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Abstract

A subgroup H of a finite group G is said to be c-supplemented in G if there exists a subgroup K of G
such that G = HK and H n K is contained in corec(//). In this paper some results for finite p-nilpotent
groups are given based on some subgroups of P c-supplemented in G, where p is a prime factor of the
order of G and P is a Sylow p-subgroup of G. We also give some applications of these results.

2000 Mathematics subject classification: primary 20D10, 20D20.

1. Introduction

Let G be a finite group. The relationship between the properties of the Sylow sub-
groups of G and the structure of G has been investigated by a number of authors
(see, for example, [5, 11, 10, 13, 14]). In particular, Buckley [5] in 1970 proved
that a group of odd order is supersolvable if all its minimal subgroups are normal.
Srinivassan [13] proved that a finite group is supersolvable if every maximal subgroup
of every Sylow subgroup is normal. These two important results on supersolvable
groups have been generalized by many authors. One direction of generalization is to
replace the normality condition of maximal subgroups or minimal subgroups of Sylow
subgroups by a weaker condition; and the other direction of generalization is to min-
imize the number of maximal subgroups or minimal subgroups of Sylow subgroups.
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It has been observed that the property of 'normality' for some maximal subgroups or
some minimal subgroups of Sylow subgroups gave a lot of useful information on the
structure of groups. In this paper, we shall continue to study the structure of finite
groups on the assumption that some subgroups are c-supplemented and obtain some
interesting results for finite p-nilpotent groups. As an application of our results, we
give conditions for a finite group to be in a saturated formation containing the class of
finite supersolvable groups.

Throughout this paper, all groups are finite. Our terminology and notation are
standard, see, for example, Robinson [12].

2. Preliminaries

A subgroup H of a group G is said to be c-supplemented in G if there exists a
subgroup K of G such that G = H K and H n K < coreG(//) = HG. We first cite
several lemmas for later use in this paper.

LEMMA 2.1 ([4, Lemma 2.1]). Let H be a subgroup of a group G. Then the
following statements hold:

(1) Let K be a subgroup ofG such that H is containedin K. ifH is c-supplemented
in G then H is c-supplemented in K.
(2) Let N be a normal subgroup of G such that N is contained in H. Then H is

c-supplemented in G if and only if H/N is c-supplemented in G/N'.
(3) Let n be a set of primes. Let N be a normal n'-subgroup of G and H a n-

subgroup of G. If H is c-supplemented in G then HN/N is c-supplemented in G/N.
Furthermore, if N normalizes H, then the converse statement also holds.
(4) Let L be a subgroup of G and H < <t>(L). If H is c-supplemented in G then H

is normal in G and H <

LEMMA 2.2 ([11, Lemma 2.6]). Let N be a solvable normal subgroup of a group
G (N ^ 1). IfNn<t>(G) = 1, then the Fitting subgroup F(N) of N is the direct
product of all minimal normal subgroups of G which are contained in N.

Recall that a formation of groups is a class of groups & which is closed under
homomorphic images and is such that G/M n N e & whenever M, N are normal
subgroups of a group G with G/M e & and G/N e &. We call a formation &
saturated i f G e . f when G/4>(G) is in &.

Now we let Fl be the set of all prime numbers. Then, a function / defined on FI is
called a formation function if/ (p), possibly empty, is a formation for all p € FI. A
chief factor H/K of a group G is called /-central in G if G/CG{H/K) e / (p) for
all prime numbers p dividing \H/K\. A formation & is then called a local formation
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if there exists a formation function / such that & is the class of all groups G for
which every chief factor of G is / -central in G. If & is a local formation defined by
a formation function / , then we write & = LF(f) and we call / a local definition
of &.

Among all the possible local definitions for a local formation &, it is known that
there exists exactly one of them, denoted it by F, such that the formation function F is
both integrated (that is, F(p) c & for all p e Tl) and full (that is, jYp F{p) = F(p)
for all p e Fl), where ^Vp is the class of p-groups.

Also it is well known that a formation & is saturated if and only if & is a local
formation (see [6]).

