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Abstract

Optimal control problems of stochastic switching type appear frequently when making
decisions under uncertainty and are notoriously challenging from a computational
viewpoint. Although numerous approaches have been suggested in the literature to
tackle them, typical real-world applications are inherently high dimensional and usually
drive common algorithms to their computational limits. Furthermore, even when
numerical approximations of the optimal strategy are obtained, practitioners must apply
time-consuming and unreliable Monte Carlo simulations to assess their quality. In
this paper, we show how one can overcome both difficulties for a specific class of
discrete-time stochastic control problems. A simple and efficient algorithm which yields
approximate numerical solutions is presented and methods to perform diagnostics are
provided.
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stochastic control, duality.

1. Introduction

Stochastic switching problems with linear state dynamics are common in applications.
Surprisingly, most of the classical numerical solution methodologies do not take
advantage of their special structure. In what follows, we explain how to adapt the
philosophy of function- and regression-based methods to obtain an approximation of
the value function in a rather generic way. The main thrust of the present paper is to
demonstrate that by exploiting the assumption of linear state dynamics, it becomes
possible to achieve remarkably efficient numerical schemes to obtain approximate
solutions and assess their distance to optimality.
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When making decisions under uncertainty in discrete time, mathematical problems
are usually formulated within the framework of Markov decision theory (see [2, 4,
6, 12]). In this work, we consider a specific Markov decision model whose state
evolution consists of one discrete and one continuous component. To be more specific,
we assume that the state space E = P × Rd is the product of a finite space P and the
Euclidean space Rd. We suppose that the first component p ∈ P is deterministically
driven by a finite set A of actions in terms of a function

α : P × A→ A, (p, a) 7→ α(p, a),

where α(p, a) ∈ A is the new value of the discrete component of the state, if its
previous discrete component value was p and the action a ∈ A was taken by the
controller. Furthermore, we assume that the continuous state component evolves as
an uncontrolled Markov process (Zt)T

t=0 on Rd, whose evolution is driven by random
linear transformations

Zt+1 = Wt+1Zt

with pre-specified independent and integrable disturbance matrices (Wt)
T
t=1. In this

setting, the transition operators are given by

Ka
t v(p, z) = E(v(α(p, a),Wt+1z)) for t = 0, . . . ,T − 1, a ∈ A,

for all (p, z) ∈ E acting on each function v : E→ R, where the above expectation exists.
At each time t, we are given the t-step reward function rt : E × A 7→ R, where rt(x, a)
represents the reward for applying an action a ∈ A when the state of the system is x ∈ E
at time t. At the end of the time horizon, at time T , it is assumed that no action can be
taken. Here, if the system is in a state x, a scrap value rT (x), which is described by a
pre-specified scrap function rT : E → R, is collected.

The calculation of the optimal policy is addressed in the following setting. We
introduce for t = 0, . . . ,T − 1 the so-called Bellman operator

Ttv(x) = sup
a∈A

(rt(x, a) +Ka
t v(x)), x ∈ E,

which acts on each measurable function v : E → R, where the integrals Ka
t v for all

a ∈ A exist. Further, consider the Bellman recursion

vT = rT , vt = Ttvt+1 for t = T − 1, . . . , 0.

Under appropriate assumptions, there exists a recursive solution (v∗t )T
t=0 to the Bellman

recursion, which gives the so-called value functions and determines an optimal policy
π∗ via

π∗t (x) = argmax
a∈A

(rt(x, a) +Ka
t v∗t+1(x)), x ∈ E,

for all t = 0, . . . , T − 1. In this work, we concentrate on Markov decision problems
which satisfy specific additional assumptions under which the solutions to the Bellman
recursion exist. This enables us to focus on finding efficient numerical solutions.
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If we assume that all reward functions

rt(p, ·, a) for t = 0, . . . ,T − 1, p ∈ P, a ∈ A,

and scrap functions rT (p, ·), p ∈ P, are convex and globally Lipschitz continuous in
the second component, then we obtain a specific situation. Markov decision problems
satisfying these assumptions are referred to as convex switching systems in [8]. The
remainder of the paper is organized as follows. In Section 2, we describe a modified
dynamic programming algorithm that approximates value functions by exploiting the
linearity of the evolution of the state variables. In order to assess the distance to
optimality of these approximations, diagnostics methods are provided in Section 3
that can be used to perform solution assessment. In Section 4, we present numerical
results in the context of a storage management problem. The paper ends with some
concluding remarks in Section 5.

