
Cite this article: Kattner, N., Bauer, H., Basirati, M.R., Zou, M., Brandl, F., Vogel-Heuser, B., Böhm, M., Krcmar,
H., Reinhart, G., Lindemann, U. (2019) ‘Inconsistency Management in Heterogeneous Models - An Approach for the
Identification of Model Dependencies and Potential Inconsistencies’, in Proceedings of the 22nd International Conference
on Engineering Design (ICED19), Delft, The Netherlands, 5-8 August 2019. DOI:10.1017/dsi.2019.373

ICED19

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED19
5-8 AUGUST 2019, DELFT, THE NETHERLANDS

ICED19

INCONSISTENCY MANAGEMENT IN HETEROGENEOUS
MODELS - AN APPROACH FOR THE IDENTIFICATION OF
MODEL DEPENDENCIES AND POTENTIAL
INCONSISTENCIES

Kattner, Niklas; Bauer, Harald; Basirati, Mohammad R.; Zou, Minjie; Brandl, Felix; Vogel-
Heuser, Birgit; Böhm, Markus; Krcmar, Helmut; Reinhart, Gunther; Lindemann, Udo

Technical University of Munich

ABSTRACT
In today’s engineering projects, interdisciplinary work leads to an increase in interfaces between
different departments and domains. As each stakeholder pursues different goals and tasks, a
heterogeneous model landscape is required. In each domain, a variety of different model and software
implementations provide the essential basis for efficient work. On the interfaces, the risk of model
inconsistencies increases. To handle occurring inconsistencies, various approaches have been presented.
For model-based systems engineering projects, rule-based methods are considered as the most suitable
technique. However, said approaches require a high manual effort in identifying model dependencies
and establishing consistency rules. Unfortunately, in particular these steps are not well described and
supported. Therefore, this paper presents an easily applicable approach for the identification of model
dependencies in interdisciplinary projects. The method is supported by a software implementation and
is directly integrated in engineering workflows. A first industrial case study has shown positive effects
of the approach and revealed further research goals.

Keywords: Inconsistency Management, Product-Service Systems (PSS), Case study, Design learning

Contact:
Kattner, Niklas
Technical University of Munich
Mechanical Engineering
Germany
niklas.kattner@tum.de

3661

https://doi.org/10.1017/dsi.2019.373 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.373

 ICED19

1 INTRODUCTION

Nowadays systems’ components are increasing in number and heterogeneity as a result of new

paradigms such as Product-Service-Systems (PSS). This leads to interdisciplinary projects, which

involve various domains and a high number of dependencies among the disciplines. In order to

manage the uprising complexity, engineers apply model-based systems engineering (MBSE) and

create a high number of dependent heterogeneous models (Reift et al., 2017). The more models

collaborate, the higher gets the risk of model inconsistencies, meaning that the information in different

models cannot be true at the same time (Spanoudakis and Zisman, 2001; Feldmann et al., 2015).

As undetected and unsolved inconsistencies result in project delays and failures, inconsistency

management becomes crucial (Feldmann et al., 2015). Many approaches for inconsistency

management exist, but in particular the task of identifying model interdependencies is not well

described and supported. Therefore, this paper presents an approach for a continuous documentation

of model interdependencies during the ongoing workflow. The method is supported by an assistant

tool implementation that guides the documentation and automatically creates reports on potential

inconsistencies. This provides the basis for further automated inconsistency processing within

inconsistency management. Additionally, it can be used as constant work support for inconsistency

prevention in particular in the field of change management. The approach was applied in an industrial

case study in the development process of an automotive controller. The case study showed the general

applicability of the methodology in one area, however, due to the higher amount of domains and

interdependencies, the maximum benefit is expected within PSS design (Shani et al., 2017).

The remainder of this paper is structured as follows: chapter 2 introduces inconsistencies in

heterogeneous models based on an exemplary PSS use case. Chapter 3 presents existing approaches

for inconsistency management. Consequently, shortcomings of the state of the art are described in

chapter 4. Chapter 5 outlines the approach for the identification and documentation of model

dependencies and inconsistencies. Subsequently, the software implementation and its application are

explained in chapter 6. Finally, the paper concludes with the further research goals in chapter 7.