LEMMA 2.3 ([6, Proposition IV. 3.11]). Let &x = LF{FX) and &2 = LF(F2),
where each F, is both an integrated and full formation function of&t (i = 1, 2). Then
the following statements are equivalent:

(1) ^ | C ^
(2) Fl(p)£F2(p)forallp g IL

LEMMA 2.4 ([2, Lemma 2]). Let & be a saturated formation. Assume that G is
a group such that G does not belong to j£" and there exists a maximal subgroup M
of G such that M € & and G = MF(G), where F(G) is the Fitting subgroup.
Then G^ /(G^)' is a chief factor of G, G^ is a p -group for some prime p, G^ has
exponent p if p > 2 and exponent at most 4 if p =2. Moreover, G^ is either an
elementary abelian group or (G*)' — Z(G^) — <t>(G^) is an elementary abelian
group.

3. Main results

We now establish our main theorems for p -nilpotent groups.

THEOREM 3.1. Let p be the smallest prime dividing the order of a group G and P
a Sylow p-subgroup of G. If every minimal subgroup of P is c-supplemented in G
and when p = 2, either every cyclic subgroup of order 4 ofP is also c-supplemented
in G or P is quaternion-free, then G is p -nilpotent.

PROOF. Suppose that the theorem is false and let G be a counterexample of the
smallest order. Then G is not p -nilpotent. Since all Sylow p -subgroups of G are
conjugate in G, we see that the hypotheses of our theorem is subgroup-closure by
Lemma 2.1. Therefore G is a minimal non-p-nilpotent group (that is, every proper
subgroup of a group is p-nilpotent but itself is not p-nilpotent). By a result of Ito [12,
Theorem 10.3.3], we know that G must be a minimal non-nilpotent group. Also by a
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result of Schmidt [12, Theorem 9.1.9 and Exercises 9.1.11], we see that G is of order
paqP, where q is a prime distinct from/?, P is normal in G and any Sylow g-subgroup
Q of G is cyclic. Furthermore, P is of exponent p if p is odd and of exponent at most
4 if p = 2. Let A be a minimal subgroup of P. Then by our hypotheses, there exists
a subgroup K of G such that G = AK and A fl K < coreG(A).

If A is not normal in G then A D K = 1 and therefore K is a maximal subgroup
of G with index p. Since p is the smallest prime dividing the order of G, we see
that K is normal in G. Also since K is a proper subgroup of G, A" is nilpotent. It
follows that the Sylow ^-subgroup of K is normal in G and therefore G is nilpotent,
a contradiction. Hence, we may assume that every minimal subgroup of P must be
normal in G and therefore every minimal subgroup of P must be in the center of G.
If p is odd, then G is p-nilpotent by Ito's lemma, a contradiction. So there remains
the case when p = 2.

Now let p — 2. By the above proof, we can see that every minimal subgroup of
P lies in the center of G. If P is quaternion-free, then by applying [7, Theorem 2.8],
we have fti(P) < P D G^ n Z(G) — 1, where G ^ is the nilpotent residual of G, a
contradiction. Now let every cyclic subgroup of order 4 of P be also c-supplemented
in G and let B = {b) be a cyclic subgroup of P with order 4. Then, by our hypotheses,
there exists a subgroup K of G such that G = BK and B (IK < corec(fl). Since (fc2)
lies in the center of G, we may replace K by K (b2) if necessary and we may assume
that [G : K] < 2. If [G : K] — 2, then AT is normal in G and A" is nilpotent. Since
the normal p -complement of K is the normal p -complement of G, G is nilpotent, a
contradiction. Hence, K = G and B must be normal in G. If fl ^ P, then, since
G is a minimal non-nilpotent group and the exponent of P is at most 4, we have
P 5 CC(Q) and therefore G = P x Q> a contradiction. If P = fl, then it is clear
that G is p-nilpotent, another contradiction. Thus, by all the above contradictions, we
conclude that the theorem is true. •

COROLLARY 3.2. Let N be a normal subgroup of a group G and p the smallest
prime dividing the order of G. Also let & be a saturated formation containing the
class JYP of the all p-nilpotent groups and G/N € &. If every minimal subgroup of
P is c-supplemented in G, and when p = 2, either every cyclic subgroup of order 4
of P is also c-supplemented in G or P is quaternion-free, then C e / , where P is a
Sylow p-subgroup of N.