2. Solution techniques

The first step in obtaining a numerical solution to the backward induction

vT = rT , vt = Ttvt+1 for t = T − 1, . . . , 0

is an appropriate discretization of the Bellman operator

Ttv(p, z) = max
a∈A

(rt(p, z, a) + E(v(α(p, a),Wt+1z))).

For this reason, we consider a modified Bellman operator

T n
t v(p, z) = max

a∈A

rt(p, z, a)+
n∑

k=1

νn
t+1(k)v(α(p, a),Wt+1(k)z)


with the expectation replaced by its numerical counterpart, which is defined in terms
of an appropriate distribution sampling (Wt+1(k))n

k=1 of each disturbance Wt+1 with
corresponding probability weighting (νn

t+1(k))n
k=1. In the resulting modified backward

induction

v(n)
T = rT , v(n)

t = T n
t v(n)

t+1 for t = T − 1, . . . , 0 (2.1)

the functions (v(n)
t )T

t=0 need to be described by algorithmically tractable objects. Note
that if all reward and scrap functions are convex in the continuous variable, then the
modified value functions (2.1) are also convex. Then we approximate these value
functions in terms of piecewise linear and convex functions in the following manner.
First, we introduce the so-called sub-gradient envelope SG f of a convex function
f : Rd → R on a grid G ⊂ Rd as SG f =

∨
g∈G(Og f ), which is a maximum of the sub-

gradients Og f of f on all grid points g ∈ G. Using the sub-gradient envelope operator,
we define the double-modified Bellman operator as

T
m,n
t v(p, ·) = SGm max

a∈A

(
rt(p, ·, a)+

n∑
k=1

νn
t+1(k)v(α(p, a),Wt+1(k) ·)

)
,
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where the operator SGm stands for the sub-gradient envelope on the grid Gm =

{g1, . . . , gm}. The corresponding backward induction

v(m,n)
T (p, ·) = SGm rT (p, ·), p ∈ P, (2.2)

v(m,n)
t (p, ·) = T

m,n
t v(m,n)

t+1 (p, ·) for t = T − 1, . . . , 0 (2.3)

yields the so-called double-modified value functions (vn,m
t )T

t=0, which enjoy excellent
asymptotic and algorithmic properties. Namely, under appropriate additional
assumptions, the double-modified value functions converge uniformly to the true value
functions almost surely on compact sets (see [8]). These assumptions include the
convexity and global Lipschitz continuity of the rewards and scraps, the integrability
of all disturbances and some restrictions on the distribution sampling and grid density.

However, the algorithmic properties of the scheme (2.2) and (2.3) are most essential
for the purpose of this work. Since the double-modified value functions (v(m,n)

t )T
t=0

are piecewise linear and convex, they can be expressed in a compact and appealing
form, using matrix representations. Note that any piecewise convex function f can be
described by a matrix where each linear functional will be represented by one of the
matrix’s rows. To denote this relation, let us agree on the following notation: given
a function f and a matrix F, we write f ∼ F whenever f (z) = max(Fz) holds for all
z ∈ Rd. Let us emphasize that the sub-gradient envelope operation SG on a grid G is
reflected in terms of a matrix representative by a specific row-rearrangement operator

f ∼ F ⇔ S f ∼ ΥG[F],

where the row-rearrangement operator ΥG associated with the grid G = {g1, . . . , gm} ⊂

Rd acts on the matrix F with d columns as follows:

(ΥGF)i,· = Largmax(Fgi),· for all i = 1, . . . ,m. (2.4)

Remark 2.1. The implementation of the row-rearrangement operator ΥG defined in
(2.4) is easily obtained when the grid is represented by a matrix G, whose rows contain
grid elements as row vectors. Having represented a convex function in terms of a
matrix F, the row-rearrangement operator is illustrated by the following command in
the language R:

F[apply(F%*%t(G), FUN=which.max, MARGIN=2)].

