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Abstract

The cubic version of the Lucas cryptosystem is set up based on the cubic recurrence relation of the
Lucas function by Said and Loxton [‘A cubic analogue of the RSA cryptosystem’, Bull. Aust. Math.
Soc. 68 (2003), 21–38]. To implement this type of cryptosystem in a limited environment, it is necessary
to accelerate encryption and decryption procedures. Therefore, this paper concentrates on improving
the computation time of encryption and decryption in cubic Lucas cryptosystems. The new algorithm
is designed based on new properties of the cubic Lucas function and mathematical techniques. To
illustrate the efficiency of our algorithm, an analysis was carried out with different size parameters and
the performance of the proposed and previously existing algorithms was evaluated with experimental data
and mathematical analysis.
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1. Introduction

As information technology becomes more developed and matures, security in
confidential data transmission has become increasingly crucial. Many different
strategies are employed to protect data from intruders, such as physical protection and
mathematical solutions for secrecy. Cryptography is one of the components of security
methods that protects information from unauthorised interception and tampering
during transfer. It is the study of techniques that use mathematical formulas and
computational algorithms to encrypt intelligible messages (plaintext) into unknown
codes (ciphertext), and convert them back to the original message by decrypting.
There are many cryptographic algorithms for protecting messages; these are classified
into symmetric key and asymmetric key (public key) algorithms, distinguished by the
number and type of keys [8]. These algorithms cannot be proved to be completely
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secure, but their use decreases the probability of messages being intercepted. An
analysis of the advantages and disadvantages of both classes shows that asymmetric
key algorithms, because of the use of pairs of keys for encryption and decryption,
are more secure than symmetric key algorithms. However, huge computations are
required for asymmetric key algorithms, leading to slow encryption and decryption
speeds. Therefore, the computational performance of public key cryptosystems is
always a challenge in cryptography research. Thus, to remedy this drawback, some
fast public key cryptosystems have been proposed, including the NTRU cryptosystem
which is based on algebraic structures of certain polynomial rings [6] and the Braid
groups based cryptosystem [5]. Other research has investigated improving some strong
existing public key cryptosystems, such as the RSA and the elliptic curve, using
mathematical techniques and computational algorithms [13, 17].

Lucas functions, proposed by Smith and Lennon [14], are one of several trapdoor
functions used in cryptography. These authors point out weaknesses of the most widely
used cryptosystem, RSA [11], and propose the Lucas (LUC) cryptosystem based on
the special form of second-order linear recurrence relations. The security of this type of
public key cryptosystem is analogous to RSA and depends on the difficulty of finding
a private key [1]. Smith and Lennon claim that the computational performance of the
LUC cryptosystem is more efficient than the RSA, and recently Brandner showed that
the LUC cryptosystem is 1.4 times more efficient than the RSA without using any
improvement techniques [2]. In 2003, Said and Loxton developed a new cryptosystem
by extending the quadratic version of Lucas sequence to cubic and called it the
LUC3 cryptosystem [12]. The strength of both the LUC and LUC3 cryptosystems
is dependent on using large prime numbers. However, computations with large prime
numbers require huge computation times and prohibit the implementation of Lucas
based cryptosystems in resource-constrained environments such as smart cards and
cell phones. So, mathematical and computational approaches are needed to speed up
computational efforts in the LUC3 cryptosystem.

Previous related work on a fast LUC cryptosystem includes the Yen and Laih
method based on a binary method [18]; Wang et al.’s addition chain method in [16];
doubling with the remainder method, which was proposed by Othman [9]; and the
Majid et al. method to improve computations based on new properties of Lucas
functions [7]. For the fast LUC3 cryptosystem, Said and Loxton also suggested the
binary method and used Toom–Cook arithmetic to reduce the computational effort of
encoding and decoding a message [12].

This paper concentrates on the LUC3 cryptosystem and its ability to increase the
efficiency of computations. The new properties of the cubic version of the Lucas
functions and previous experience of the fast LUC cryptosystem are used in Said and
Loxton’s LUC3 cryptosystem to accelerate the encoding and decoding of messages.
Section 2 gives a brief description of the LUC and LUC3 cryptosystems. The proposed
algorithm for a fast LUC3 cryptosystem is described in Section 3 and the analysis of
our algorithm and existing algorithms is given in Section 4.
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2. Overview of Lucas functions based cryptosystems

Lucas functions are defined as one-way functions used in cryptography, and are seen
as special linear recurrences. Suppose that P1,P2, . . . ,Pm are integers. Lucas functions
are solutions of the linear recurrence

Tn = P1Tn−1 + P2Tn−2 + · · · + PmTn−m.