PROOF. It is easy to see from Lemma 2.1 that every minimal subgroup of P is
c-supplemented in Af, and when p = 2 either every cyclic subgroup of order 4 of
P is also c-supplemented in N or P is quaternion-free. By Theorem 3.1, N is
p-nilpotent. Let H be the normal p-complement of N. Then it is clear that H
is normal in G and (G/H)/(N/H) ~ G/N e &. By Lemma 2.1 again, G/H
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satisfies the hypotheses of the corollary for normal subgroup N/H. Now if H ^ 1,
by induction, we see that G/H e &'. Let F, (/ = 1, 2) be the full and integrated
formation function such that Jfp = LF(FX) and & = LF(F2), respectively. Then, it
is clear that G/ CG{KX/K2) e F, {q) for every chief factor Kx/K2 of G with Kx < H
and every prime q dividing the order of \KX/K2\. By Lemma 2.3, we see that
G/Cc(Ki/K2) e F2(q) for every chief factor Kx/K2 of G with Kx < H and every
prime g dividing the order of |^i /K2 \. It follows that G € &'. Hence, we may assume
that H = 1 and N = P is a p -group. In this case, for any prime q dividing the order
of G with q ^ p and Q e Sy\q(G), it is clear that P Q is a subgroup of G and hence
P Q is p-nilpotent by Theorem 3.1, and therefore we have P Q = P x Q. It follows
that G/CG(Ki/K2) is a p-group for every chief factor AyAT2 of G with Kx < P.
Now by using Lemma 2.3 again, we see that G e &. . •

REMARK 3.3. The hypotheses that p is the smallest prime dividing the order of a
group G in Theorem 3.1 and Corollary 3.2 cannot be removed. For example, G = Si,
the symmetric group of order three, is an example for p = 3 .

THEOREM 3.4. Let p be the smallest prime dividing the order of a group G and P
a Sylow p -subgroup of G. If every maximal subgroup of P is c-supplemented in G,
then G is p-nilpotent.

PROOF. It is easy to see that every maximal subgroup of every Sylow p -subgroup
of G is c-supplemented in G. Thus, in the following proof, we may make a choice
among Sylow p -subgroups of G. Now, assume that the theorem is false and let G
be a counterexample of minimal order. Then we prove the theorem by making the
following claims:

(1) OP.(G) = 1.
If OP(G) / 1, then we may choose a minimal normal subgroup N of G such

that N < OP(G). It is clear that PN /N is a Sylow p-subgroup of G/N. For every
maximal subgroup P\N/N of PN/N, we may assume that Pi is a maximal subgroup
of P. Thus, by Lemma 2.1 (3), every maximal subgroup of PN/N is c-supplemented
in G/N. Hence, by the minimality of G, we know that G/N is p-nilpotent and so G
is p-nilpotent, a contradiction.

(2) OP(G) £ 1.
If G is odd, then G is solvable by the well-known odd order theorem of Feit and

Thompson [8] and therefore OP{G) ^ 1. Now let G be a group of even order and
OP(G) = O2(G) = 1. Let Pi be a maximal subgroup of P. By hypotheses there
exists a subgroup K of G such that G = P] K and P, n K - 1. Since [P : P,] = 2,
it follows that the Sylow 2-subgroups of K are cyclic of order 2 and therefore K is
2-nilpotent. Let K2, be the Hall 2'-subgroup of K. Then G = PK2, and K2, is a
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Hall 2'-subgroup of G. Assume that G is a non-abelian simple group. Then, by [1,
Corollary 5.6], G is isomorphic to PSL(2, r) with r a Mersenne prime. In this case,
by [1, Corollary 5.8], every subgroup of G of 2-power index is the normalizer of a
Sylow /--subgroup of G. In particular, K and K2* have the same order, a contradiction.
Hence G is not a non-abelian simple group.