2 CHALLENGES AND ILLUSTRATING EXAMPLE: A PSS USE CASE

To illustrate the problem, the case study of a bike supplier, the PSSycle AG, which offers E-bike-

sharing system solutions for the city of Munich, is introduced in this section. This supplier changed its

business model from providing recreational bikes in city parks into providing intra-city electric

scooters. Correspondingly, the required range of the E-bike is increased from 100 km to 150 km.

In the development of the E-bike system, four departments work collaboratively: Product Design (PD),

Mechatronic Design (MD), Manufacturing Planning (MP) and Software Development (SD). In these

departments, engineers from different disciplines are involved to reach discipline-specific goals, which

requires the usage of different models (Figure 1). Oriented by the changed business model in the use

case, a product-service-management model is employed in PD to specify the desired characteristics of

the new E-bike system in different levels. In MD, mechatronic models named SysML4Mechatronics are

applied to refine the mechatronic characteristics of the battery system. A manufacturing model is used in

MP to plan the process and resources for manufacturing battery system, whereas a sequence diagram

comes into usage in SD to specify IT requirements and solutions. Though these models are

heterogeneous both in syntax and semantics, they are also associated by semantic overlaps. First of all,

the requirements in PD should be met in all models, e.g. the energy storage of the battery system should

be large enough to reach the required range, the packaging machine should be reconfigured in

manufacturing for a lager capacity, and IT functions should also be updated. In case, not all necessary

changes are identified and implemented, inconsistencies arise. They are defined as conflicting

information in different models (Feldmann et al., 2015) or more specifically, contradiction between two

facts or two presentations of facts expressed in formal models as well as in informal artefacts such as

requirements written in natural language (Basirati et al., 2018). In the PSSycle AG for example, a

semantical inconsistency of the relation type “refinement” would occur, if the documented battery

capacity in MD would not satisfy the required battery range of the PD model.

3662

https://doi.org/10.1017/dsi.2019.373 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.373

ICED19

Product Design Software Development

Mechatronic DesignManufacturing Planning

Figure 1: E-bike-sharing system (in the middle) and interdisciplinary models employed in the
E-bike-sharing system (marked in corners). Dependencies among models are marked with

doted lines when the business model is changed.

3 INCONSISTENCY MANAGEMENT IN HETEROGENOUS MODELS

Goal of inconsistency management is an adequate prevention and reaction in order to minimize

negative impacts caused by inconsistencies on project success. While in certain cases, inconsistencies

are planned or can be tolerated, other inconsistencies need to be eliminated or, if possible, prevented

(Nuseibeh et al., 2000). However, potential or existing inconsistencies must be detected in a first step.

In general, inconsistency management is divided in the steps of monitoring, diagnosis – locating,

identifying, and classifying –, and handling – resolve or tolerate – (Nuseibeh et al., 2000), which is

applied in approaches of all domains. For the area of MBSE, Feldmann et al. (2016) add the

visualization of inconsistencies as an essential supporting step. Regarding their basic methods,

inconsistency management approaches are classified in proof theory-based, rule-based, and

synchronization-based procedures (Feldmann et al., 2015). For MBSE, rule-based approaches were

identified as most suitable (Feldmann et al., 2016) and thus, will be the focus of this paper.

Within these methods, inconsistencies can be detected by ongoing monitoring of an established rule

set (Nuseibeh et al., 2000). Consistency rules describe a correct state of the models (Hehenberger et

al., 2010). The subsequent inconsistency locating entails the determination of elements that broke an

inconsistency rule. As basis for suitable handling strategies, the cause for the inconsistency is

identified and the inconsistency is classified. Various strategies are available to handle inconsistencies

(Zou et al., 2017). In the rule-based inconsistency management, a set of rules between the different

models needs to be established as criteria. Therefore, Feldmann et al. (2016) suggest creating model

links on a metamodel level and deriving consistency rules between linked elements.

Egyed et al. (2018) describe a similar procedure. A cloud-based design space enables engineers to

manually define traceability links and consistency rules between concrete models.

Dávid et al. (2018) propose to link constraints to the engineering process activities and the engineering

system and provide a modelling tool, while other authors suggest the use of ontologies for model

coupling (Hoppe et al., 2017). Further approaches also emphasize, that a set of rules must be defined by

the users in advance and provide examples for consistency rules (Hehenberger et al., 2010; Mens et al.,

2006; Hegedus et al., 2011; Herzig and Paredis, 2014; Herzig et al., 2014). Rule-contents and processing

techniques are described respectively in these works in detail. In general, a formal representation form of

3663

https://doi.org/10.1017/dsi.2019.373 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.373

 ICED19

the dependencies is required by these studies. However, they do not investigate the sources of these

dependencies, which are the essential basis for rule acquisition in inconsistency management.