For piecewise convex functions, the result of maximization, summation and
composition with linear mapping, followed by the sub-gradient envelope, can be
obtained using their matrix representatives. More precisely, if f1 ∼ F1 and f2 ∼ F2,
then it follows that

SG( f1 + f2) ∼ ΥG(F1) + ΥG(F2),
SG( f1 ∨ f2) ∼ ΥG(F1 t F2),

SG( f1(Wt+1(k)·) ∼ ΥG(F1Wt+1(k)),

where the operator t stands for binding matrices by rows, which yields a matrix whose
rows contain all rows from each participating matrix.
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Remark 2.2. The row-maximization operator t is implemented by simple binding-
by-row of the matrices F1, F2 representing the corresponding functions, which can be
implemented in R by

rbind(F1, F2).

Under the assumptions of global Lipschitz continuity and convexity for scraps and
reward functions, the backward induction (2.2) and (2.3) can be expressed in terms
of the matrix representatives Vm,n

t (p) of the value functions v(m,n)
t (p, ·) for p ∈ P,

t = 0, . . . , T . Since the double-modified backward induction involves maximization,
summations and compositions with linear mappings applied to piecewise linear convex
functions, it can be rewritten in terms of matrix operations. Now, let us present the
resulting algorithm.

Algorithm 1: Double-modified backward induction
1 Pre-calculations: Given a grid Gm = {g1, . . . , gm}, implement the

row-rearrangement operator Υ = ΥGm and the row-maximization operator
⊔

a∈A.
Determine a distribution sampling (Wt(k))n

k=1 of each disturbance Wt with the
corresponding weights (νt(k))n

k=1 for t = 1, . . . ,T . Given reward functions (rt)T−1
t=0

and scrap value rT , determine the normal form of the matrix representatives of
their sub-gradient envelopes

SGm rt(p, ·, a) ∼ Rt(p, a), SGm rT (p, ·) ∼ RT (p)

for t = 0, . . . ,T − 1, p ∈ P and a ∈ A. Introduce matrix representatives of each
value function

v(m,n)
t (p, ·) ∼ Vt(p) for t = 0, . . . ,T, p ∈ P

which are obtained via the following matrix form of the backward induction:
2 Initialization: Start with the matrices

VT (p) = RT (p) for all p ∈ P.

3 Recursion: For t = T − 1, . . . , 0, calculate for p ∈ P

Vt(p) =
⊔
a∈A

(
Rt(p, a) +

n∑
k=1

νt+1(k)Υ[Vt+1(α(p, a)) ·Wt+1(k)]
)
. (2.5)

Remark 2.3. The choice of the weights (νt+1(k))n
k=1 can be derived from appropriate

discretization. Here, a sub-martingale based sampling has been suggested by Hinz [8].
However, for Monte Carlo based procedures, the matrices (Wt+1(k))n

k=1 can be obtained
from independent identically distributed realizations of Wt+1 with equal weights
(νt+1(k) = 1/n)n

k=1.
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Remark 2.4. Numerical solutions for stochastic control problems have been
considered in numerous publications (see [11]). For switching and stopping problems,
function-based methods of the least-squares approach [10] are popular. In one of our
previous works [9], these least-squares methods are compared to our convex switching
approach.

