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Abstract
Evidence supports the role of vitamin D in various conditions of development and ageing. Serum 25-hydroxyvitamin D (25(OH)D) is the best
indicator for current vitamin D status. However, the cost of its measurement can be prohibitive in epidemiological research. We developed
and validated multivariable regression models that quantified the relationships between vitamin D determinants, measured through an in-
person interview, and serum 25(OH)D concentrations. A total of 200 controls participating in a population-based case–control study in
Montreal, Canada, provided a blood specimen and completed an in-person interview on socio-demographic, reproductive, medical and
lifestyle characteristics and personal attributes. Serum 25(OH)D concentrations were quantified by liquid chromatography–tandem MS.
Multivariable least squares regression was used to build models that predict 25(OH)D concentrations from interview responses. We assessed
high-order effects, performed sensitivity analysis using the lasso method and conducted cross-validation of the prediction models. Prediction
models were built for users and non-users of vitamin D supplements separately. Among users, alcohol intake, outdoor time, sun protection,
dose of supplement use, menopausal status and recent vacation were predictive of 25(OH)D concentrations. Among non-users, BMI, sun
sensitivity, season and recent vacation were predictive of 25(OH)D concentrations. In cross-validation, 46–47% of the variation in 25(OH)D
concentrations were explained by these predictors. In the absence of 25(OH)D measures, our study supports that predicted 25(OH)D scores
may be used to assign exposure in epidemiological studies that examine vitamin D exposure.

Key words: Vitamin D: Lifestyle: Predictors: Prediction modelling: Cross-validation

Vitamin D deficiency has recently been described as being
pandemic(1), affecting 50% of the population worldwide(2). Unde-
niable public health implications may arise as vitamin D insuffi-
ciency/deficiency has been associated with various conditions of
development and ageing, such as rickets, fractures and osteo-
porosis, as well as an overall higher risk of all-cause mortality(3,4).
Increasingly, the epidemiological evidence is growing to support
the role of vitamin D in the aetiology of chronic diseases like
cancer, CHD, diabetes, neurological disorders and so on(2).
The main source of vitamin D is cutaneous exposure to UVB

radiation from the sun, which catalyses the conversion of
7-dehydrocholesterol in the skin to vitamin D(5). However, in

Northern areas such as Canada, UVB irradiation during winter is
insufficient for cutaneous production(6). Thus, dietary vitamin D
from natural sources (e.g. fish, eggs) and fortified foods (e.g.
milk, cereals) and supplements(7) represents an important
source. Vitamin D that is endogenously produced or derived
from diet is then converted in the liver to 25-
hydroxycholecalciferol (25-hydroxyvitamin D (25(OH)D)) and
finally to 1,25(OH)2D primarily in the kidney(8).

The best available biomarker for total vitamin D exposure is
serum concentration of 25(OH)D(9). However, the cost of its
measurement can be prohibitive in an epidemiological study.
A suggested cost-efficient alternative is to use models that
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predict serum 25(OH)D from self-reported values of lifestyle
and personal attributes associated with 25(OH)D(10). Such
models have been previously developed(10–24) and may have
predictive ability for other similar populations. However,
models developed within a sub-population of a study, which
can then be applied to full study populations, can allow for the
consideration of the full range of information that was collected
with flexibility on how to best represent the data, which may
result in improved prediction ability. We developed and
validated multivariable regression models that quantified the
relationships between vitamin D determinants measured
through an in-person interview and the concentration of serum
25(OH)D in a Montreal, Canada, population.

Methods

Study population and data collection

This study was conducted within the PRevention of OVArian
Cancer in Quebec (PROVAQ) study, a population-based case–
control study conducted by our team in Montreal, Canada, from
2011 to 2016(25). Cases were women aged 18–79 years with
incident epithelial cancer of the ovary, fallopian tube or peri-
toneum. Population controls, randomly sampled from the
Quebec electoral list throughout the recruitment period, were
frequency-matched to cases according to 5-year age group and
Montreal region. The population for the current study included
the first 200 controls that agreed to participate in the PROVAQ
study and to provide a blood sample within 2 weeks of parti-
cipating. This study was conducted according to the guidelines
laid down in the Declaration of Helsinki, and all procedures
involving human subjects were approved by the Research
Ethics Committee of the Centre de recherche du CHUM. Written
informed consent was obtained from all participants.
An in-person interview was carried out among all participants

to collect information on socio-demographic, reproductive,
medical and lifestyle characteristics. Questionnaire items on
vitamin D sources included sun exposure during school, work,
commuting and leisure activities, as well as sun protection
behaviours (e.g. sunscreens, covering body). Dietary vitamin D
from natural and fortified foods, supplement use, use of tanning
salons and sun vacations was also assessed. Although the
questionnaire assessed these exposures over the life course,
specific questions also targeted recent exposure (past
2–3 months). The questionnaire also assessed factors related to
sun sensitivity, including eye colour, natural hair colour as a
teenager, tendency to burn at first summer sun exposure
without protection, tanning ability after repeated summer sun
exposure and skin tone.