Let TV be a minimal normal subgroup of G with N ^ G. Then N is neither a
2-group nor a 2'-group. Since G satisfies £2- (existence of Hall 2'-subgroups), we
assume that N? is a Hall 2'-subgroup of N and N2 a Sylow 2-subgroup of A7. If
P = N2, then N clearly satisfies the hypotheses of our theorem by Lemma 2.1 (1).
Thus, by the minimality of G, we know that N is 2-nilpotent and hence O2\G) ^ 1,
which contradicts to (1). On the other hand, if N2, is not a Hall 2'-subgroup of G,
then PA7 is a proper subgroup of G and PN also satisfies the hypotheses of our
theorem. Now, by the minimality of G again, PN is 2-nilpotent and therefore N itself
is 2-nilpotent. It follows that 02>(G) ^ 1, a contradiction again. Hence we conclude
that N2 < P and N? is a Hall 2'-subgroup of G. Since G satisfies £2s we can see that
both G and N satisfy C2' (all Hall 2'-subgroups are conjugate) by Gross' theorem [9,
Main Theorem]. Now by using the Frattini argument, we have

G = N2NG(N2,).

Now let P* € Syl2(NG(N2>)) with P* < P. Then, by our choice of G, we know
that NG(Nz) < G. Thus P* < P and therefore there exists a maximal subgroup
P\ of P such that P* < P\. By our hypotheses again, there exists a subgroup
K of G such that G = P\K and Pt n K = 1. It is now clear that the order of
Sylow 2-subgroups of K is 2 and therefore K is 2-nilpotent. Let H be a normal
2-complement of K. Then, H is a Hall 2'-subgroup of G. Thus there exists an
element g of G such that Hg = N2>. Since G = PXK and / / is a normal subgroup of
K\ we may choose g e P\. We also see that Kg normalizes Hg = N2> and therefore
Kg < NG(N2.). Thus, it follows that G = Gg = (PtK)g = PiNG(N2.). This leads
to P = P n G = Pi(P D NG(N2,)) = PiP* = Pi < P, a contradiction. Thus, our
claim (2) is established.

If <t>(Op(G)) ̂  1, then we may consider the quotient group G/<t>(Op(G)). Obvi-
ously, by Lemma 2.1 (2), every maximal subgroup of P/<P(OP(G)) is c-supplemented
in G/<t>(Op(G)). Thus, by the minimality of G, we see that G/<t>(Op(G)) has a nor-
mal p-complement T/<t>(Op(G)). By the Schur-Zassenhaus Theorem, there exists a
Hall p'-subgroup H of T such that T = H<t>(Op (G)). By using the Frattini argument
again, we see that G = <t>(Op(G))NG(H) = NC(H) since <t>(Op(G)) < O(G), a
contradiction. Thus <t>(0p(G)) = 1 and Op(G) is an elementary abelian group.

(4) OP(G) is a minimal normal subgroup of G.
Let A7 be a minimal normal subgroup of G such that N < OP(G). Then it
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is easy to see that G/N satisfies the hypotheses of our theorem. The minimality
of G implies that G/N is /?-nilpotent. Similarly, if Â  is another minimal normal
subgroup of G with N\ < OP(G), then we see that G/N\ is also p-nilpotent. Now
it follows that G ~ G/N D Ni is p-nilpotent, a contradiction. Hence N must be the
unique minimal normal subgroup of G which is contained in OP{G). By using the
arguments similar to the proof in (3), we have G — NNG(H), where H is a Hall
p'-subgroup of G. Since NG(H) < G, it follows that N £ NG(H) and then, since
OP(G) fl NG(H) is normal in G, OP{G) n NG{H) = 1. Finally, by Dedekind's law,
we have OP(G) = N(OP(G) n NG(H)) = N. This proves (4).

(5) The final contradiction.
From the above proof, we see that G/ Op (G) is p -nilpotent. By using the arguments

similar to the proof in (3), we have G = NNG(H), where H is a Hall p'-subgroup
of G. Let P* be a Sylow p-subgroup of NG(H). Then by our choice of G, we
have NG(H) < G and therefore P* < P. Let Pi be a maximal subgroup of P with
P* < P\- Since OP(G) is a minimal normal subgroup of G and OP(G) •£. P\, we
have coreG(Pi) = 1. By our hypotheses, there exists a subgroup K\ of G such that
G = P\K\ and Pi D K\ = 1. It is clear that the order of Sylow p-subgroups of K\
is p and therefore Kx has a normal p-complement H\. Then there exists an element
g e OP(G)P* such that (Hi)g = H. Noticing that P\ is normal in OP(G)P*, we
have that G = P^KX = (PiK,)* = Pi(ATi)* and P, n (if,)' = 1. Since (ff,)* ~ K,
has normal p-complement and H — (//,)« < (AT,)*, it follows that (ATO« < NG(H)
and consequently G = PiC^O8 = PXNG(H). Hence OP(G)P* = ( 0 , ( 0 ? * ) n
G = (O,(G)P*) n (PxNoiH)) = Pi((Op(G)P*)nNG(H)) = PXP* = />„ which
contradicts to the fact that OP(G)P* is a Sylow p-subgroup of G. Thus our theorem
is proved. •