3. Solution diagnostics
Convergence properties of regression based methods for numerical solutions of

Markov decision problems have been extensively studied by Belomestny et al. [3].
Bounds estimation for optimal stopping problems has been discussed in the

literature [1, 7, 13] and extended by Rogers [14] to a certain class of discrete-
time stochastic control problems. The technical note [15] discusses optimal stopping
problems in the framework of partial observation, and uses particle filtering techniques
to assess the quality of a numerical solution in terms of duality bounds. It also
addresses the connection to the variance reduction technique.

In what follows, we present an adaptation of the work of Rogers [14] to obtain upper
and lower bound estimation of an approximate solution. We shall use ωk to represent
a realization of the random experiment. Given a policy π = (πt)T−1

t=0 , all actions and
positions can be determined recursively via

aπt := πt(pπt ,Zt), pπt+1 := α(pπt , a
π
t ) for t = 0, . . . ,T − 1.

For such a policy, having started at pπ0 = p0 and Z0 = z0, the policy value

vπ0(p0, z0) = E
(T−1∑

s=0

rs(pπs ,Zs, aπs ) + rT (pπT ,ZT )
)

is the expected value of a test run

Vπ
0(p0, z0) =

T−1∑
s=0

rs(pπs ,Zs, aπs ) + rT (pπT ,ZT ).

Since vπ0(p0, z0) = E(Vπ
0(p0, z0)), the value function

v∗0(p0, z0) = supπv
π
0(p0, z0) = vπ

∗

0 (p0, z0)

can be estimated from below via a Monte Carlo method in the following way. By the
strong law of large numbers,

lim
K→∞

1
K

K∑
k=1

Vπ
0(p0, z0)(ωk) = vπ0(p0, z0) ≤ v∗0(p0, z0),

given K ∈ N independent realizations {ω1, . . . , ωK}. In principle, each Monte Carlo
trial can be computed backwards recursively as

Vπ
T (p, z) = rT (p, z), (3.1)
Vπ

t (p, z) = rt(p, z, πt(p, z)) +Vπ
t+1(α(p, πt(p, z)),Wt+1z) for t = T − 1, . . . , 0. (3.2)

Such a procedure is frequently referred to as back-testing. Although the back-testing
may be useful for practical purposes, convincing a practitioner by satisfactory results,
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it does not clarify how far these outcomes are from the theoretically best possible
results.

In the remainder of the section, we suggest a sound solution to this question by
means of a diagnostic method. Given a starting point (p0, z0), we show how the gap

[vπ0(p0, z0), vπ
∗

0 (p0, z0)] (3.3)

between a given strategy π and the optimal strategy π∗ can be assessed. The
methodology is based on a finite sample {ω1, . . . , ωK} of trajectory realizations and
utilizes a built-in variance reduction technique to derive tight (close) confidence
bounds for upper and lower estimates of the interval (3.3).

Let us focus on the upper bound first. Consider a sequence ϕ = (ϕt)T
t=1 of random

mappings
ϕt : P × Rd × A ×Ω→ R, (p, z, a, ω) 7→ ϕt(p, z, a)(ω), (3.4)

which, for t = 1, . . . ,T , satisfy

E(ϕt(p, z, a)) = 0, p ∈ P, z ∈ Rd, a ∈ A, (3.5)

such that the σ-algebras

σ(ϕt(p, z, a),Wt; a ∈ A, p = P, z ∈ Rd) for t = 1, . . . ,T are independent. (3.6)

Given such ϕ = (ϕt)T
t=1, introduce random functions (v̄ϕt )T

t=0, with v̄ϕt : P × Rd ×Ω→ R
for t = 0, . . . ,T , which are recursively defined for t = T, . . . , 1 via

v̄ϕT (p, z) = rT (p, z), (3.7)
v̄ϕt (p, z) = max

a∈A
(rt(p, z, a) + ϕt+1(p, z, a) + v̄ϕt+1(α(p, a),Wt+1z)). (3.8)

Using (v̄ϕt )T
t=0, the following result holds (see [9]).