Potential predictors

We considered the following potential predictors based on the
most recent exposures occurring in the past 2–3 months (Table 1):
age, season of blood draw, self-reported ethnicity, highest edu-
cation level, menopausal status, BMI, recent sun vacation and sun
protection, outdoor time with total sun protection (i.e. arms/legs
all covered using clothing or sunscreen), outdoor time with partial

sun protection (i.e. arms/legs partially covered using clothing or
sunscreen), outdoor time with no sun protection (i.e. no protec-
tion from the sun using clothing or sunscreen), vitamin D sup-
plement dose, dietary vitamin D intake, alcohol intake and
smoking. Only one woman had recently used tanning salons, and
thus this variable could not be considered. Sun vacation was
defined as having taken a vacation to a location with a summer
climate. Season of blood draw was classified according to sum-
mer (April to September) v. winter (October to March), based on
the months in Canada that have sufficient v. insufficient UVB
irradiation for cutaneous vitamin D synthesis, respectively(5,26).
Outdoor time was based on the accumulated reported time out-
side for school, work, commuting and leisure activities. Dietary
vitamin D was based on intake of milk, margarine, tuna, salmon
(canned, fresh or frozen, smoked), canned sardines and eggs,
which are the major natural and fortified dietary sources of
vitamin D in Canada(27). The vitamin D content in each food/
beverage, obtained from the Canadian Nutrient File(28), was
multiplied by the frequency of intake of a standard serving of that
food/beverage and then summed to give total dietary vitamin D
intake. We also defined a sun sensitivity score variable based on
responses to eye colour, hair colour, skin tone, tendency to burn
at first exposure to sun and tanning ability(29). For each of these
items, responses were assigned a value between 1 and 4, with
low values indicating high sun sensitivity and high values indi-
cating low sensitivity, based on the literature when available(29,30).
The sum of the values determined the sun sensitivity score, ran-
ging from 5 (highest sun sensitivity) to 19 (lowest sun sensitivity).

Laboratory analysis

Serum 25(OH)D3, 25(OH)D2 and 3-epi-25(OH)D3 concentra-
tions were measured by a liquid chromatography–tandem
MS method (Department of Clinical Biochemistry, CHU
Ste-Justine)(31,32). Within each batch, two quality control sam-
ples, independent of our study population, were included in
duplicate. In addition, 10% of the study population was
measured in duplicate in different batches.

Average intra-batch and inter-batch correlations of variation
were below 3 and 5%, respectively. Quantification of serum
25(OH)D2, 25(OH)D3 and 3-epi-25(OH)D3 concentrations
above the limit of detection of our assay was successful for 14,
199 and 131 participants, respectively. For one participant, ion
suppression caused a reduced detector response for 25(OH)D3,
25(OH)D2 and 3-epi-25(OH)D3, as well as the internal stan-
dards, resulting in uninterpretable values for all three vitamin D
metabolites. Concentrations below the limit of detection were
assigned a value of 0. Total serum 25(OH)D was calculated
as the sum of 25(OH)D2, 25(OH)D3 and 3-epi-25(OH)D3

concentrations (in nmol/l).

Statistical analysis

We developed a series of model-building steps that are outlined
below and described in more detail in the online Supplemen-
tary material (Section 1). Seven women were missing values for
menopausal status (n 5) or smoking (n 2); thus, the final sample
size was 192. Modelling was conducted using multivariable
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least squares regression, using both the forward and backward
selection procedures in SAS 9.3. We also used the lasso method
in a sensitivity analysis(33). Whenever the forward and back-
ward procedures yielded different predictors, all predictors
selected by at least one of the two procedures were included at
the next modelling step. As our initial examination of variable
distributions showed that the prevalence of vitamin D supple-
ment use was higher than expected based on past studies(23,34),
we conducted a set of preliminary analyses to examine the
interaction between each predictor variable and supplement
use. We observed several statistically significant interactions
(results not shown), and thus we performed all our multi-
variable model building separately for users (n 120) and non-
users (n 72) of vitamin D supplements.

Step 1: assessing potential non-linearity. We first assessed
whether continuous variables would be better represented with
the inclusion of a quadratic term to account for non-linearity. At
this step, all categorical variables and the linear terms for con-
tinuous variables were forced into the model. Selection of
quadratic terms was conducted in one model and limited to the
quadratic terms that were statistically significant at an α-level of
0·15, which corresponds approximately to the cut-off for
improving the model’s Akaike information criterion(35).

Step 2: assessing interactions with season. As season is a
strong predictor of 25(OH)D concentrations(11), we hypothesised
that season of blood draw may modify relationships between
other predictors and 25(OH)D. To ensure that any important
interactions with season would be accounted for, we considered
the two-way interactions between each of the other predictors
and season; all the main effect categorical and linear continuous
variables were forced into the model. An α-level of 0·15 was used
to determine statistical significance of the interaction term.