COROLLARY 3.5. If every maximal subgroup of every Sylow subgroup of a group
G is c-supplemented in G, then G is a Sylow tower group of supersolvable type.

PROOF. Let p be the smallest prime dividing the order of G and P a Sylow p-
subgroup of G. By Corollary 3.2 G is p-nilpotent. Let A7 be a normal p-complement
of G. Clearly Af satisfies the hypotheses of G and therefore by induction A7 is a Sylow
tower group of supersolvable type. This proves that G is a Sylow tower group of
supersolvable type. •

By using the arguments similar to the proof in Corollary 3.2, we can prove the
following corollary.

COROLLARY 3.6. Let N be a normal subgroup of a group G and p the smallest
prime dividing the order of G. Also let & be a saturated formation containing the
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class J/p of the all p-nilpotent groups and G/N e &. If every maximal subgroup of
P is c-supplemented in G, then G 6 &, where P is a Sylow p-subgroup ofN.

4. Applications

As an application of Theorem 3.1 and Theorem 3.4, we establish the following the-
orems for a group to be in the saturated formation containing the class of supersolvable
groups.

THEOREM 4.1. Let & be a saturated formation containing the class of supersolv-
able groups "I/. Let N be a normal subgroup of a group G such that G/N is in &. If
for every prime p dividing the order of N and for every Sylow p -subgroup P of N,
every minimal subgroup of P is c-supplemented in G and when p — 2, either every
cyclic subgroup of order 4 of P is also c-supplemented in G or P is quaternion-free,
then G is in &.

PROOF. Assume that the theorem is false and let G be a counterexample of minimal
order. By Lemma 2.1 and Theorem 3.1, we know that N is a Sylow tower group of
supersolvable type. Let q be the largest prime dividing the order of N and Q a
Sylow ^-subgroup of N. Then Q is normal in G and every minimal subgroup of Q
is c-supplemented in G. It is clear that (G/Q)/(N/Q) ~ G/N e & and that G/Q
satisfies the hypotheses of our theorem by Lemma 2.1. The minimality of G implies
that G/ Q is in &'. It follows that G9 < Q and G* is a g-group, where G^ is the
^"-residual of G. By [3, Theorem 3.5], there exists a maximal subgroup M of G
such that G = MF'(G), where F'(G) = Soc(G mod O(G)) and G/corec(M) is not
in &. Then G = MG* and therefore G = MF(G) since G9 is a g-group, where
F(G) is the Fitting subgroup of G. It is now clear that M satisfies the hypotheses of
our theorem for its normal subgroup M n Q. Hence, by the minimality of G, it leads
to M must be in &.