According to the degree of this recurrence relation, the LUC and LUC3 cryptosystems
have been proposed as two different cryptosystems.

2.1. LUC cryptosystem. Assume that P and Q are two rational integers. The
standard Lucas sequences are given by two second-order linear recurrences:

V0 = 2, V1 = P, Vn = PVn−1 − QVn−2, for n ≥ 2;
U0 = 0, U1 = 1, Un = PUn−1 − QUn−2, for n ≥ 2.

If x2 − Px + Q = 0 is the characteristic equation of this recurrence relation, where α
and β are the roots of this polynomial equation, then the two functions, Vn and Un, are
derived from solving the equations as follows:

Vn(P,Q) = αn + βn,

Un(P,Q) =
αn + βn

α − β
.

Let P and N be two chosen numbers, with N the product of two prime numbers p
and q; P is the message. The encryption converts plaintext P and gets ciphertext C by
calculating Ve(P,Q) (mod N) or Ue(P,Q) (mod N), where Ve and Ue are the eth terms
of the Lucas sequences. For the decryption of ciphertext C, the value of the private key
d must be found so that de ≡ 1 (mod S (N)), where S (N) = lcm(p − (D/p),q − (D/q)),
D = C2 − 4, where (D/p) and (D/q) are Legendre symbols of D with respect to p and
q, and lcm is the least common multiple function. After finding the private key d, the
decryption process is done, and the plaintext is obtained by evaluating the dth term of
the Lucas sequence in Vd(P,Q) (mod N) or Ud(P,Q) (mod N).

2.2. LUC3 cryptosystem. The LUC3 cryptosystem is a public key cryptosystem
that uses the third-order linear recurrence of the Lucas function for encryption and
decryption. Consider P, Q and R as three integer coefficients, so that

Xn = PXn−1 − QXn−2 + RXn−3. (2.1)

Let α, β and γ be the three roots of the cubic f (x) = x3 − Px2 + Qx − R = 0. The cubic
Lucas sequences Vn, Un and Wn are the three basic solutions of the above recurrence,
namely,

Vn(P,Q,R) = αn + βn + γn,

Un(P,Q,R) = αn + ωβn + ω2γn,

Wn(P,Q,R) = αn + ω2βn + ωγn,
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where ω = (−1 +
√
−3)/2 is a cube root of unity. The sequence Vn is primarily used

in the LUC3 cryptosystem. Suppose R = 1 and (P,Q) constitutes a message and N
is the product of two prime numbers p and q. The encryption process uses public
key e and computes the ciphertexts C1 and C2 by C1 = Ve(P, Q, 1) (mod N) and
C2 = Ve(Q, P, 1) (mod N), where Ve is the eth term of (2.1) with initial values V0 = 3,
V1 = α + β + γ = P and V2 = P2 − 2Q. So

E(P,Q) = (Ve(P,Q, 1),Ve(Q, P, 1)) = (C1,C2) (mod N).

In the deciphering process, the receiver must calculate ed ≡ 1 (mod φ(N)) for C1 and
C2 to choose the proper private key, d. In the case of the third-order linear recurrence
sequence, the Euler totient function is defined as φ(N) = p̄1 p̄2 and the value of p̄i is
given by

p̄i =


p2

i + pi + 1 if f (x) is of type t[3] (mod pi),
p2

i − 1 if f (x) is of type t[2, 1] (mod pi),
pi − 1 if f (x) is of type t[1] (mod pi).

This notation follows Said and Loxton: f (x) is of type t[3] if it is irreducible, of type
t[2, 1] if it factors as an irreducible quadratic times a linear factor, and of type t[1] if it
factors into three linear factors.

Finally, the original messages P and Q are recovered by means of

D(C1,C2) = (Vd(C1,C2, 1),Ve(C2,C1, 1)) = (P,Q) (mod N).

3. The fast LUC3 cryptosystem

As with the LUC cryptosystem, the security of the LUC3 cryptosystem is dependent
on the difficulty of finding private key d from public key e and N. Therefore, choosing
large integers for e and N increases the strength of the LUC3 cryptosystem. However,
it causes an increasing number of modular and multiplication operations that are
time-consuming. The efficiency of the LUC3 cryptosystem depends on the ability to
compute the nth cubic Lucas function Vn(P,Q, 1) in a reasonable amount of time. In
this section, the existing algorithm for the fast LUC3 is reviewed and the new algorithm
for improving the cost of computation time is proposed.