Step 3: building alternative multivariable ‘candidate
models’. After identifying higher-order terms for inclusion in
Steps 1 and 2, four alternative multivariable models of different
complexity were built.

Model 3·1: main effects only. The model in Step 3·1 was
limited to the main effects variables only. Selection was con-
ducted including all categorical variables and linear terms, with
no variables forced. An α-level of 0·15 was used to select the
final model variables.

Model 3·2: main effects, plus quadratic and interaction
terms. In Step 3·2, the higher-order terms identified in Steps 1
and 2 were now considered, along with all main effects vari-
ables. No variables were forced into the models, and an α-level
of 0·10 was used to select the final model variables.

Model 3·3: final complex model. In this step, all variables that
were selected in Steps 3·1 or 3·2 were considered for selection.
No variables were forced into the models, and an α-level of 0·05
was used to select the final model variables.

Model 3·4: final simplified model. In this step, we assessed
whether the final model in Step 3·3 could be simplified. Thus,
the variables considered for selection were those that were
selected in Step 3·3 but excluded any higher-order terms. An
α-level of 0·15 was used to select the final model variables.

Lasso model. In a sensitivity analysis, we estimated prediction
models for users and non-users of vitamin D supplements using
the lasso method through the ‘glmnet’ R package (Section 2,
online Supplementary material). All categorical and linear main
effects, as well as the higher-order quadratic and interaction
terms, were considered simultaneously.

Step 4: validation of model performance. To evaluate the
performance of the prediction models generated in Steps 3·1 to
3·4 and the lasso method for users and non-users of vitamin D
supplements, we used cross-validation, which approximates the
expected performance of the models to predict 25(OH)D in a
future independent data set(36). The performance indicators that
we estimated were the R2 (percentage of the total variation
in observed 25(OH)D values explained by the model), the
Pearson linear correlation coefficient between the predicted and
observed 25(OH)D values and the root mean square prediction
error (RMSPE: square root of the mean of the squared differ-
ences between the predicted and observed 25(OH)D values).
We used the leave-one-out 5-fold procedure(37), where the ori-
ginal data set (for users and non-users separately) was first ran-
domly partitioned into five equal-size sub-samples (or folds).
Subsequently, a random sample of four of the sub-samples was
used as a ‘training’ sample to re-estimate the parameters of a
given model, which was then applied to the remaining ‘testing’
sub-sample to calculate their predicted 25(OH)D concentrations.
The predicted and observed 25(OH)D values were then com-
pared, with the users and non-users pooled, to calculate the
aforementioned performance indicators. This was repeated five
times such that each of the five sub-samples was used exactly
once as a ‘testing’ sample while each combination of four sub-
samples was used as a ‘training’ sample. To obtain stable and
unbiased estimates of the performance indicators, we repeated
this leave-one-out 5-fold procedure ten times, with different
random partitioning of the original data set each time. The per-
formance statistics were then averaged across the fifty iterations
(i.e. ten replications of the five folds). To further assess the per-
formance of all final prediction models, we categorised the
observed and the predicted 25(OH)D levels into quartiles and
quantified the concordance of the two classifications using the
area under the receiver operating characteristic curve (AUC)(38).

Application of previously published prediction models. We
also evaluated the application of three previously published pre-
diction models(10,11) to our population, one also based on a
Canadian population of women in Ontario(11) and the other two
based on the Nurses’ Health Studies (NHS and NHSII), which
represents the largest and most comprehensive modelling
endeavour for 25(OH)D(10). We calculated the predicted 25(OH)D
in our study population using the published regression coefficients
for their model variables defined in our population (Section 3,
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online Supplementary materials), and calculated the Pearson
correlation coefficient comparing the predicted to observed
25(OH)D values.

Justification of sample size. Our sample size was determined
by the feasibility and budget limits associated with blood col-
lection and the 25(OH)D assay. Thus, we can only provide a
post hoc assessment of the statistical power ensured by our
fixed sample size of 192 (120 users and seventy-two non-users
of vitamin D supplements). Power estimation was carried out
using the PASS software program (NCSS Statistical Software)(39)

for multivariable linear regression. Because candidate pre-
dictors included both categorical and continuous variables, and
our focus was not on estimating associations with specific
exposure variables, we calculated the minimum R2 value for an
individual predictor variable that can be detected with 80%
power, given the sample size and an α-level of 0·05. In these
calculations, we assumed that covariates included in the same
multivariable model together explained 20% of the total var-
iance in 25(OH)D. Under these assumptions, with 120 users of
vitamin D supplements, we had 80% power to detect as

significant an individual variable with an R2 of 5%, corre-
sponding to a partial correlation of approximately 0·22. For the
seventy-two non-users of supplements, we had 80% power to
detect as significant an individual variable with an R2 of 8%,
corresponding to a partial correlation of about 0·28. If we
assumed that covariates included in the same multivariable
model together explained more than 20% of the total variance
in 25(OH)D, the minimum detectable R2 decreased negligibly.
Under the most conservative assumption that covariates do not
explain any variance, the detectable R2 increased slightly to 6
and 10% for supplement users and non-users, respectively.
Thus, for both models, we had adequate power to identify and,
thus, include in the final multivariable model predictors that
explained between 5 and 10% of the total variance in 25(OH)D
concentration.

