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1. Introduction

The BFC number of a group G is defined to be the least upper bound
n of the cardinals of the conjugacy classes of G, provided this is finite, and
we then say that G is n-BFC. It was shown by B. H. Neumann [2] that the
derived group G' of such a group is finite, and J. Wiegold [5] proved that

\G'\ ^ rci"4***.")'.

This bound was sharpened by I. D. Macdonald [1] to

and P. M. Neumann has recently communicated the (unpublished) result
that \G'\ <SMa(n) with q(n) a quadratic in log2w, an immense improvement
on the above. J. A. H. Shepperd and J. Wiegold [4] improved the bound in
two special cases, showing that if G is soluble, \G'\ ̂  np(n) with p(n) a quintic
in Iog2«, and that if G is nilpotent of class 2,

\G'\ ^ W(1(«»»)*.

It is conjectured that for any n-BFC group G,

\G'\ ^ni<1+1<*«n>,

Wiegold [5] having shown that this bound is attained by certain nilpotent
groups of class 2.

The aim of this paper is to prove this conjecture in the case of nilpotent
groups of class 2.

We may make two simplifications. Macdonald [1] showed that if G is
any n-BFC group then there exists a finite n-BFC group Go with G'o ^ G',
and moreover that if G is nil-c then Go may be chosen to be nil-c. Secondly,
since we are concerned only with nilpotent groups, which are the direct
product of their Sylow subgroups, we can restrict our considerations to
/•-groups. Thus we shall assume that all groups are finite ^-groups.
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10 Iain. M. Bride [2]

The method of proof is by contradiction, using a minimal counter-exam-
ple. However, attempts to prove the conjecture as it stands were fruitless
and we prove in fact a slightly stronger result. Much of the proof involves
long and tedious commutator manipulation which has been omitted. We
split the work into four cases, each pertaining to a different hypothesis.

This work formed a part of my Ph. D. thesis submitted to the Victoria
University of Manchester, and I should like to express my indebtedness to
Dr J. A. H. Shepperd for all his assistance and encouragement.

2. Notation

Groups are written multiplicatively and the notation of Scott [3.] is
followed with the following additions.

4

JJ xAf direct product A1 X • • • xAk.
t=i

^* direct product of k copies of the cyclic group <€n.

fiH{a) number of distinct conjugates ah, h e H.

/S(G) max /?G(#), i-e. the BFC number of G.
aeG

rH{a) {[a,h]\heH>.

Let G be a nil-2 group. Then we have the following commutator iden-
tities:

[ab, c] = [a, c~][b, c], [a, be] = [a, b][a, c],

[a, b]n = [«», b] = [a, bn]

for all a, b, c e G, n e Z. As a consequence of these, for a nil-2 group G,

\rB(a)\ = fa(a)
for any a e G, H QG.

3. Results

THEOREM A. Let G be a finite pn-BFC nil-2 p-group. Then

(1) \G'\ =g^»«"+i>,

(2) if \G'\ = _/)i"<n+1» then there exists an (w+1)-generator subgroup H
of G such that

PROOF. Suppose that the theorem is false and let G be a counter-example
of minimal order. Then either
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(1) \G'\ >_/>i"C+l>,

or (2) \G'\ = pin("+!), but there is no (w+l)-generator subgroup H
of G with G' = H' ~ <%\^n+v.

Using elementary counting methods on the conjugates of suitable
elements, we may prove that the theorem holds for n = 1 and n = 2.1

As will be seen, this is necessary since the method employed in general
requires n ^ 3, but such a counting method is too unwieldy for larger n.
Thus we shall assume

(1) n ^ 3.

We divide the proof into several cases, considering each separately.

CASE I. \G'\ > pin^"+1K

Suppose that |G'| > ^i"<n+1'. Now G is nil-2, so it is possible to choose
elements a,b eG such that [a, b] = z say, with zv = 1. Now <2> < G so we
may define a homomorphism a : G -> Gj(z~} = 27, say. Then

\C'\

' ' \G'n(z}\ =P

But /9(Z") ^ >̂n so by the minimality of G, \E'\ ^ pin<n+v. Hence

Again by the minimality of G, J3 (2") = pn, and so there exists A Q E with
A = <y0. 7i- • • •. Yn> such that

A' = Z' % <?|"'n+1».