3.1. Existing algorithm. Suppose that α, β and γ are the roots of the the cubic
polynomial equation f (x) = x3 − Px2 + Qx − R = 0. The coefficients P, Q and R and
the roots α, β and γ are related by P = α + β + γ, Q = αβ + αγ + βγ, R = αβγ and we
assume that R = 1. Due to these relations, Said and Loxton mentioned some properties
of the Lucas sequence Vn = αn + βn + γn as follows:

Vn(Q, P, 1) = (αβ)n + (αγ)n + (βγ)n,

V−n(P,Q, 1) = α−n + β−n + γ−n = Vn(Q, P, 1),

V2n(P,Q, 1) = α2n + β2n + γ2n = V2
n (P,Q, 1) − 2V−n(P,Q, 1),

V−2n(P,Q, 1) = α−2n + β−2n + γ−2n = V2
−n(P,Q, 1) − 2Vn(P,Q, 1).
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For efficient computation with LUC3, they also presented a binary method based
on doubling rules to calculate the nth terms of Lucas sequences Vn(P, Q, 1) and
V−n(P, Q, 1) simultaneously. With their method, the signatures of n (mod N) are
defined as follows:

V−n−1, V−n, V−n+1, Vn−1, Vn, Vn+1 (mod N).

All the above signatures are computed by applying doubling rules on the signatures of
m (mod N) where m < n:

V−2m−2, V−2m, V−2m+2, V2m−2, V2m, V2m+2 (mod N).

The gaps between the above signatures are called centred signatures, which can be
written by (2.1) as follows:

V−2m−1 = V−2m+2 − PV−2m+1 + QV−2m (mod N),
V−2m+1 = PV−2m − QV−2m−1 + V−2m−2 (mod N),
V2m−1 = V2m+2 − PV2m+1 + QV2m (mod N),
V2m+1 = PV2m − QV2m−1 + V2m−2 (mod N).

Solving each pair of the above equations yields centred signatures. So, V−2m−1 and
V2m+1 are found by (3.1) and (3.2). In both equations, the value of (PQ − 1)−1 is
obtained by calculating the extended Euclidean algorithm of (PQ − 1) and N. By
replacing these equations in the above relations, the equations for V−2m+1 and V2m−1
are computed:

V−2m−1 = ((P2 − Q)V−2m + PV−2m−2 − V−2m+2)(PQ − 1)−1 (mod N) (3.1)

V2m+1 = ((Q2 − P)V2m + QV2m+2 − V2m−2)(PQ − 1)−1 (mod N). (3.2)

Now let n = (n0, n1, . . . , nr−1)2 be the binary representation of n, where n0 and nr−1 are
the most and least significant bits, respectively. This array of bits could be called the
Lucas binary chain. If the first k bits of a binary number produce the number m, then
the first k + 1 bits produce 2m or 2m + 1, depending on whether ni is equal to 0 or 1.
Therefore, Said and Loxton’s fast algorithm is developed by Algorithm 1.

Algorithm 1: Said and Loxton’s method
Input: P,Q, p, q, n
Output: Vn(P,Q, 1),V−n(P,Q, 1)
Initialise Vn = V1 and V−n = V−1;
For each i from 1 to r − 1 do

If ni equal to 0 Then
Compute signatures V−2n−2,V−2n,V−2n+2,V2n−2,V2n,V2n+2 (mod N);
Compute centred signatures V−2n−1,V−2n+1,V2n−1,V2n+1 (mod N);
Set V−n+1 = V−2n+1,V−n = V−2n,V−n−1 = V−2n−1;
Set Vn−1 = V2n−1,Vn = V2n,Vn+1 = V2n+1;

Else
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Compute signatures V−2n−2,V−2n,V−2n+2,V2n−2,V2n,V2n+2 (mod N);
Compute centred signatures V−2n−1,V−2n+1,V2n−1,V2n+1 (mod N);
Set V−n+1 = V−2n,V−n = V−2n−1,V−n−1 = V−2n−2;
Set Vn−1 = V2n,Vn = V2n+1,Vn+1 = V2n+2;

EndIf
EndFor
Return (Vn(P,Q, 1),V−n(P,Q, 1));

This algorithm requires
⌈
log n

⌉
steps. In each step, there are many modular

multiplications running in O(n2). Thus, to economise oncomputation time, they
suggest using Toom–Cook arithmetic, which can reduce the running time to O(n1.4)
in each step. The pseudo-code of the Toom–Cook three-way algorithm for M = A × B
is shown in Algorithm 2 [3].