Results

Bivariate relationships

Table 1 summarises the means and distributions of all continuous
and categorical potential predictors, respectively, as well as their

Table 1. Distributions of potential vitamin D predictors and their bivariate relationships with total serum 25-hydroxyvitamin D (25(OH)D) in users and non-
users
of vitamin D supplements
(Mean values and standard deviations and β-coefficients; numbers and percentages)

Users of vitamin D supplements (n 120) Non-users of vitamin D supplements (n 72)

Continuous variables Mean SD β* P† Mean SD β* P†

Age at interview (years) 63·2 10·3 0·60 0·01 55·1 11·4 −0·16 0·47
BMI (kg/m2) 25·8 5·9 − 0·80 0·06 27·0 7·0 −0·87 0·01
Outdoor time with total sun protection (h/week) 1·3 4·8 0·62 0·24 2·5 5·9 0·90 0·03
Outdoor time with partial sun protection (h/week) 11·6 36·4 0·10 0·14 18·9 61·8 −0·01 0·71
Outdoor time with no sun protection (h/week) 1·1 5·9 − 0·22 0·60 2·1 10·1 0·18 0·45
Alcohol intake (g/week) 61·1 69·3 0·10 <0·01 71·0 85·8 0·01 0·69
Smoking (pack-years) 15·4 28·7 0·02 0·83 11·7 17·7 −0·25 0·06
Supplement vitamin D dose (×100 IU/week)‡ 94·6 75·6 1·37 <0·0001 − – –

Dietary vitamin D intake (µg/week) 33·7 24·5 − 0·04 0·70 32·1 22·2 −0·01 0·91
Sun sensitivity score 13·1 2·6 − 0·77 0·43 13·0 2·6 −1·67 0·08

Categorical variables n % Mean§ SD P† n % Mean§ SD P†

Season of blood draw
0=October–March 58 48·3 94·22 0·13 0·31 30 41·7 53·03 0·18 0·15
1=April–September 62 51·7 89·16 0·18 42 58·3 60·01 0·24

Ethnicity
1=French Canadian 68 56·6 96·75 0·12 0·06 51 70·8 57·99 0·14 0·28
2=Non-French Canadian, European 41 34·2 85·22 0·20 14 19·4 59·71 0·30
3=Other, mixed 11 09·2 83·51 0·32 7 9·8 45·42 0·40

Education level
1= high school and less than high school 52 43·3 93·60 0·14 0·48 18 25·0 51·79 0·24 0·21
2= greater than high school 68 56·7 90·10 0·18 54 75·0 58·87 0·27

Menopausal status
0= pre-menopausal 21 17·5 72·18 0·22 <0·001 33 45·8 57·84 0·17 0·78
1= post-menopausal 99 82·5 95·72 0·24 39 54·2 56·48 0·24

Recent sun vacation and sun protection
0= no vacation 103 85·8 90·86 0·10 0·08 55 76·4 53·13 0·13 <0·01
1= vacation with sun protection 10 8·4 107·69 0·33 10 13·9 74·42 0·34
2= vacation with partial or no sun protection 7 5·8 79·45 0·39 7 9·7 63·58 0·40

* Regression coefficient (slope) from a simple, bivariate linear regression model between variable and 25(OH)D.
† P-value for the t test of H0: β=0 for continuous variables and µ= µ0 for categorical variables.
‡ Mean supplement vitamin D dose is equivalent to 236·5 (SD 199·9) μg/week.
§ Mean of the 25(OH)D level in the category of interest.
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bivariate associations with 25(OH)D, separately for vitamin D
supplement users and non-users. Mean serum 25(OH)D con-
centrations were higher for vitamin D supplement users
(mean= 91·60, SD= 27·20) compared with non-users (mean=
57·10, SD= 20·44). Among vitamin D supplement users, 25(OH)D
concentrations increased with increasing age (P= 0·01), alcohol
intake (P< 0·01) and dose of vitamin D supplement intake
(P< 0·0001), and decreased with increasing BMI (P= 0·06).
25(OH)D concentration was higher for French Canadians than
for other ethnicities, as well as for post-menopausal v. pre-
menopausal women (P< 0·0001) and people who had recently
taken a sun vacation (P= 0·08) (Table 1). Similar to vitamin D
supplement users, BMI (P= 0·01) was inversely associated with
25(OH)D concentration among non-users. In addition, 25(OH)D
concentration was positively associated with longer outdoor time
with total sun protection (P= 0·03), higher in those who had
taken a recent sun vacation (P< 0·01), inversely associated with
pack-years of smoking (P= 0·06) and inversely associated with
sun sensitivity score (P= 0·08).