Theorem 3.1. (i) Given ϕ = (ϕt)T
t=1 as in (3.4) satisfying (3.5) and (3.6), introduce

(v̄ϕt )T
t=0 by (3.8). For each policy π = (πt)T−1

t=0 , its value (vπt )T
t=0 is dominated from

above as

vπt (p, z) ≤ E(v̄ϕt (p, z)) for all t = 0, . . . ,T, p ∈ P, z ∈ Rd. (3.9)

(ii) Given the value (vπ
∗

t )T
t=0 of the optimal policy π∗ = (π∗t )T−1

t=0 , define (ϕ∗t )T
t=1 by

ϕ∗t+1(p, z, a) = E(vπ
∗

t+1(α(p, a),Wt+1z)) − vπ
∗

t+1(α(p, a),Wt+1z) (3.10)

for all p ∈ P, z ∈ Rd, a ∈ A and t = 0, . . . ,T − 1. Then the mappings (ϕ∗t )T
t=1 satisfy

(3.4)–(3.6) such that inequality (3.9) holds with

vπ
∗

t (p, z) = v̄ϕ
∗

t (p, z) for all t = 0, . . . ,T, p ∈ P, z ∈ Rd.

Given a sequence ϕ = (ϕt)T
t=1 satisfying (3.5) and (3.6), we introduce the random

functions (vπ,ϕt )T
t=0 with vπ,ϕt : P × Rd × Ω→ R for t = 0, . . . , T , which are recursively

defined for t = T, . . . , 1 via

vπ,ϕT (p, z) = rT (p, z), (3.11)
vπ,ϕt (p, z) = rt(p, z, πt(p, z)) + ϕt+1(p, z, πt(p, z)) + vπ,ϕt+1(α(p, πt(p, z)),Wt+1z). (3.12)

Using (vπ,ϕt )T
t=0, the following theorem holds (see [9]).
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Theorem 3.2. (i) Given ϕ = (ϕt)T
t=1 as in (3.4) satisfying (3.5) and (3.6) and a policy

π = (πt)T−1
t=0 , introduce (vπ,ϕt )T

t=0. We have

vπt (p, z) = E(vπ,ϕt (p, z)) for all t = 0, . . . ,T, p ∈ P, z ∈ Rd. (3.13)

(ii) Given the value (vπ
∗

t )T
t=0 of the optimal policy π∗ = (π∗t )T−1

t=0 , define (ϕ∗t )T
t=1 by

ϕ∗t+1(p, z, a) = E(vπ
∗

t+1(α(p, a),Wt+1z)) − vπ
∗

t+1(α(p, a),Wt+1z)

for all p ∈ P, z ∈ Rd, a ∈ A and t = 0, . . . ,T − 1. Then the mappings (ϕ∗t )T
t=1 satisfy

(3.4) and (3.6) such that equation (3.13) holds with

vπ
∗

t (p, z) = vπ
∗,ϕ∗

t (p, z) for all t = 0, . . . ,T, p ∈ P, z ∈ Rd.

Let us elaborate on a practical application of this technique. Suppose that we
attempt to assess the distance to optimality of an approximate policy π̃, obtained by a
numerical procedure described previously. According to Theorem 3.1(i), any arbitrary
(ϕt)T

t=1 satisfying (3.5) and (3.6) yields an upper bound

vπ̃0(p, z) ≤ vπ
∗

0 (p, z) ≤ E(v̄ϕ0(p, z)) p ∈ P, z ∈ Rd.

Note that the expectation E(v̄ϕ0(p, z)) can be approached via a Monte Carlo average.
Thus, we obtain the following estimation procedure.

Algorithm 2: Upper bound estimation

1 Given a switching system, find a (ϕt)T
t=1 which satisfies (3.4), (3.5) and (3.6).

2 Choose a number K ∈ N of Monte Carlo trials and obtain for k = 1, . . . ,K
independent realizations (Wt(ωk))T

t=1 of disturbances.
3 Starting at zk

0 := z0 ∈ R
d, define for k = 1, . . . ,K the trajectories (zk

t )T
t=0 recursively

by
zk

t+1 = Wt+1(ωk)zk
t for t = 0, . . . ,T − 1

and determine realizations

ϕt+1(p, zk
t , a)(ωk) for t = 0, . . . ,T − 1 and k = 1, . . . ,K.