Hence, since A is nil-2, /^(y^) = />" for 0 g » ^ «.
Let g4 e G with ^o- = yt and let i? = <g0, gx, • • •, gn>. Then it follows

that

(2) M g i ) = / » n . 0 ^ * ^ « ,

and that

rH(gi) ~<e»v, H' s ^l"'^1).
Since ^{gi) ^ pn, we must therefore have for all g e G

(3) fe.Sle^fe), 0rg*-5SW.
At this stage, it can be shown by using a lengthy but straightforward

induction argument on i that we may specify the elements a, b and g( in a
more precise manner. In fact we can prove the following.

1 That G' ~ %, for any p-BFC group G was proved by Wiegold [5].
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LEMMA. There exist a, b, g0, • • •, gne G such that if H = (g0, • • • ,gn},
then G — (H, a, by and

G' = H'x([a, 6]> ~ f̂*"(«+i)+if
with, moreover,

[«.&»] = P. &>] = !•

We now begin again and factor out a different ^-cycle, so obtaining
another system of generators for G. Let x= [go>gi] GH'. Then using x
in place of z, we can prove in a method analogous to the above the following.

LEMMA. There exist u0, ux, • • •, uneG such that if U = <«0, • • •, un},
then G = (U, g0, g^ and

It is now relatively easy to show that for some u, v e U,
u = <ft, * • '.g«,**,vy.

Certainly [u, v] $ H', but this apart, we have reasonable freedom of choice
for u and v, and from (3), for 0 rgi i 5S n, there exist ht e H such that

[«.£<] = !><>&]•• '

It can be shown that we may choose the u, v and gt- in such a way that all
the above properties hold and, in addition, either

(4) [«, g2] = fei, gzl and [u, g0] = 1, or

(5) [«, ft] = feo. ft] and [u, ft] = 1.

The two cases arise according to the form of the ht, but since the only
difference is that the roles of g0 and gx are interchanged, we may without
loss of generality assume (4) holds.

Consider now rG(ug2). Since ug2eU, ^u(ug2) =pn, and so -TG(M^2) =
Fv {ug2). Hence in particular there exist k and a.{, 2 ^ i ^ n, such that

[«ft.ft] = [«««. ft*1 •••£"»*]•
Expanding and manipulating these commutators, it ultimately follows from
(4) and from the fact that [u, v] $ H' that

[ft. ft] = [ft.&~a"«S1---g?1]-
But since H is (»+l)-generator and since rH(g2) is elementary abelian, this
implies that PH(g2) ^pn~l, which is contrary to (2).

Hence it is impossible that |G'| > ^»in<n+1>, and so the minimal counter-
example must falsify (2) of Theorem A.

Thus we may assume that the minimal counter-example G is such that

\G'\ =^i»(»+Dj
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but that there is no (n-\-l)-generator subgroup H of G with

H' = G' s ^{n+1).

Since /J(G) = ^n , there exists a e G with /3G(a) = j!>n. Let. F = rG(a),
so that |.T| = pn. Since F < G, we may define a bomomorphism

A : G -> G/r = yl
say. Then

|/T| = ^ " ( " - 1 ) ,

so that either (S(A) = pn~x or /3(/l) = />". These two possibilities we consider
separately.

CASE II. 0(A) = pn~K

Suppose fi(A) =^>n~1. Then by the minimality of G, there exists
A = <<x0, • • •, an_!> C /I such that

A' = A' £ ^l"'"-11.

Let a(eG such that â A = a,- and let ilf = <(a0, • • •, an_xy. Then either
/?(M) = pn or (3(M) = /)"~1, and we deal with each of these in turn.

CASE II (i). /S(M) =pn.

Suppose fi{M) = pn. Then without loss of generality we may assume

(6) P
and by considering {rM{aa0)}X, it can be shown that

Since M is w-generator, it follows from (6) that FM(fl0) is not elementary, so
we may assume

(8) | [ « o , « i ] | ^ 2 -

Now for any /, 0 :£ / ^ n—1, if ^M{a}) = pn, then [a,, a] e M'. On
the other hand, if fiM{cij) = pn~~x, then from (8) and, the structure of A',
^M(aoai) — pn and so [flo«j-, a] eM'. But by (6), [a0, a] e M' and hence
again [af, a] e M'. Thus for all /, 0 ^ / ^ n— 1,

[ a , , a ] e M \

Hence if we now define Â  = <M, «), we have

N' = M',

and we now establish a bound on the order of N'.
Suppose that ^M{ak) = pn for some k, 0 ^ ^ ^ »— 1. Since M is

M-generator and since A' is elementary,

https://doi.org/10.1017/S1446788700005905 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700005905


14 Iain. M. Bride [6]

1 M\alc) = ^vlX^p '
and so for some k =£ k,

\[ak,at]\ =p\
Hence

rM(ak) n KerA = FM(ai) n KerA = <[«t,
and so

(9) \{rM(ak) n Ker A}{rMK) n Ker A}| = p.