It is assumed that the relevant models are already identified and experts can autonomously describe

interdisciplinary dependencies. Literature does not provide a procedure to achieve these prerequisites

with a modest manual effort and dispersed expert knowledge in various domains.

4 SHORTCOMINGS

Based on the state of the art, four main shortcomings were identified:

Lack of methods for the identification of potentially inconsistent models

As basis for defining rules between different models, it is necessary to identify, which models must be

checked for inconsistencies. Therefore, a detailed knowledge of the specific engineering workflows

and the model structure of a company is required and must be analyzed before starting with the

definition of concrete consistency rules. Only Basirati et al. (2018) mentioned it as an activity and that

particularly such a method is needed in interdisciplinary projects where a wide range of models and

presentations is used. Also the teams work separately, while their models and components are

dependent on each other (Song, 2017).

Dependency identification

Having identified relevant models, model interdependencies must be detected before defining the concrete

consistency rules. This phase requires high manual effort. However, currently no methodical support exists,

even though the quality of inconsistency checking highly depends on the results of this step.

Applicability on heterogeneous models

Most approaches require formal models, as automated inconsistency checking is the goal. In industrial

scenarios, important information is often documented informally e.g. in presentations or text

documents. Thus, an approach for these scenarios is required, even if a fully automated solution might

not me feasible.

Easy to apply and scale

An easily applicable and scalable approach is mandatory for the application in industry, since the

acceptance of taking additional effort to handle inconsistencies is often low. A low barrier to apply a

method can help to create acceptance. Current approaches require high frontloaded activity in order to

provide first results. However, already the documentation of model dependencies – without the definition

of consistency rules – helps creating higher transparency in projects and preventing inconsistencies.

5 APPROACH FOR THE IDENTIFICATION OF MODEL DEPENDENCIES IN

HETEROGENEOUS MODELS

The method remedies the previously introduced shortcomings by introducing a structured procedure to

 gather information about model usage and interrelations,

 identify arising inconsistencies during actual operative tasks, e.g. product development or

production planning, and

 prevent future inconsistencies within a company’s context.

In addition, it highly focuses on the applicability within an industrial environment, as it easily scales to

the defined application’s constraints. Since the user applies the method in parallel to his tasks, the

acquisition of model dependency information and inconsistency types is unobtrusively embedded in

their work routine. By monitoring their daily tasks and documenting the models they use (and its

processed information), the model identification fits to the actual workflows of the users. On one hand,

the created database is the basis for further consistency rule definition. On the other hand, selected

extracts of model dependencies in standard forms support the daily work in preventing unknown

inconsistencies to occur.

In the context of the general inconsistency management framework of Basirati et al. (2018), the

methodology of this paper addresses the first two steps (see Figure 2).

3664

https://doi.org/10.1017/dsi.2019.373 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.373

ICED19

Focus of this work

Figure 2: Integration into the inconsistency management process (based on Basirati et al.
(2018))

5.1 Methodology overview

The overall methodology consists of four major steps (see Figure 3) and guides through a procedural

approach to identify model dependencies within a company. The initial step comprises the definition

of an appropriate scope for the analysis. The actual identification of information flows, which is used

for the identification of inter- and intra-model dependencies, is conducted in step 2. The third step

includes the mapping of various information pools about the dependencies due to the distributed

nature of the information. In parallel to the creation of workflow support, the definition of consistency

rules can start based on the model interdependency database.

Figure 3: Approach for the identification of model dependencies in heterogeneous models

The following chapters outline the four main steps.

5.2 Definition of analysis scope

The first step addresses the initial definition of the scope of the investigation. To apply the method and

derive viable results, it is mandatory to set the boundaries for the application. Criteria for limiting the

application’s scope could be the organizational structure to investigate the model usage in certain

departments or groups. To gain a more profound knowledge about the model linkage, roles of

“inconsistency managers” could be defined, which represent several different workflows in a variety

of domains (software-/ hardware development, production, maintenance etc.).