4 For each k = 1, . . . ,K, initialize the recursion at t = T as

v̄ϕT (p, zk
T ) = rT (p, zk

T ) for all p ∈ P

and continue for t = T − 1, . . . , 0 by

v̄ϕt (p, zk
t ) = max

a∈A
(rt(p, zk

t , a) + ϕt+1(p, zk
t , a)(ωk) + v̄ϕt+1(α(p, a), zk

t+1)).

Store the value v̄ϕ0(p, zk
0) for k = 1, . . . ,K.

5 Determine the sample mean (1/K)
∑K

k=1 v̄ϕ0(p, zk
0) to estimate vπ

∗

0 (p, z0) from
above, possibly using confidence bounds.
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To obtain a tight (close) upper bound, (ϕt)T
t=1 must be chosen accordingly. Thereby,

the assertion (ii) of Theorem 3.1 suggests an appropriate choice. Namely, in the
hypothetical ideal case that the value functions (vπ∗t )T

t=0 are known, (ϕ∗t )T
t=1 is obtained

via (3.10), which gives an exact and nonrandom upper bound. In practice, this situation
is not feasible, since an optimal strategy π∗ is not known. Instead, we suggest using
an approximate value function (ṽt)T

t=0, returned by one of the algorithms described in
this work. That is, following (3.10), a reasonable candidate for t = 0, . . . ,T − 1 can be
given as

ϕt+1(p, z, a) = E(ṽt+1(α(p, a),Wt+1z)) − ṽt+1(α(p, a),Wt+1z). (3.14)

However, note that this choice involves an exact calculation of the expectation
E(ṽt+1(α(p, a),Wt+1z)), which is not possible in practice. For this reason, we suggest a
slight modification. We introduce ϕt+1 similar to (3.14), with the expectation replaced
by an arithmetic mean over a number I of independent copies (W (i)

t+1)I
i=1 of Wt+1. That is,

given independent random variables Wt+1 and W (i)
t+1 for i = 1, . . . , I and t = 0, . . . ,T − 1

such that the distribution of W (i)
t+1 equals that of Wt+1, we define

ϕt+1(p, z, a) =
1
I

I∑
i=1

ṽt+1(α(p, a),W (i)
t+1z) − ṽt+1(α(p, a),Wt+1z) (3.15)

for all t = 0, . . . , T − 1, a ∈ A, p ∈ P and z ∈ Rd. With this definition, (ϕt)T
t=1 satisfies

(3.5) and (3.6) and the above algorithm of upper bound estimation can be used in
practice.

Having suggested the estimation of the upper bound in (3.3), let us turn now to the
estimation of the lower bound of this interval. Given a strategy π = (πt)T−1

t=0 , the value
vπ0(p0, z0) can in principle be approached from test runs of the strategy in a series of
independent back-testing experiments. However, it turns out that a slight adaptation
of the upper bound technique provides far better results, due to a built-in variance
reduction. Similarly to (ii) of the previous theorem, which indicates that the variance
of Monte Carlo trials reduces if the approximate solution is close to the optimal, we
establish a recursive procedure with a built-in variance reduction.

The idea is simple; given a nearly optimal policy π = (πt)T−1
t=0 , we alter the recursion

(3.7) and (3.8) by replacing the maximization with choices of actions that are
consistent with the policy π = (πt)T−1

t=0 .
The practical implementation of the lower bound estimation is based on the same

realization of (ϕt)T
t=1 as in (3.15), using independent copies of disturbances. Let us

summarize this procedure as follows.
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Algorithm 3: Lower bound estimation
1 Given approximate value functions (ṽt)T

t=0 and a corresponding strategy
π̃ = (π̃t)T−1

t=0 , choose ϕ = (ϕt)T−1
t=0 as in (3.15).

