROLLARY 4.9.1. Suppose F:I ~R is (PVB) on I . Defining
F(x) = Fla)y for =z <a and F(z) = F(b) for x > Db , suppose further
that both TF(x-) and TF(a+) exist for all x € I , and that
Yy 0F,r=)| <= and ] |O(F,r+)| <= . Then (ap)F' € (TP)(I) .
r&T I
Proof. By (2.5), (ap)F' exists finitely a.e. on I and it is
measurable ([?], Lemma 3, p. 349). Then the proof follows by verifying

(which, by now, must be easy to the reader) that the functions

u(x) = L(x) = Fx) -F(@) + ) O(F,r-) + ) O(F,rt)
r<c r<x

satisfy the hypotheses of Theorem 4.9 with f = (ap)F' .

COROLLARY 4.9.2. Let F be as in Corollary 4.9.1. Then F can be
represented as F = G + H , where G tis T-continuous and (PAC) on I
and H is (PVB) on I and (ap)H' =0 a.e. on I . Also, this

representation is unique up to an additive constant.
Proof. By Corollary 4.9.1, (ap)F' € (TP)(IY . Then it is enough to
take G = (IP)((ap)F':I) and H=F - G .
5. Relation with other integrals

From (2.9) and Theorem 4.4 it follows that, for the ordinary limit
process T our (TP)-integral is equivalent to the Denjoy integral in the
wide sense ([16]1, p. 241). when T is the approximate limit process, it
has been shown in ([Z3], p. 352) that the (IP)-integral is substantially
more general than the various known approximately continuous integrals

(161, 1zy, 1131, 1271).
Again, it is known (/0] that the GM -integral includes the ChP—

integral, which is equivalent to the CnD- and VhD—integrals (181, 1291).
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Also, if F = GMn(f:I) then by definition F is Mh—continuous and (ACG)

on I and (ap)F' = f a.e. on I . Since, by (2.9), (ACG) implies
(PAC) , it follows that ChP = ChD = VhD C (TP) when T = Ch and that

GM% C (ITP) when T = Mn . The nth order Perron integral, 7! , of

Bullen [3] is equivalent to that of Bullen and Mukhopadhyay ([5], Theorem
27, p. 56), and it is closely related to the Cﬁ-l P-integral. 1In

particular Pn-integrability is equivalent to Ch—l P-integrability ([3],
Theorem 16, p. 228). Hence, Pn—integrability implies (TP)-integrability

with T = Cn—l . Finally, if F = (PCD) (f:I) then by definition ([14],

p. 102) F is PC-continuous and (ACG) on I and (ap)F' = f a.e. on
I . Therefore (PCD) C (IP) when T =PC.
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