5.3 Information flow documentation

The second step addresses the actual identification of model dependencies, inconsistencies and

actual information flows. To do so, lead users observe their own tasks and document their usage

of information and arising inconsistencies in their daily workflows. The documentation includes

the models they use and the models they get information from as well as which information is

used. By embedding the gathering of information flows into the daily routine of the user, actual

dependencies occurring in the workflow are stored. In addition, a longer timeframe for monitoring

the information flow and emerging inconsistencies increases the likelihood to reveal all major

issues during the workflow of the user. To generate a holistic understanding of the model

dependencies, users must document the following information when creating the model

dependency overview during their daily routine:

3665

https://doi.org/10.1017/dsi.2019.373 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.373

 ICED19

 Model type: it is mandatory to identify the origin of the information as well as the target model

for which the information is used.

 Software: a software is often used when dealing with models within systems engineering. Since

there can be differences in handling models between different software versions of the same

software type, storing the software and its version is essential to monitor dependencies and

inconsistency occurrence. E.g. in the calculation of FE-Models by numerical approaches,

calculation results can differ between various software versions.

 Model Content: the model content enumerates a possible subsystem of the model. It is necessary

to specify the exact part of a model that is required.

 Information: finally, it is essential to identify the actual information that is derived from a

certain model. In addition, the use of the information – either in the same model or in a different

model – must be defined to document the information flow and derive interdependencies between

model elements.

The direction of the information flow helps to understand the step-by-step transfer of information

through the company. It supports the connection between model dependencies and actual workflows

and thus, increases the comprehensibility of the analysis. In case it is not clearly defined, in which

order users create the model, or the workflow contains an iterative procedure, bi-directional

dependencies are documented.

Furthermore, intra-model dependencies have to be considered as well since a lot of information is in

distributed use within the same model. In case only a personal contact is known as information source

or target, a placeholder can be documented as basis for the interdisciplinary mapping workshop. The

overall approach to collect model dependencies by monitoring and documenting arising

inconsistencies is illustrated in Figure 4.

Monitoring user workflow - example

User executing task (e.g. service development)

Service modelRequirements model CAD model UML model
Models

M
o

d
e

ls

User Model Dependency

Information flow

Figure 4: User workflow documentation

5.4 Interdisciplinary mapping workshop

After the users observed their daily routine, i.e. the usage of models and the flow of information, the

gathered information about inter-model and intra-model dependencies have to be consolidated. In

particular, placeholders in the documentation need to be completed.

To derive a big picture of model interrelations for the previously defined scope of the analysis, a

workshop including all stakeholders helps to consolidate the data and create the model dependency

and inconsistency map (see Figure 5). Furthermore, a critical reflection of the holistic model

dependency map is crucial for the validity of the information. The result of the workshop is an

extensive documentation of model interdependencies and identified inconsistencies that occurred

during the time of the workflow documentation. However, a continuous monitoring of the user’s daily

work can extend the documentation. Hence, regular workshops to discuss newly identified

dependencies are necessary. Eventually, the holistic documentation can be used twofold: to derive

workflow support for later model usage (step 4) or as input for a more sophisticated approach by

creating consistency rules based on the gathered information (step 5).

3666

https://doi.org/10.1017/dsi.2019.373 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.373

ICED19

Models

Models

Models

Models

M
o
d
e
ls

M
o
d
e
ls

M
o
d
e
ls

Identifying model dependencies Deriving model dependency map

Workshop to refine model

dependencies

M
o
d
e
ls

Models
Service development

User executing task (e.g. service development)

Service modelRequirements model CAD model

User

Product development

User executing task (e.g. product development)

User

Production Planning

User executing task (e.g. production planning

CAD model Digital Factory

User

Requirements model CAD model

CAD model

CAD-Model: Part length

Digital Factory: Gripper width

Exemplary Entry

Figure 5: Interdisciplinary mapping workshop

5.5 Create workflow support

Once the workflows were monitored and documented, improvement of future iterations of the same

workflow is possible. Since the users of the method already identified model dependencies and

possible inconsistencies, dependency and inconsistency reports for certain models within the company

can be created. The reports support employees performing the workflows by making situations’

possible inconsistencies transparent.

The benefit of using this data to create inconsistency templates for certain models is the derived

information from “real world” daily workflows, i.e. actual dependencies and inconsistencies emerged

in the user’s task. In contradiction, a more theoretical approach to define model dependencies and its

inconsistencies can result in information that in theory could occur, but in practice will not be relevant.

As a result, people using certain models can individually and tailored to their needs derive

inconsistency templates for the models they use. Thereby, they can proactively reduce the likelihood

of implementing new inconsistencies during their daily workflow.