Now, by Lemma 2.4, G* has exponent q when q ^ 2 and exponent at most 4 when
q = 2. If G^ is an elementary abelian group, then G^ is a minimal normal subgroup
of G. For any minimal subgroup A of G9, we know that A is c-supplemented in G
by our hypotheses. Hence there exists a subgroup K of G such that G = A K and
A n K < coreG(A). If A is not normal in G, then A n K = 1. It is clear that K n G*
is normal in G. The minimality of G^ implies that K C\ G^ = 1 and A is normal
in G, a contradiction. Hence A is normal in G and G^ = A is cyclic of order q.
If G* is not an elementary abelian group, then (G^)' = Z(Gy) = <&(G1*') is an
elementary abelian group by Lemma 2.4. Noticing that <t>(G^) < ^>(G), we know
that every minimal subgroup of (G^)' is not complemented in G. It now follows
from our hypotheses that every minimal subgroup of (G^)' must be normal in G.
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For any minimal subgroup A of G*/(G*)', there exists a subgroup A of G9 such
that A — A(G^)'/(G^y. Assume that A is of order q. If A is not normal in G,
then, by our hypotheses, there exists a subgroup K of G such that G = A K and
A n K = 1. Noticing that (G^)' = O(G^) < <i>(G), we see that K/(G*)' is a
complement of A. The minimality of G*/(G*)' implies that A = G*/(G*)' is
normal in G/(G9)', and therefore G*/(G*)' is a cyclic group of order q. Hence we
may assume that q = 2 and every generated element of G1*' is of order 4. It follows
immediately that £l\(G9) = (G9)' = <f>(G )̂ and therefore every minimal subgroup
of £2i(G*) is normal in G. Hence ^(G-^) < Z(G). If Q is quaternion-free, then,
by [7, Lemma 2.15], every 2'-element of G acts trivially on G*. Since G91(G9)'
is a chief factor of G, we see that G9/(G9)' is a cyclic group of order 2. Assume
that every cyclic group of order 4 of Q is c-supplemented in G. Let B — (b) be
a cyclic group of order 4 of G1^. Then (fc2) is normal in G. If B is not normal in
G, then there exists a subgroup of K of G such that G = BK and B n ? = (b2).
It is clear that (G*)' = d>(G^) < AT and G* /{G*)' D K/(G*)' is normal in
G/{G*)'. The minimality of G*/{G*)1 implies that G*/(G*)' n K/(G*)' = 1
and therefore G9/(G9)' is a cyclic group of order 2. We have now shown that for all
cases, Gj r / (G^) ' is always a cyclic group of prime order. Noticing that G9/(G9)'
is G-isomorphic to Soc(G/corec(M)), it follows that G/coreG(Af) is supersolvable,
a contradiction. Thus, our proof is completed. •

THEOREM 4.2. Let &be a saturated formation containing the class of supersolv-
able groups %'. Let N be a normal subgroup of a group G such that G/N is in &'. If
for every prime p dividing the order of N and for every Sylow p-subgroup P of N,
every maximal subgroup of P is c-supplemented in G, then G is in &'.

PROOF. Let Ft(i = 1, 2) be the full and integrated formation functions such that
ty = LF(Fi) and & = LF(F2). Assume that the theorem is false and we may let
G be a minimal counterexample. Then, by applying Lemma 2.1 and Corollary 3.5,
we know that N has a Sylow tower of supersolvable type. Let p be the largest prime
dividing the order of N and P e Sylp(N). Then P must be a normal subgroup of
G. Clearly, (G/P)/(N/P) ~ G/N e &'. It is easy to see that G/P satisfies our
hypotheses of the theorem for the normal subgroup N/ P. By the minimality of G, we
see that G/P 6 &', and of course, every maximal subgroup of P is c-supplemented
in G.

Let L be a minimal normal subgroup of G with L < P. Then, it is easy to see
that the quotient group G/L satisfies the hypotheses of our theorem for the normal
subgroup of P/L. By our choice of G, we have G/L e &'. Since & is a saturated
formation, L is the unique minimal normal subgroup of G which is contained in P
and also L is complemented in G. In particular, we have P n 4>(G) = 1 and therefore
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L = F(P) = P is an abelian minimal normal subgroup of G by Lemma 2.2.
Let Pi be a maximal subgroup of P. By our hypotheses, there exists a subgroup

K of G such that G — P\K and Px D K = I since L is the unique minimal normal
subgroup of G contained in P with L •£ Px. Thus P = P,(P n K). It is clear that
P n K is normal in K and is normalized by Pt since P is abelian. Therefore P n K is
a normal subgroup of G. Sijice P n K =£ 1 and P is a minimal normal subgroup of G,
it follows that P n K = P and P is a cyclic group of order p. Since A ur(P) is a cyclic
group of order p - 1 and G/CC(P) < Aut(P), we have G/CC(P) € F,(p) c F2(/7),
by Lemma 2.3. Therefore, G e < \̂ a contradiction. Thus, our proof is completed. •

REMARK 4.3. Let & be the class of groups G whose derived group G' is nilpotent.
Then it is easy to see that & is a saturated formation containing the class %'. Now,
by applying our Theorems 4.1 and 4.2, we also obtain some sufficient conditions for
a group to be a ^"-group.
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