Prediction modelling among vitamin D supplement users

In Step 1, quadratic terms suggesting non-linearity were
retained for BMI and vitamin D supplement dose (P= 0·12 and
P= 0·07, respectively). In Step 2, the interaction between sea-
son and menopausal status was retained (P= 0·04).

Table 2 presents the regression coefficients for the variables
retained in each of Steps 3·1–3·4 of model building among
vitamin D supplement users. In Step 3·1 that considered all
linear and categorical main effects terms only, alcohol, outdoor
time with partial sun protection and vitamin D supplement dose
were positively associated with 25(OH)D. Ethnicity and
menopausal status were also associated with 25(OH)D, with
French Canadian and post-menopausal women having higher
concentrations. 25(OH)D was higher among those who had
recently been on a sun vacation with sun protection as com-
pared with those who did not take a sun vacation.

In Step 3·2, which included the same starting variables as
in Step 3·1 along with the higher-order terms identified in
Steps 1 and 2, the quadratic terms for BMI and vitamin D
supplement dose were retained, as well as the interaction
between season and menopausal status. Post-menopausal
women had higher 25(OH)D concentrations than pre-
menopausal women, but the difference was stronger in
winter v. summer months (Table 2). In addition, the sun
sensitivity score was retained in this model and showed that
those with a lower sun sensitivity (i.e. high score) had lower
25(OH)D. Associations with alcohol, ethnicity and being on
a recent sun vacation were similar to those observed in
Step 3·1.

In Step 3·3 where the starting variables included all variables
retained in Steps 3·1 and 3·2, all of the same variables as in Step

Table 2. Associations from prediction models of lifestyle factors and personal attributes identified in Steps 3·1 to 3·4 and from the lasso procedure with total
serum 25-hydroxyvitamin D (25(OH)D) for vitamin D supplement users

Step 3·1 Step 3·2 Step 3·3 Step 3·4 Lasso

Covariates β* P† β* P† β* P† β* P† β‡

Intercept 56·65 <0·0001 133·12 <0·0001 140·41 <0·0001 51·87 <0·0001 81·67
Alcohol intake 0·08 <0·01 0·08 <0·01 0·08 <0·01 0·08 <0·01
BMI (kg/m2) – – −4·55 <0·01 −4·54 0·01
BMI2 (kg/m2) – – 0·06 0·02 0·06 0·02
Outdoor time with partial sun protection 0·13 0·02 0·10 0·06 0·10 0·06 0·12 0·03
Supplement vitamin D dose 0·13 <0·0001 0·39 0·01 0·13 <0·0001 0·13 <0·0001 0·049
Supplement vitamin D dose2 – – −1·09e–03 0·09
Sun sensitivity score – – −1·47 0·07 −1·62 0·04
Ethnicity – –

French Canadian Ref. Ref.
Non-French Canadian, European − 9·74 0·03 −11·03 <0·01
Other, mixed − 9·33 0·21 −3·53 0·63

Menopausal status
Pre-menopausal Ref. Ref. Ref. Ref.
Post-menopausal 23·71 <0·0001 35·20 <0·0001 36·58 <0·0001 24·62 <0·0001 6·15

Season – –

October–March Ref. Ref.
April–September 18·41 0·06 14·28 0·14

Season×menopausal status
October–March × pre-menopausal – – Ref. Ref.
April–September × post-menopausal −28·05 <0·01 −25·04 0·02

Recent sun vacation and sun protection
No vacation Ref. Ref. Ref. Ref.
Vacation with sun protection 20·23 <0·01 18·72 <0·01 20·09 <0·01 21·56 <0·01
Vacation with partial or no sun protection − 11·97 0·17 −3·95 0·64 −9·48 0·26 −14·97 0·09

Ref., referent values.
* Regression coefficient from the multivariable linear regression model: it corresponds to the slope for continuous covariates and to the average variation in 25(OH)D level compared

with the reference category for categorical variables.
† P-value for the t test of H0: β=0.
‡ Shrinked lasso coefficients.
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3·2 were retained in the model, except for ethnicity and the
quadratic term for supplement vitamin D dose (Table 2). In Step
3·4, which started with the final model from Step 3·3 but
removed any higher-order terms (i.e. the quadratic term for BMI
and the interaction between menopausal status and season),
the main BMI effect, the sun sensitivity score and the main
season effect were no longer retained.