5.6 Create consistency rules

Beside the derivation of inconsistency templates for the models a more sophisticated usage of the

database is to translate the identified information dependencies into consistency rules. This is the basis

for an automated approach to manage inconsistencies as suggested by Feldmann et al. (2016).

6 SOFTWARE IMPLEMENTATION AND INDUSTRIAL APPLICATION

In order to enable an industrial application, a software support – the model dependency identification

tool (MoDIT) – was developed, which replicates the workflow of adding and saving potential

inconsistencies, i.e. model dependencies and information flows. The MoDIT provides the following

functions that are embedded in the starting sheet (see Figure 6): (1) Documentation of information

flows and model dependencies; (2) Creation of workflow support in standard templates; (3) Creation

of an overall dependency matrix. The functions are clustered in two major objectives of the prototype:

documentation of model dependencies and creation of workflow support. To document model

dependencies, a standardized user form is provided (see Figure 6). If available, potential

inconsistencies can directly be entered in connection with the information flow. A holistic approach to

assess the model dependencies is to investigate all interrelations between these models by a

dependency matrix. The overall dependency matrix is created as a model DSM (Design Structure

Matrix, see Figure 7). It indicates all model interactions that include at least one dependency in the

database. The direction of the dependency is based on the information flow. The table’s rows represent

the source model, while the columns indicate the target models. The MoDIT was applied and

improved during the development of a controller for driving dynamics in the automotive industry. The

main task was to improve the controller’s behavior in certain driving conditions.

3667

https://doi.org/10.1017/dsi.2019.373 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.373

 ICED19

Figure 6: Software implementation - starting window and “add dependency”

Over a period of six months, the user observed the workflow and added all emerging information

flows and inconsistencies revealed during the daily workflow in the MoDIT.

An exemplary entry of the database considering the use case is detailed in the following. The example

describes an intra-model dependency where an inconsistency occurred during controller development:

 Model Source type: Driving dynamics model

 Model Source Tool: Matlab/Simulink (+version number)

 Model Source Content: {detailed description of the model representation}

 Information used: “M-driver-input” (Torque)

 Model target type: Driving dynamics model

 Model target Tool: Matlab/Simulink (+version number)

 Model target Content: {detailed description of the model representation}

 Information used for: “MDG-Input” (Torque)

 Inconsistency type: syntax

 Comment: varying labels for same variable

As a result, for this specific entry, a clear linkage between the two model contents has been identified.

Furthermore, the need for similarity in labeling was emphasized by the syntactical inconsistency.

For the creation of a workflow support or as a starting point to create consistency rules, the relevant

model is chosen in a first step. Subsequently, all interdependencies of the chosen model are displayed

in standardized templates (see Figure 7). For each dependent model, one template is completed.

Model Dependency Matrix

Detailed Information

Figure 7: Software implementation – dependency matrix and dependency template

3668

https://doi.org/10.1017/dsi.2019.373 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.373

ICED19

These templates can increase the awareness of the user regarding model dependencies and thus, potential

inconsistencies during the task. Hence, the MoDIT sets the focus on the prevention of inconsistencies by

proactively drawing attention to connected models and previously induced inconsistencies.

Considering all identified inconsistencies and the concerning inter- and intra-model dependencies, the

MoDIT allows to create an overview of relevant connections using the model dependency template

(see Figure 7). This template can then be used manually by persons working with the concerning

models to improve the inconsistency handling during their work.

7 CONCLUSION AND OUTLOOK

The approach to identify model dependencies within companies by monitoring people’s daily tasks

has advantages in real world scenarios. Since time and money constraints often limit the effort to

address problems not directly linked to the operations, this approach creates a foundation for a holistic

inconsistency management approach with little effort. Due to its embedded nature in the daily tasks,

the approach is affordable and easily applicable. The created database with model interdependencies

and emerged inconsistencies can be used either as knowledge base for future work with certain models

or as an input for a rule-based automated inconsistency management approach. However, the quality

of the database highly depends on the conscientiousness of the tool’s users. Hence, a workshop to

discuss and evaluate the model dependencies, the informational links, and the inconsistencies can be

crucial for a software based inconsistency solver. In future research, the tool will be applied in more

diverse development situations and industrial contexts. An automated approach to gather the

information flow, for example based on product lifecycle management systems, could help to improve

the acceptance of the tool. In addition, a rule-based approach based on the model dependency

information gathered with this method is investigated in detail. Furthermore, translating the tool into a

web based software environment to support distributed and parallel collection of information would be

beneficial for the application in an industrial context. In addition, further use cases for the information

database that is created with the presented method will be investigated. In particular, the fields of

engineering and manufacturing change management are connected to inconsistency management as

changes are a common cause for inconsistencies (Feldmann et al., 2016). Within change management

processes, an important step is the identification of change propagation and impacts (Wickel et al.,