2 For K ∈ NMonte Carlo trials, obtain for k = 1, . . . ,K independent realizations
(Wt(ωk))T

t=1 of disturbances.
3 Starting at zk

0 := z0 ∈ R
d, define for k = 1, . . . ,K trajectories (zk

t )T
t=0 recursively by

zk
t+1 = Wt+1(ωk)zk

t for t = 0, . . . ,T − 1

and determine realizations

ϕt+1(p, zk
t , a)(ωk) for t = 0, . . . ,T − 1, and k = 1, . . . ,K.

4 For each k = 1, . . . ,K, initialize the recursion at t = T as

vπ̃,ϕT (p, zk
T ) = rT (p, zk

T ) for all p ∈ P

and continue for t = T − 1, . . . , 0 and for all p ∈ P by

vπ̃,ϕt (p, zk
t ) = rt(p, zk

t , π̃t(p, zk
t ))

+ϕt+1(p, zk
t , π̃t(p, zk

t ))(ωk) + vπ̃,ϕt+1(α(p, π̃t(p, zk
t )), zk

t+1).

Store the value vπ̃,ϕ0 (p, zk
0) for k = 1, . . . ,K, p ∈ P.

5 Calculate the sample mean (1/K)
∑K

k=1 vπ̃,ϕ0 (p, zk
0) to estimate vπ

∗

0 (p, z0) for p ∈ P
from below, possibly using confidence bounds.

4. Valuation of storage

In this section, we demonstrate the applicability of our method in solving a storage
management problem. This is an example of practical importance for which the setup
of a stochastic switching system is natural (see [5]). At each time, a decision has to be
made on the level of the commodity stored in a facility, where each change incurs an
associated transaction cost. Let us now describe the problem in detail and formulate it
as a convex switching system.

Let P be the set of possible levels of the commodity in the storage facility. Given
storage costs and random price fluctuations, the controller has to decide when to
purchase the commodity to fill the storage and when to withdraw from storage and
sell it at the market price. Here, A is the set of actions which can be taken in order
to change the level in the storage facility. The action a yields a transition from the
previous storage level p to the new level α(p, a).

For the purpose of illustration, we consider a simple case in which the storage level
can be full, half-full or empty. At each time, the controller must make a decision based
on the price of the commodity whether to fill or draw down on the storage facility, and
this sequence of decisions can be viewed as an optimal switching problem. For the
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sake of definiteness, we set P = {1, 2, 3}, where 1 stands for ‘empty’, 2 for ‘half-full’
and 3 for ‘full’, and A = {1, 2, 3}, where 1 stands for ‘empty the storage’, 2 for ‘half-fill
the storage’ and 3 for ‘fill the storage’, with changes in the first component given by
the function α whose values are determined by the following matrix:α(1, 1) α(1, 2) α(1, 3)

α(2, 1) α(2, 2) α(2, 3)
α(3, 1) α(3, 2) α(3, 3)

 =

1 2 3
1 2 3
1 2 3

 .
In the simplest form of this example, (Zt)T

t=0 describes the Markovian evolution of the
market (spot) price of the underlying commodity. More generally, the state Zt at time t
could be multivariate, in which case one of the components of Zt is usually the market
(spot) price of the commodity at time t. The other components may be latent variables
representing the current market conditions or stochastic factors which are needed to
ensure the Markov property of the dynamics.