Algorithm 2: Toom–Cook three-way multiplication
Input: 0 < A and B < βn A = a0 + a1x + a2x2, B = b0 + b1x + b2x2; with x = βk;
Output: M = A × B = c0 + c1β

k + c2β
2k + c3β

3k + c4β
4k; with k = n/3;

Compute v0 = ToomCook3(a0, b0);
Compute v1 = ToomCook3(a02 + a1, b02 + b1); where a02 = a0 + a2 and b02 = b0 + b2;
Compute v−1 = ToomCook3(a02 − a1, b02 − b1);
Compute v2 = ToomCook3(a0 + 2a1 + 4a2, b0 + 2b1 + 4b2);
Compute v∞ = ToomCook3(a2, b2);
Compute t1 = (3v0 + 2v−1 + v2)/6 − 2v∞ and t2 = (v1 + v−1)/2;
Set c0 = v0, c1 = v1 − t1, c2 = t2 − v0 − v∞, c3 = t1 − t2, c4 = v∞;
Substitute in M = A × B = c0 + c1β

k + c2β
2k + c3β

3k + c4β
4k;

Return (M);

3.2. Proposed algorithm. The following algorithm is proposed to decrease the
number of modular multiplications with respect to the existing algorithm in order
to improve computation time. As mentioned, Said and Loxton’s method needs to
calculate six signatures by doubling rules and four centred signatures, which are
found by these six signatures. Therefore, it not only increases the number of modular
multiplications, but also avoids calculating all signatures of each step at the same
time. The proposed algorithm is developed by new properties of the Lucas functions
and uses addition–subtraction chains. In this sequential algorithm, the number of
signatures required to calculate Vn and V−n is reduced, and the centred signatures are
found by the signatures of the previous step. Proposition 1 describes properties that
can be used in our algorithm to calculate Lucas sequences Vn and V−n.

Proposition 3.1. Let n and m be two integers with n > m. The (n + m)th term of the
cubic Lucas function Vn+m is obtained by (3.3):

Vn+m = VnVm − Vn−mV−m + Vn−2m (mod N). (3.3)
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Proof. According to the relationships of the LUC3 cryptosystem, (3.3) is proved as
follows:

Vn+m = αn+m + βn+m + γn+m

= (αn + βn + γn)(αm + βm + γm) − αnβm − αnγm − αmβn − βnγm − αmγn − βmγn

= VnVm − α
mβm(αn−m + βn−m) − αmγm(αn−m + γn−m) − βmγm(βn−m + γn−m)

= VnVm − α
mβm(Vn−m − γ

n−m) − αmγm(Vn−m − β
n−m) − βmγm(Vn−m − α

n−m)

= VnVm − Vn−m(αmβm + αmγm + βmγm) + αmβmγmγn−2m + αmβmγmβn−2m

+ αmβmγmαn−2m

= VnVm − Vn−mV−m + Vn−2m.

This completes the proof. �

By substituting n and m with various values in (3.3), the new equations obtained are
as follows. Replacing m and n by −n and −n + 1 respectively yields

V−2n+1 = V−n+1V−n − PVn + Vn+1 (mod N). (3.4)

Replacing m by n − 1 yields

V2n−1 = VnVn−1 − PV−n+1 + V−n+2 (mod N), (3.5)

and replacing m by n and n by n + 1 yields

V2n+1 = Vn+1Vn − PV−n + V−n+1 (mod N). (3.6)

The method of the proposed algorithm is such that first the Lucas addition–subtraction
chain for a positive integer n is computed and then the terms of the Lucas sequences
for all elements of this chain are evaluated to obtain Vn and V−n.

Definition 3.2. The Lucas addition–subtraction chain for a positive integer n is a set of
integers L(n) = {a1 = 1, a2, a3, . . . , ar = n}, with chain length r, such that each element
ak of the chain can be written as a sum, difference or successor of preceding elements
of the set. Thus, for all k ∈ {1, . . . , r}, there exist i, j ∈ N, 0 ≤ j, i < k, such that

ak = |ai − a j| or ak = ai + a j or ak = ai + 1.

