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Abstract
A modeling method to extract the mechanical properties of ultra-thin films (10–100 nm thick) from experimental data
generated by indentation of freestanding circular films using a spherical indenter is presented. The relationship between
the mechanical properties of the film and experimental parameters including load, and deflection are discussed in the
context of a constitutive material model, test variables, and analytical approaches. Elastic and plastic regimes are
identified by comparison of finite element simulation and experimental data.
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1. Introduction

Freestanding ultra-thin polymer films are utilized in a variety
of applications, including sensors, catalysis, filtration, and
tissue engineering[1–4]. At the National Ignition Facility
(NIF), nanometer scale polyvinyl formal films are routinely
used as load-bearing elements to support fuel capsules in
complex millimeter-scale inertial confinement fusion (ICF)
targets[5]. Since even very thin films appear to introduce
significant perturbation to the implosion[6, 7], there is an
impetus to minimize the thickness of such support films.
To make certain that thinner films can withstand the rigors
of target assembly and handling, their mechanical properties
must be well understood.

The mechanical properties of ultra-thin films are known to
change as the film dimensions approach the molecular size
scales[8–10]. Measuring these properties has been difficult
even for substrate-supported thin films, and there are only
few measurements that have been attempted on freestanding
films[11].

Here, we utilize indentation[12, 13] to characterize mecha-
nical properties of such thin films. Closed-form expre-
ssions[14, 15] for interpreting data gathered from this method
have been derived, but such approximations typically per-
form poorly for pre-stressed films or tests that extend beyond
the elastic regime of the polymer. We present a method
that can be used to extract mechanical data from such
tests and construct full stress–strain curves for films of this
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thickness regime. Finite element analysis is used to simulate
the indentation test, and an optimization algorithm is used to
derive the constitutive material models.

2. Experimental

2.1. Preparation of the thin films

Freestanding polyvinyl formal films with a thickness of
10–100 nm were made by a spin coating method, as
described in detail elsewhere[16, 17]. In brief, a solution of
0.25 wt% Vinylec E (SPI Supplies, West Chester, PA) in
ethyl lactate (98%, Sigma-Aldrich, St. Louis, MO) was spin
coated onto Si wafers pretreated with polydiallyldimethyl-
ammonium chloride PDAC (Sigma-Aldrich St. Louis, MO.
Mw ∼ 1×105–2×105 g/mol), and baked for 1 min at 50 ◦C
on a hot plate. The resultant films were then lifted from the
wafer, in water, and mounted on ring-shaped holders with
an inner diameter of 11 mm. The films were typically dried
overnight under ambient conditions before being tested using
the indentation method. Prior to testing, the thickness of
each film was measured by ellipsometry (Woollam M-2000).
Since the hydrated polymer swells the films, as mounted on
the holders for testing, typically have significant residual
stress.

2.2. Indentation test

Indentation tests are conducted on the film using a custom-
built system as shown in Figure 1(a); the film is glued
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Figure 1. (a) Indentation test setup consisting of the film mounted onto a sample holder and the indenter ball on a threaded rod, (b) composite photomicrograph
of a typical 15 nm polyvinyl formal film following indentation testing to failure. Note the presence of both circumferential and tangential folds suggesting
radial and hoop stress induced deformation during loading. The presence and size of the circumferential rupture indicates the predominance of the radial
stress state along the contact radius of the indenter, (c) typical curves for ball indenter test showing failure point. The early curve (d) has an almost cubic
shape, while the larger indentation depths show an almost linear response.

onto a 5 mm diameter cylindrical mount and placed on a
microbalance (Mettler Toledo MW-124 Weighing Module).
A 2 mm sapphire ball attached to a stepper motor (Newport)
via leadscrew assembly is used as the indenter. As the
film is indented, typically to failure, the load is recorded
as a function of the distance that the ball has been pushed
into the film (indentation depth δ). Typically, the humidity
of the test cell is maintained at 45% relative humidity by
means of a water bubbler and two mass flow controllers
(MKS Instruments Andover, MA) which are used to adjust
the humidity. The indentation method has previously been
shown to be suitable for measuring the mechanical properties
of even very thin freestanding films[13]. Figure 1(c) shows
typical force versus indentation depth curves. The film
adheres strongly to the indenter ball upon contact; if the
ball is withdrawn after an indentation with low depth, it will

pull the film with it far past the initial contact depth. This
behavior is also visible in Figure 1(b) where the area in
the center of the film that makes contact to the ball is torn
out after indentation, showing that adhesion to the ball is
stronger than the cohesion of the film. We therefore conclude
that there is negligible relative motion (slippage) between
film and indenter ball during the test.