Prediction modelling among vitamin D supplements
non-users

In Step 1, quadratic terms suggesting non-linearity were
retained for BMI, the sun sensitivity score and time spent out-
doors without sun protection (P= 0·10, P= 0·13 and P= 0·14,
respectively). In Step 2, the interaction with season was retained
for education level and dietary vitamin D intake (P= 0·04 and
P= 0·14, respectively).
Table 3 presents the regression coefficients for the variables

identified in model building among non-users of vitamin D sup-
plements. In Step 3·1 that considered only linear and categorical
main effects terms, age, BMI and the sun sensitivity score were
retained and inversely associated with 25(OH)D, whereas higher
25(OH)D concentrations were observed among post-
menopausal v. pre-menopausal women, women with a blood
draw during the summer v.winter season and those having had a
recent vacation v. not having taken a vacation (Table 3).
In Step 3·2 that added the higher-order terms, additional

variables that were retained included the quadratic terms for

BMI and the sun sensitivity score, as well as the interaction
between education level and season. Step 3·3 that considered
all retained terms from Steps 3·1 and 3·2 confirmed the asso-
ciations with BMI, sun sensitivity score, season, vacation with
sun protection and 25(OH)D (Table 3). The interaction term
between educational level and season was not retained. In Step
3·4, which differed from Step 3·3 only by the exclusion of the
quadratic terms for BMI and the sun sensitivity score, all
retained variables from Step 3·3 were similarly retained (i.e.
BMI, sun sensitivity score, season, sun protection on vacation).

Sensitivity analyses using lasso

The predictors of 25(OH)D identified by the lasso procedure
for users of vitamin D supplements were vitamin D supple-
ment dose and menopausal status, both positively associated
with 25(OH)D (Table 2). For non-users of vitamin D supple-
ments, the predictors identified were BMI, for which a non-
linear effect was observed, and recent vacation with sun
protection (Table 3).

Performance of the prediction models

Table 4 presents the cross-validation results for each of the final
models identified in Steps 3·1–3·4 and the lasso method. Each
predictive model explained a very similar percentage of the
total variation in 25(OH)D concentration, with R2 values ran-
ging from 46 to 47%. Accordingly, the Pearson correlation

Table 3. Associations from prediction models of lifestyle factors and personal attributes identified in Steps 3·1 to 3·4 and from the Lasso procedure with total
serum 25-hydroxyvitamin D (25(OH)D) for non-users of vitamin D supplements

Step 3·1 Step 3·2 Step 3·3 Step 3·4 Lasso

Covariates β* P† β* P† β* P† β* P† β‡

Intercept 122·42 <0·0001 − 6·67 0·89 − 8·03 0·86 102·72 <0·0001 58·35
Age (years) −0·46 0·13
BMI (kg/m2) −1·06 <0·0001 1·80 0·25 1·61 0·30 −0·95 <0·01
BMI2 (kg/m2) − 0·04 0·08 − 0·04 0·09 −0·0038
Sun sensitivity score −2·12 0·01 7·63 0·18 9·47 0·09 −2·22 <0·01
Sun sensitivity score2 − 0·39 0·08 − 0·46 0·04
Education level

High school or less than high school Ref.
Greater than high school 9·62 0·16

Menopausal status
Pre-menopausal Ref.
Post-menopausal 11·74 0·10

Season
October–March Ref. Ref. Ref. Ref.
April–September 10·06 0·02 20·97 0·01 8·70 0·04 8·67 0·046

Season× education level
October–March × high school or less than high school Ref.
April–September × greater than high school −16·62 0·08

Recent sun vacation and sun protection
No vacation Ref. Ref. Ref. Ref.
Vacation with sun protection 19·46 0·002 18·19 <0·01 18·33 <0·01 18·75 <0·01 6·01
Vacation with partial or no sun protection 14·18 0·05 14·63 0·04 13·66 0·05 14·68 0·04

Ref., referent values.
* Regression coefficient from the multivariable linear regression model: it corresponds to the slope for continuous covariates and to the average variation in 25(OH)D level compared

with the reference category for categorical variables.
† P-value for the t test of H0: β=0.
‡ Shrinked lasso coefficients.
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coefficients were also very similar across models, and all close
to 0·7, indicating a strong correlation between the predicted and
observed vitamin D values. Finally, the RMSPE ranged from
21·43 to 21·75, suggesting that in future applications to similar
populations the predicted vitamin D concentrations based on
our models may diverge on average by about 21–22 nmol/l
from the corresponding true values. The model selected by the
lasso procedure performed slightly worse, explaining 38% of
the variation of the outcome (R2), with a Pearson correlation of
0·61 and RMSPE of 24·50.
The AUC values indicated satisfactory concordance between

quartiles of predicted 25(OH)D, based on each of the four
models, and quartiles of actual (measured) 25(OH)D, with the
model developed in Step 3·3 having the highest AUC (0·82) and
the lasso-based model the lowest AUC (0·75) (Table 4).