2015). Therefore, approaches for change impact analysis exist, which depend on a holistic

representation of dependencies within the analysed system (Bauer et al., 2017). Even though this

exceeds information flows – e.g. material or personnel flows are equally important in manufacturing

systems –, the model dependency database provides a valuable basis for further investigations.

REFERENCES

Basirati, M.R., Zou, M., Bauer, H., Kattner, N., Reinhart, G., Lindemann, U., Böhm, M., Krcmar, H. and Vogel-

Heuser, B. (2018), “Towards systematic inconsistency identification for product service systems”,

Proceedings of the DESIGN 2018 15th International Design Conference, May, 21-24, 2018, Faculty of

Mechanical Engineering and Naval Architecture, University of Zagreb, Croatia, The Design Society,

Glasgow, UK, pp. 2811–2820.

Bauer, H., Schoonmann, A. and Reinhart, G. (2017), “Approach for model-based change impact analysis in

factory systems”, 2017 IEEE International Symposium on Systems Engineering: ISSE 2017 Vienna,

Austria, October 11-13, 2017 2017 symposium proceedings, Vienna, Austria, 10/11/2017 - 10/13/2017,

IEEE, Piscataway, NJ, pp. 1–7.

Dávid, I., Denil, J. and Vangheluwe, H. (2018), “Process-oriented Inconsistency Management in Collaborative

Systems Modeling”, In: J. Machado, A. Abelha, L. Mendes Gomes and H. Guerra, (Ed.), 16th

International Industrial Simulation Conference 2018: ISC ‘2018 June 6-8, 2018, Ponta Delgada, Portugal,

EUROSIS-ETI, Ostend, Belgium, pp. 54–61.

Egyed, A., Zeman, K., Hehenberger, P. and Demuth, A. (2018), “Maintaining Consistency across Engineering

Artifacts”, Computer, Vol. 51 No. 2, pp. 28–35.

Feldmann, S., Herzig, S.J.I., Kernschmidt, K., Wolfenstetter, T., Kammerl, D., Qamar, A., Lindemann, U.,

Krcmar, H., Paredis, C.J.J. and Vogel-Heuser, B. (2015), “A comparison of inconsistency

management approaches using a mechatronic manufacturing system design case study”, In: Q.-S. Jia,

(Ed.), 2015 IEEE International Conference on Automation Science and Engineering (CASE): 24 - 28

Aug. 2015, Gothenburg, Sweden, Gothenburg, Sweden, 8/24/2015 - 8/28/2015, IEEE, Piscataway, NJ,

pp. 158–165.

3669

https://doi.org/10.1017/dsi.2019.373 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.373

 ICED19

Feldmann, S., Wimmer, M., Kernschmidt, K. and Vogel-Heuser, B. (2016), “A comprehensive approach for

managing inter-model inconsistencies in automated production systems engineering”, 2016 IEEE

International Conference on Automation Science and Engineering (CASE): 21-25 Aug. 2016, Fort Worth,

TX, USA, 8/21/2016 - 8/25/2016, IEEE, Piscataway, NJ, pp. 1120–1127.

Hegedus, A., Horvath, A., Rath, I., Branco, M.C. and Varro, D. (2011), “Quick fix generation for DSMLs”, In:

G. Costagliola, (Ed.), IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC),

2011: 18 - 22 September 2011, Pittsburgh, Pennsylvania, USA ; proceedings, Pittsburgh, PA, 9/18/2011 -

9/22/2011, IEEE, Piscataway, NJ, pp. 17–24.

Hehenberger, P., Egyed, A. and Zeman, K. (2010), “Consistency Checking of Mechatronic Design Models”,

Proceedings of the ASME International Design Engineering Technical Conferences and Computers and

Information in Engineering Conference - 2010: Presented at ASME 2010 International Design

Engineering Technical Conferences and Computers and Information in Engineering Conference, August

15 - 18, 2010, Montreal, Quebec, Canada, Montreal, Quebec, Canada, August 15–18, 2010, ASME, New

York, NY, pp. 1141–1148.