From the many methods of generating addition–subtraction chains, we choose the
binary strategy for our proposed algorithm [15]. Let L(n) denote the Lucas addition–
subtraction chain. The method of calculating L(n) is as follows:

L(n) =

n − 1 if n is odd,
n/2 if n is even.

For example the Lucas addition–subtraction chain for V198 with n = 198 is L(n) =

{1, 2, 3, 6, 12, 24, 48, 49, 98, 99, 198}. To compute V198, the values of V1, . . . ,V99,V198
need to be calculated at each step.
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After generating L(n), define its length x as the number of elements of the chain
and define the array k[x] of length x and with elements 0 or 1 according as the
corresponding elements of L(n) are even or odd. Algorithm 3 describes the proposed
fast LUC3 algorithm executed with an array of size x.

Algorithm 3: Proposed algorithm
Input: n, P,Q, p, q, x, k[x]
Output: Vn(P,Q, 1) and V−n(P,Q, 1)
Initialise Vn = V1 and V−n = V−1;
For each i from 1 to x − 1

If k[i] equal to 0 Then
Compute V−2n+2,V−2n+1,V−2n,V2n−1,V2n,V2n+1 (mod N);
Set V−n+1 = V−2n+1,V−n = V−2n,V−n+2 = V−2n+2;
Set Vn−1 = V2n−1,Vn = V2n,Vn+1 = V2n+1,

Else
Compute Vn+2,V−n−1 (mod N);
Set V−n = V−n−1,V−n+1 = V−2n,V−n+2 = V−2n+1;
Set Vn−1 = V2n,Vn = V2n+1,Vn+1 = Vn+2;

EndIf
EndFor
Return (Vn(P,Q, 1),V−n(P,Q, 1));

In this algorithm, there are three signatures found by doubling rules, three centred
signatures V−2n+1, V2n−1 and V2n+1 which are computed by (3.4)–(3.6), and two other
signatures Vn+2 and V−n−1 are acquired from the defining equation of the Lucas
sequence as follows:

Vn+2 = PVn+1 − QVn + Vn−1 (mod N),
V−n−1 = V−n+2 − PV−n+1 + QV−n (mod N).

Another technique found effective at speeding up computations is decreasing the
computation time of modular multiplication. The calculation of modular multiplication
has a running time of O(n2). To reduce this cost, the fast Fourier transform
multiplication (FFTM) method is used, combined with Barrette modular reduction
to optimise the multiplication and modular operations. Given M = A × B and R = M
(mod N), the calculation of both arithmetic operations is described in Algorithms 4
and 5. More details about FFT, inverse FFT functions and Barrett modular reduction
can be found in [4, 10].

Algorithm 4: Fast Fourier transform multiplication
Input: A(x) =

∑(s/2)−1
i=0 aixi, B(x) =

∑(s/2)−1
i=0 bixi;

Output: M = A × B;
Compute a = FFT (A(x)) and b = FFT (B(x));
Compute pointwise multiplication of a and b; mi = ai × bi;
Compute inverse FFT of mi to obtain a vector of coefficients; IFFT (mi);
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Convert the coefficients to integers according to their radix, M.
Return (M);

Algorithm 5: Barrett modular reduction method
Input: M = (m1,m2, . . . ,mn)s and N = (n1, n2, . . . , nn)s;
Output: R = M mod N;
Compute q = ((M div bk+1)µ) div bk+1; where k = logs N and µ = b2k div N;
Compute R = M mod bk+1 − (q × N) mod bk+1;
If (R < 0) Then

R = R + bk+1;
EndIf
While (R ≥ N) do

R = R − N;
EndWhile
Return (R);

4. Results and discussion
This section discusses the computational performance of the LUC3 cryptosystem

using our proposed algorithm. After implementing both binary and addition–
subtraction methods in the C# programming language, the methods were tested with
different large public key sizes and different N values. Finally, the computation times
required in both algorithms were compared using mathematical analysis.

4.1. Implementation. In Lucas-based cryptosystems, reducing the number and
computation time of modular multiplication operations can increase efficiency. To
evaluate the performance of both algorithms, the algorithms were tested with two
cases. In the first case, the value of N is considered constant, and the size of the
public key was increased; then the Lucas number was calculated. In the second case,
the value of the Lucas number is computed with a public key with a constant value,
and the value of N is increased. The computation times in both cases are shown in
Tables 1 and 2. In both tables, the encryption and decryption times using the addition–
subtraction chain method are shown by TeA and TdA and for the binary method, they
are represented as TeB and TdB.