For the sake of concreteness, we assume that the commodity price follows a
univariate autoregressive model of order d = 2 with coefficients 0.3 and 0.65, driven by
a unit variance noise. We form such a scalar process as the second component (Z(2)

t )t∈N

of the linear state space process (Zt)t∈N defined by the recursion
Z(1)

t+1

Z(2)
t+1
1

︸︷︷︸
Zt+1

=

 0 1 0
0.65 0.3 Nt+1

0 0 1

︸                 ︷︷                 ︸
Wt+1


Z(1)

t

Z(2)
t
1

︸︷︷︸
Zt

,

where (Nt)t∈N is a sequence of independent identically distributed random variables.
In this three-level storage example, the reward is given by the affine linear functions

rt(p, (z(1), z(2), z(3)), a) = (p − α(p, a)) · z(2) − c|p − α(p, a)|,

where (p − α(p, a))z(2) represents the proceeds from the sale or purchase of the
commodity and c > 0 denotes the transaction cost. Assuming that the storage must
be returned to the owner at the pre-specified level p = 2, the terminal cash flow is then
given by the scrap value

rT (p, (z(1), z(2), z(3))) = (p − α(p, 2)) · z(2) − c|p − α(p, 2)|.

Remark 4.1. Note that the convexity of the rewards is required in the continuous
variable z = (z(1), z(2), z(3)) ∈ R3 and satisfied because of affine-linearity in z ∈ R3.

The time horizon t = 0, . . . ,T of the system is given by T = 20 and transaction costs
are set at c = 0.50. The dynamics of the spot price is given by (Z)T

t=0 and the innovations
of the autoregressive process are distributed uniformly on the interval [−1, 1]. The grid
is created by simulating samples of (Z)T

t=0 and storing their values at each of the time
steps. We shall initialize the first two elements of our state variable, Z(1)

0 and Z(2)
0 , with

the same initial price, z0 = Z(1)
0 = Z(2)

0 .
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Table 1. 99% confidence intervals for the value of storage facility for different starting positions and
commodity prices.

Lower bound Upper bound
z0 p0 confidence intervals confidence intervals

0 1 (0.3090, 0.3213) (0.3111, 0.3238)
2 (0.3260, 0.3384) (0.3279, 0.3407)
3 (0.3097, 0.3219) (0.3118, 0.3244)

5 1 (−2.906, −2.8898) (−2.9003, −2.8825)
2 (1.594, 1.6102) (1.5997, 1.6175)
3 (6.094, 6.1102) (6.0997, 6.1175)

10 1 (−5.7056, −5.6903) (−5.7037, −5.6875)
2 (3.7944, 3.8097) (3.7963, 3.8125)
3 (13.2944, 13.3097) (13.2963, 13.3125)

15 1 (−8.442, −8.4319) (−8.4413, −8.431)
2 (6.058, 6.0681) (6.0587, 6.069)
3 (20.558, 20.5681) (20.5587, 20.569)

20 1 (−11.1678, −11.1582) (−11.1675, −11.1579)
2 (8.3322, 8.3418) (8.3325, 8.3421)
3 (27.8322, 27.8418) (27.8325, 27.8421)

Results were computed using m = 1024 grid points, n = 1024
disturbances and K = 1024 paths for diagnostics.

For bound computations, we use confidence intervals based on K simulated
trajectories. More precisely, we quote the intervals as[

µ − Φ−1
(
1 −

x
2

) σ
√

K
, µ + Φ−1

(
1 −

x
2

)
σ
√

K

]
,

where 1 − x denotes the confidence level and (µ,σ) and (µ,σ) denote the sample mean

and sample standard deviation of (vπ̃,ϕ0 (p, zk
0))K

k=1 and (v̄ϕ0(p, zk
0))K

k=1, respectively.
Results for different starting levels of z0 and p0 are given in Table 1. We included

the result for z0 = 0 in order to verify if the method works. In this case, the values for
p0 = 1 should be the same as those for p0 = 3 due to the symmetry of the problem. In
Table 1, we indeed observe an agreement of the results up to three decimal places. For
other values of z0, we obtain fairly tight confidence intervals, even though a relatively
low number of sample paths have been used to perform diagnostics.

5. Conclusion

In this paper, we have demonstrated a new method of solving stochastic switching
problems when the continuous component of state variables is high dimensional with
linear state dynamics. By using duality and variance reduction techniques, we have
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provided methods to assess the distance to optimality of the approximated solutions.
Finally, we have shown that these methods can give appropriate numerical results for
storage management problems.
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