Comparison with published prediction models

When previously published prediction models(10,11) were
applied to our population, we found that the models from
the NHS by Bertrand et al.(10) and the Ontario study by
Sahota et al.(11), respectively, systematically under- and over-
estimated the concentrations of 25(OH)D of our participants.
The mean difference between the predicted v. observed 25
(OH)D values was −50·5 and −54·7 nmol/l for the NHS and
NHSII models, respectively, by Bertrand et al.(10), and
32 nmol/l for the models in Sahota et al.(11). The Pearson
correlation coefficients between the predicted and observed
25(OH)D values (which do not depend on the absolute 25
(OH)D values) were 0·37 for the Sahota et al.(11) model and
0·39 and 0·14 for the NHS and NHSII models, respectively.

Discussion

In this study, we developed and validated multivariable models
that predict serum concentrations of 25(OH)D, considered the
gold-standard measure of current vitamin D status(40–45), from

vitamin D-related variables derived from interview responses,
as a cost-efficient alternative to biomarkers for measuring
vitamin D in epidemiological studies. We assessed potentially
relevant higher-order effects, not usually considered in tradi-
tional prediction modelling. In cross-validation analyses, we
contrasted more complex models, which incorporated these
higher-order terms with simpler models and found that per-
formance was comparable across all the estimated models with
an expected 46–47% of the total variation in 25(OH)D con-
centrations explained in an independent sample of women
drawn from a population similar to our study participants.

As the performance was so similar across models, our dis-
cussion is limited to the simplest model, identified in Step 3·4.
Among vitamin D supplement users, predictors of higher
25(OH)D were increasing alcohol intake, hours spent outside
with partial sun protection, dose of vitamin D supplement,
being post-menopausal and having taken a recent sun vacation.
Among non-users of vitamin D supplements, a lower BMI,
higher sun sensitivity, having had their blood drawn in the
summer months and having taken a recent sun vacation were
associated with higher concentrations of 25(OH)D.

Many previous studies have investigated associations
between vitamin D-related variables and serum 25(OH)D con-
centrations, among which we considered eighteen to be com-
parable to ours as they considered similar vitamin D predictors
in populations residing in regions with similar lati-
tudes(10–24,34,46,47). The predictors most frequently considered
among previous studies were season of blood
draw(10–23,34,46,47), BMI(10–20,22–24,34,46,47), supplemental vitamin D
use(10,11,13–18,21–24,46,47) and age(10–15,17,18,20,22–24,34,46,47). As we
observed among non-users of vitamin D supplements, a higher
BMI has consistently been associated with lower 25(OH)D con-
centrations in all but one study(16), whereas a summer v. winter
blood draw has been associated with a higher 25(OH)D in all
studies. Age, however, has been associated with 25(OH)D levels
in only eleven of the fourteen studies in which it was considered,
and in inconsistent directions(10–15,17,18,20,34,46). Our findings for
age were also inconsistent as it was a predictor only among non-
users of vitamin D supplements in model 3·1, and not in other
models, nor among vitamin D supplement users. Although
cutaneous vitamin D synthesis deteriorates with age, our parti-
cipants were exposed to vitamin D additionally through dietary
and supplemental sources, which may explain the lack of asso-
ciation with age, particularly in supplement users. Regarding
vitamin D supplement use, which has been consistently asso-
ciated with higher 25(OH)D concentrations in past stu-
dies(10–18,21–24,46,47), we did not examine use v. non-use as a
potential predictor of 25(OH)D concentrations; rather, we built
our models separately for users and non-users given the high
prevalence of use in our study population. However, vitamin D
supplement dose was considered among users and a positive
association with 25(OH)D concentrations was observed, similar
to that seen in eight previous studies that also considered
dose(10,13,15,16,18,23,24,47).

Several studies have also considered outdoor
time(11–15,17,19–24,34,47) and alcohol intake(10,14,15,18–20,23,47), and
increases in each of these variables have been associated with
higher 25(OH)D in the majority of studies, consistent with our

Table 4. Comparison of performance for different models using cross-
validation and AUC statistics

Models* R2
† Pearson correlation‡ RMSPE§ AUC||

Step 3·1 0·47 0·71 21·43 0·80
Step 3·2 0·47 0·72 21·47 0·81
Step 3·3 0·45 0·72 21·75 0·82
Step 3·4 0·46 0·71 21·44 0·80
Lasso 0·31 0·61 24·50 0·75

RMSPE, root mean square prediction error; 25(OH)D, 25-hydroxyvitamin D.
* See Tables 2 and 3 for details of the models built in Steps 3·1–3·4 and from the

lasso method.
† The mean percentage of the total variation of the 25(OH)D values, over ten

iterations of the 5-fold cross-validation, explained in the independent ‘testing’
sub-samples by the respective model, with coefficients estimated from the ‘training
sub-sample’.

‡ The mean measure of the linear dependence between values predicted by the
respective model and the observed values over ten iterations of the 5-fold cross-
validation.