Herzig, S.J.I. and Paredis, C.J.J. (2014), “Bayesian Reasoning Over Models”, CEUR Workshop Proceedings,

11th Workshop on Model-Driven Engineering, Verification and Validation, No. 1235, pp. 69–78.

Herzig, S.J.I., Qamar, A. and Paredis, C.J.J. (2014), “An Approach to Identifying Inconsistencies in Model-

based Systems Engineering”, Procedia Computer Science, Vol. 28, pp. 354–362.

Hoppe, T., Eisenmann, H., Viehl, A. and Bringmann, O. (2017), “Guided systems engineering by profiled

ontologies”, 2017 IEEE International Symposium on Systems Engineering: ISSE 2017 Vienna, Austria,

October 11-13, 2017 2017 symposium proceedings, Vienna, Austria, 10/11/2017 - 10/13/2017, IEEE,

Piscataway, NJ, pp. 1–6.

Mens, T., van der Straeten, R. and D’Hondt, M. (2006), “Detecting and Resolving Model Inconsistencies Using

Transformation Dependency Analysis”, In: O. Nierstrasz, (Ed.), Model driven engineering languages and

systems: 9th international conference, MoDELS 2006, Genova, Italy, October 1 - 6, 2006 ; proceedings,

Lecture Notes in Computer Science, Vol. 4199, Springer, Berlin, pp. 200–214.

Nuseibeh, B., Easterbrook, S. and Russo, A. (2000), “Leveraging inconsistency in software development”,

Computer, Vol. 33 No. 4, pp. 24–29.

Reift, J., Koltun, G., Drewlani, T., Zaggl, M., Kattner, N., Dengler, C., Basirati, M., Bauer, H., Krcmar, H.,

Kugler, K., Brodbeck, F., Lindemann, U., Lohmann, B., Meyer, U., Reinhart, G. and Vogel-Heuser, B.

(2017), “Modeling as the basis for innovation cycle management of PSS: Making use of interdisciplinary

models”, 2017 IEEE International Symposium on Systems Engineering: ISSE 2017 Vienna, Austria,

October 11-13, 2017 2017 symposium proceedings, Vienna, Austria, 10/11/2017 - 10/13/2017, IEEE,

Piscataway, NJ, pp. 1–6.

Shani, U., Franke, M., Hribernik, K.A. and Thoben, K.-D. (2017), “Ontology mediation to rule them all:

Managing the plurality in product service systems”, 11th Annual IEEE International Systems Conference:

Montreal, Quebec, Canada, Marriott Chateau Champlain Hotel, Monday-Thursday, April 24-27 2017

proceedings, Montreal, QC, Canada, 4/24/2017 - 4/27/2017, IEEE, Piscataway, NJ, pp. 1–7.

Song, W. (2017), “Requirement management for product-service systems: Status review and future trends”,

Computers in Industry, Vol. 85, pp. 11–22.

Spanoudakis, G. and Zisman, A. (2001), “Inconsistency Management in Software Engineering: Survey and Open

Research Issues”, Handbook of Software Engineering and Knowledge Engineering No. 1, pp. 329–380.

Wickel, M., Chucholowski, N., Behncke, F., Lindemann, U. and Vajna, S. (2015), “Comparison of Seven

Company-Specific Engineering Change Processes”, In: M. Schabacker, K. Gericke and N. Szélig, (Ed.),

Modelling and Management of Engineering Processes, Springer Berlin Heidelberg, Berlin, Heidelberg, pp.

125–136.

Zou, M. and Vogel-Heuser, B. (2017), “Feature-based systematic approach development for inconsistency

resolution in automated production system design”, 13th IEEE Conference on Automation Science and

Engineering, IEEE, pp. 687–694.

ACKNOWLEDGMENTS

We wish to thank the German Research Foundation (DFG) for funding this work as part of the

collaborative research center SFB 768 “Managing cycles in innovation processes: Integrated

development of product-service-systems based on technical products”.

3670

https://doi.org/10.1017/dsi.2019.373 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.373

	049_ICED2019_460_CE
	049_ICED2019_460_PE
	203_ICED2019_557_PE
	370_ICED2019_289_CE
	370_ICED2019_289_PE