Let a; e iif' n Ker A. Then a; = x0 • • • xn^2 say, with

xt e <[«,, a,-] j ̂  < / 5S «—1>,

and so if | s = xtA, f0 • • • fTC_2 = 1 and f,: e <[a,-, a,]j i < j ^ «—1). But
the [a;-, a3] generate independent ^-cycles and hence |t- = 1 for all i,
0 5g i ^ w —2. Thus a;,- e KerA and so

n - l

M' n Ker ̂  = IJ {^MW
 n

Hence from (9),

\M' n KerAj fS/)in.

Thus, since zl' = Af'/{ikf' n Ker X},

(10) |A

We prove finally that i"1 C -Z'A7' for some central subgroup Z of order p
mod A7'. Certainly F s£ A7', and hence there exists b e G such that, say,

[a, b] = z$N'.

Let y = [a0, b]; then from (6), FG(a0) = FM(a0) and hence yeN'. From
(7), |.TG(#a0): /^(aa,,)! i=p, whence in particular, [aa0, b]p eN'. Thus

(11) z*ey-»N' =N'.

Let R = <7V, 6). Then from (7), fiR(aa0) = pn. Also since [aa0, b] = zy
with y eN' and 2 £ A7',

rG(<w0) C (A7', 2>.

Hence, since FG(a0) QN' by (6),

FQ<N', z').

Thus T,¥' g (A7', r̂> £ G'( and

= |r| • \M'l{FnM'}
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Hence G' = <N', z), and so by (10) and (11),

Thus n :g 2. But this is contrary to our assumption (1), and so Case II.i. is
impossible.

CASE II (ii). /?(M) = pn~l.

Suppose then that B (M) = pn~1. We show in this case that in fact G
does satisfy Theorem A, by constructing an (w+l)-generator subgroup with
the desired properties.

By the minimality of G, \M'\ = pin^n~1\ and so there exists
N = <c0, • • •, cn_j> Q M such that

(12) N' = M' £ "gj"'"-1'.

Clearly FnN' = E, and so

(13) G'=N'xr.

We next prove that /Ms elementary. It is evident from (12) that for all
i, 0 5S i ^ M—1, ^N(c{) = ^>"-1, and since F n N' = E, we can show that
for each ft, 0 sg k ^ »—1, the w—1 commutators [ack, c j , with i ^ ft, are
independent modulo pG. Thus if we define Nk = <c0, • • •, ct_a, ck+l, • • • cn_1>,
we have for 0 ^ ft ^ n—1,

Since fiN(ck) =p"-1, rG(ck) is of order at most p modiV', so for all
g e G, [ck, g]veN'. But from (12) and (13), [ck,g]'er, and hence for all ft,

(15) [ c * , g ] ' = l .

Let z e f . Since G is nil-2, there exists b e G such that [a, b] = z, and
by (14) there exists w eN0 such that [ac0, b]p = [ac0, w]. Hence from (15),

(16) [a,b]'=[a,w][co,w],

so that [c0, w] eN' r\ F = E. Now w eN0, so for some yt, w = cj1 • • • cj^a;
with xeN'. But since BN (c0) = pn~x, it follows that )̂ divides y,-,
1 <Li^,n—1, and so from (15), [a, w] = 1. Thus from (16), zv = 1,
whence, since z was arbitrary, F is elementary. Hence

• G' = J V ' x f s ^|n(n+1».

We prove now that [a, cf] ̂  1 for some i, 0 sg i ^ w— 1. For suppose
to the contrary that for all i

(17) [a, Ci] = 1.
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Then [ac0, ct] = [c0, c(], so that

(18) Pw{*Co)=P*-1,

and

(19) rN(ac0)QN'.

Suppose first that for some heG and for some /, O g j ' ^ « - 1 ,
[cf, h] &N', so that [cjt h] = uv, say, with veN' and l ^ n e f . Since

(20) rG(c,) = <w> x /yc,,) g <«, iv>.

Now w 2: 3 by (1) and Z1 is elementary, so there exist bu b«e G such that
[a, by] = *! ^ 1 and [«• &2] = #2 =̂

(21) <a;1> n <x2> = £ and <a;1; a;2> n <M> = E.