§ The mean root mean squared prediction error, i.e. average absolute difference
between the 25(OH)D values predicted by the respective model and actually
observed over ten iterations of the 5-fold cross-validation.

|| Performance of models when 25(OH)D is categorised into quartiles.
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results. Aspects of diet have been considered as predictors of
25(OH)D in seventeen studies(10–16,18–24,34,46,47), but the
majority focused on individual foods or food groups. Only
seven studies examined a measure of dietary vitamin D intake
from all foods, excluding supplements, as we did(10,13,16,18–20).
Results similar to ours, indicating that dietary vitamin D was not
a predictor of 25(OH)D levels, were observed in most of these
studies(13,16,19,20). An absence of a relation between dietary
vitamin D intake and 25(OH)D level in multivariable models
may reflect a greater importance of other determinants. The
intake of dietary vitamin D in our study population was very
similar to the general Canadian population(48).
Interestingly, our finding of a positive association with out-

door time was among people who used partial sun protection.
In all, eight studies(11,13,15–17,34,46,47) have reported on sun
protection use, all of which reported an association with 25
(OH)D. Our measure of sun protection was combined with
outdoor time, which we believe better represents the intensity
of sun exposure with outdoor time, as sun protection use
reduces cutaneous vitamin D production(49). In addition, our
estimate of outdoor time was not based on a self-reported
global estimate by participants, but rather on distinct questions
asking participants to report on their patterns of outdoor time
occurring during commuting, work and recreation, which
would reduce the error in the overall measure of outdoor time.
We also observed an association with recent sun vacation,
which has only been considered as a predictor in four previous
studies(11,12,16,17).
Among vitamin D supplement users, we observed that post-

menopausal women had higher 25(OH)D levels compared with
pre-menopausal women in multivariable models. Only four
previous studies(10,11,18,20) have considered the role of meno-
pausal status on 25(OH)D concentrations, none of which found
menopausal status to be a significant predictor of 25(OH)D in
multivariable models. It is not clear why menopausal status
would be associated with 25(OH)D levels, particularly in
multivariable models including other vitamin D predictors.
Although vitamin D supplement dose was in our multivariable
model, our results pertaining to menopausal status may reflect
the fact that all women in this analysis were taking supple-
ments. No other study on predictors of 25(OH)D has stratified
on vitamin D supplement use, as we did.
Our study is the first to consider a sun sensitivity score based

on eye colour, hair colour, skin colour, tendency to burn and
tanning ability. Among non-users of vitamin D supplements, a
lower sun sensitivity was associated with lower 25(OH)D. Other
studies have considered elements of sun sensitivity such as skin
colour, tendency to burn, tanning ability and constitutive skin
pigmentation measures(11,13,14,16,17,20,24,47), among which two
studies reported similar findings to ours where a lower sun
sensitivity was associated with lower levels of 25(OH)D(11,24). In
general, the variables selected in our models were associated
with 25(OH)D in a manner consistent with what has been
previously observed.
In the application of two previously published prediction

models(10,11) to our study population, we had all the relevant
variables from their models, except UVB flux in the models by
Bertrand et al.(10). However, our Montreal population did not

have meaningful variability in latitude and altitude. We
observed that, based on the correlation coefficient, the pub-
lished models did not perform as well as our own models
performed in our study population, which may suggest that
population-specific models may be needed for attaining the
best predictive ability. However, it is also possible that our
parametrisation of certain variables (e.g. outdoor time com-
bined with sun protection in one variable, separate modelling
by vitamin D supplement use) may have better captured pre-
dictors of 25(OH)D.

Limitations of this study include the small sample size, which
combined with a skewed distribution for some variables may
have limited our evaluation of their influence on 25(OH)D
concentrations. Nonetheless, our cross-validation results indi-
cated that our model explained about 45–47% of the total
variation of 25(OH)D concentrations in an independent sample
drawn from our study population. Although the RMSPE of
21–22 nmol/l is too high to precisely predict 25(OH)D values
for a given individual, as may be needed in a clinical context,
we believe that predictions based on our models could be
useful in an epidemiological research setting, where the esti-
mation of a relative risk for the association between vitamin D
and a particular disease would be of interest. Indeed, in large
population-based epidemiological studies, it may be much
easier to collect data on the predictors included in our models
than to obtain direct 25(OH)D measurements. However, the
measurement error due to discrepancies between predicted and
unknown true 25(OH)D levels will result in reduced statistical
power, necessitating larger sample sizes, and relative risk esti-
mates will be attenuated. From this perspective, the fact that we
estimated the cross-validated RMSPE is of practical importance
for future epidemiological studies that use our prediction
model, as this estimate will allow the use of the simulation
extrapolation (SIMEX) methodology for measurement error
correction(50).

In summary, our study found that interview responses to
lifestyle and personal attributes were highly predictive of
circulating 25(OH)D in a population of middle-aged women.
In the absence of available biomarker measures of vitamin D,
results from our study support that predicted 25(OH)D scores
derived from interview items may be used to assign exposure in
epidemiological studies that aim to examine the relation
between vitamin D and disease risk.
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