Regarding both proposed and existing methods, encryption times TeA and TeB
are obtained by computing E(P, Q) = (Ve(P, Q, 1), Ve(Q, P, 1)) = (C1,C2) (mod N),
and decryption times are found by D(C1,C2) = (Vd(C1,C2, 1),Ve(C2,C1, 1)) = (P,Q)
(mod N), where P and Q are messages and C1 and C2 are ciphertexts. Comparing the
computation times of both algorithms in Tables 1 and 2 shows a high efficiency of the
proposed algorithm. To make a comparison, the performance of both algorithms was
tested using numbers that were not overly large, because the binary method requires
huge computation time and needs a powerful system with high memory and CPU.
As displayed in Table 2, increasing the value of N results in increased encryption
and decryption computation times; in some cases, our system could not complete the
computations because of lack of memory. Thus, we continued the evaluation of the
proposed algorithm for large sizes of parameters, and the results are shown in Table 3.
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Table 1. Encryption and decryption times for different public key sizes, e.

Public key
e (digits)

Message
(digits)

N
(digits)

TeA

(seconds)
TdA

(seconds)
TeB

(seconds)
TdB

(seconds)
10 50 50 0.442 3.309 9.151 64.598
20 50 50 0.983 3.471 18.646 66.947
30 50 50 1.670 3.814 29.604 70.637
40 50 50 2.441 4.174 41.672 76.589

Table 2. Encryption and decryption times for different prime numbers; N = p × q.

Public key
e (digits)

Message
(digits)

N
(digits)

TeA

(seconds)
TdA

(seconds)
TeB

(seconds)
TdB

(seconds)
50 50 60 3.637 6.215 64.322 138.675
50 50 70 4.136 7.779 83.442 212.997
50 50 80 4.297 8.613 99.932 ∞

50 50 90 5.009 11.462 122.824 ∞

Table 3. Encryption and decryption times for different sizes of e and N, by proposed algorithm.

Public key
e (digits)

Message
(digits)

N
(digits)

TeA

(seconds)
TdA

(seconds)
100 200 150 14.634 26.344
200 200 250 50.207 81.042
300 200 350 106.893 141.88
400 200 450 195.218 207.839

4.2. Analyses and discussion. Analysing both algorithms for fast LUC3

cryptosystems shows that both algorithms generate an array of bits by Lucas numbers,
then scan each bit sequentially to compute Vn. To scan each bit, the binary method
needs six modular multiplications for signatures, found using doubling rules and 14
modular multiplications for computing centred signatures. The addition–subtraction
method depends on the value of bit 0 or 1, uses nine or four modular multiplications
for scanning each bit. The time needed to create an array of Lucas numbers for Vn in
the binary method is

⌈
log2 n

⌉
. In the addition–subtraction method, the worst case is

when the elements of an array are 1 and 0 one by one, which is found in 2 ×
⌊
log2 n

⌋
steps. The best case in this method is

⌊
log2 n

⌋
, and this occurs when all the elements

are 0. Therefore, if TA and TB are the times required to calculate Vn in the addition–
subtraction and binary methods, multiplying the length of an array by the number of
modular multiplications for each method produces the ratio of the expected time to
compute Vn by the proposed algorithm to that by the binary method. The worst and
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best ratios, rworst and rbest, are respectively

rworst = lim
n→∞

13 ×
⌊
log2 n

⌋
20 ×

⌈
log2 n

⌉ � 0.65,

rbest = lim
n→∞

9 ×
⌊
log2 n

⌋
20 ×

⌈
log2 n

⌉ � 0.45.

Without using a method to reduce the computation time of modular multiplication,
our method is an average of 55% better than the binary method. This ratio
increases remarkably using FFTM with Barrett modular reduction. Using FFTM with
Barrett modular reduction in each signature computation will reduce the modular
multiplication time to O(n log n). Therefore, the proposed algorithm can be used to
improve the computational performance of the LUC3 cryptosystem.

5. Conclusion

A new fast algorithm is proposed for improving the computation performance of
LUC3 cryptosystems. Using this method decreases the computation cost of modular
multiplication with respect to the existing algorithm, and results in a reduction in
the computation time needed for encryption and decryption in resource-constrained
environments. Furthermore, in contrast to the binary method, all resulting signatures
in each step are completely dependent on the signatures of previous steps. This causes
the simultaneous calculation of signatures during the process of scanning the bits, and
opens a path to the development of a parallel algorithm to make the performance even
more efficient.
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