Consider ^ ( ac , ) ; [ac,-, 6j,] = xiy1, say, with y1e(u,N1') by (20), and
hence from (21)

re(ac,) = (x^^xr^K) g <xlf M,iv>.

But [ac,-, 62] = a;2t/2 say, with ?/2 e <M, iV'>, whence from (21) and since
r nN' = E, Paia-Cj) > p", contrary to G being pn—BFC.

Hence for all i, -TG(CJ) QN', and a similar argument again yields a
contradiction.

Thus we have shown that (17) cannot hold, so for some k,
0 ^ k ^ n~ 1,

(22) [fl, c»] ^ 1.

Let T = <a, c0, ••-,£„_!>, and consider FT(ack). We can show that
[act) ck] $rNk(ack), whence from (14) it follows that PT{ack) =pn. Thus
rG(ack) £ T*. Also [a, ck] fN' and so, since pw{ck) = pn~\ pT{ck) = pn.
Thus rG(ck) Q T, and hence rQ T. But N Q T, so that G' =N'xTQ T,
and hence

Q> = J '

Now 7" is (tt+1)-generator, and so G satisfies Theorem A, contrary to being
a counter-example.

CASE III. 0(A) =pn.

Suppose finally that fi(A)=pn. Clearly there exists r\ e A with
PA(V) = ^ n . and so if b e G with bX = 17, then

pa{b) =pn.
Also, since Ker X = rG(a),
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ro(b) n rG(a) = E.

Let clt c2, • • •, ck e (/be such that

A?(«) = ITx<[«,cj>.
1 = 1

It is fairly easy to show that CG{a) = CG(b), whence

with \{b, c,-]| = \[a, ci] | for all i, 1 -SL i 5S k. Let xt = [a, c{], y{ = [b, c,-].
We now define T = rG(a)rG(c1) and establish a bound on the order of

T, proving that \T\ ^p2n^2. Since

\rG(a)\ \rG(Cl)\ „ ^ n

we must show that \FG(a) n T G ^ ) ! ^ J!>2. NOW if |rG(«) n r c ^ ) ! < ji2,
rG(«) n T G ^ ! ) = <*!> with |a;x| = _̂>. Then, by investigating the inde-
pendence of [ac-p a], [ac1( 6] and \acx, c,] for 2 ^ * ^ ^, we can deduce that
jScfacj) > ^>n, contrary to G being pn-BFC. Hence we have, as desired,

(23) \T\ ^p2n'2.

Since T < G we may define a homomorphism a: G^~ GjT = 2? say,
and our final step is to prove that fi(Z) ^ pn~2. Let y e E and let g e G with
go- = y. We must prove

(1) if fa{g) =pn~l then \rG(g) nT\^p,
(2) if pG(g) = p» then \rG(g) nT\^p2.

Suppose first that pB(g) = pn~i with rG(g) nT = E. Then [a, g] = 1 and
so [b,g] = 1, whence [gc1( a"1] = xx and [gq, 6"1] = yx. By considering
^G(gCi), it ultimately follows that ^ofec1) > ^>", contrary to hypothesis, so
that \rG(g) nT\^pas desired.

Suppose then that fiG(g) — pn. If FG(g) n T = E we can proceed as
above and obtain our contradiction. Thus we are left to consider the case
when \FG(g) n T\ = p. The technique used is similar to, but much lengthier
than, the above. If [a, g] ^ 1 we achieve a contradiction by considering
rG(ag), whereas if [a, g] = 1 we use FG(ac1). In this way we show that
\rG(g) t^T\^pi as desired.

Combining these results, we have at once that fl(Z) ^ pn~2, and hence
by the minimality of G

|2"| ^pio-2)(»-i).

Hence by (23), since \G'\ = \r\\T\,
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giving 0 rgj —1, the desired contradiction.

This completes an analysis of all the ca-ses. and so we have shown that
no counter-example G can exist, and Theorem A follows.

The result for an arbitrary nil-2 n-BFC group G is a.n immediate
consequence. For if n = p\l • • • p"* with />, distinct primes, then G is the
direct product of p"'-BFC ^-groups and an abelian group of order prime to
n. Thus

\G'\ ^ n ^ * " - ( n < + 1 1 .

and since ni jS log2w for all i, we have finally:

THEOREM B. Let G be a nil-2 n-BFC group. Then \G'\ 5S «i»-+m««»>.
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