2.3. Numerical approach

2.3.1. Finite element simulation for indentation test
Finite element simulation of the freestanding film was
performed in the finite element software ANSYS Mechanical
(Cannonsburg, PA) APDL Release 16.0. An axisymmetric
model was created for this analysis. The indenter ball was
modeled as a rigid circular target TARGE169 element.
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Figure 2. Axisymmetric finite element model for indentation test, general
dimensions of film and indenter ball.

This element is used to represent various two dimensional
(2D) target surfaces for the associated contact element
CONTA171. The contact elements themselves overlay the
solid elements describing the boundary of a deformable
body and are potentially in contact with the target surface,
defined by TARGE169. Due the nature of the indentation
test, a rough contact behavior was chosen, reflecting the
high coefficient of friction between the film and the ball.
The film was modeled using a PLANE182, and this 2D
4-Node Structural solid is used for 2D modeling of solid
structures. The element can be used as either a plane element
(plane stress, plane strain or generalized plane strain) or an
axisymmetric element, which is how it is used in this case.
It is defined by four nodes having two degrees of freedom at
each node: translations in the nodal x and y directions. The
element has plasticity, hyperelasticity, stress stiffening, large
deflection, and large strain capabilities. Figure 2 shows the
finite element model for the ball indentation test.

The assumed boundary conditions are that a vertical dis-
placement is applied to the rigid circular target (indentation
depth), and that radial displacement is not allowed for the
rigid circular target. The film is axially constrained on
the outer diameter, and it is radially constrained on the
centerline. Sensitivity tests have been performed to assess
the influence of mesh size in order to ensure the finite
element model is accurate with an optimum requirement on
computational resources. A pre-strain is imposed on the film
due to the shrinking of the film during the drying process.

3. Results and discussion

3.1. Elastic solution

Several authors have presented closed-form equations for
the elastic regime for spherical indentation of freestanding
circular thin films[12, 14, 15]. During the simulation process,
we found, for our films, that the elastic assumption is
valid only for small values of indentation depth (up to

Figure 3. Typical experimentally determined material respose during an
indentation test. The present data was collected for a 100 nm thick polyvinyl
formal membrane. Characterized regions of the film material for indentation
test.

∼0.200 mm). Beyond that depth, the mechanical response
of the film exhibits plastic deformation until film failure.
Figure 3 shows the approximate elastic and plastic regions
over the indenter force versus indentation depth curve.

Based on the closed-form approximations given by Begley
and Makin[14] and experimental data, we computed the
elastic modulus for one of our films. Equation (1) shows
the deflection of the membrane for the case of zero pre-
stretch while Equation (2) includes an initial pre-strain on
the membrane.
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where δ is the indentation depth or deflection of the mem-
brane, R is the indenter ball radius, a is the freestanding
radius (span), P is the indenter load, h is the film thickness,
E is the elastic modulus of the film, ε0 is the pre-strain.
For a particular case a 100 nm thick film was chosen. The
external diameter of this film is 5 mm, and the ball indenter
diameter of 2 mm. Taking a point from the experimental data
(Figure 4) at δ = 100 µm the corresponding indenter load is
P = 0.327 mN; utilizing Equation (1) to compute the elastic
modulus we obtain E = 14.67 GPa. Assuming a pre-strain
ε0 = 0.001 in Equation (2) we obtain an elastic modulus of
E = 6.96 GPa.

We then used that value to initialize the simulation. The
results are shown in Figure 4. As expected from the original
references, the agreement between the closed-form solution
and the experimental data is not good for the combination of
pre-strain and indentation depth present in our experiments.

In order to improve the agreement between the model and
experimental data, it was found necessary to improve our
estimate of both the elastic modulus and the pre-strain on
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Figure 4. Comparison of values derived from a closed-form approximation
and experimental indentation data within the elastic portion of the film
response. The closed-form approximations, from Ref. [13], were used
to estimate a Young’s modulus from the indentation data. The resulting
modulus was utilized by the elastic model described in Section 2.3.1 of the
text. As shown, even within the elastic portion of the curve, there is poor
agreement between the computed and the experimental data (solid line).

the film. To do so, an optimization script was written in
Python to run ANSYS in batch mode and the Nelder–Mead
optimization method was utilized[18–20]. In order to extract
a unique pair of elastic parameters, Young’s modulus E and
pre-strain ε0, the mean square error, defined in Equation (3),
the Python script will calculate the error metric shown in
Equation (3) for a given E and ε0 and then use the Nelder–
Mead optimization method to minimize the error metric:

error metric =
1
n

n∑
i=1

√
(Fnumi − Fexpi )

2, (3)

where n is the number of evaluated nodal points, Fnum i is the
computed indenter load from the finite element analysis at
indentation depth i , and Fexp i is the measured indenter load
from the experimental data at the corresponding indentation
depth i .

After running the ANSYS simulation with the optimizer
to calculate the elastic parameters E and ε0, good agreement
with the experimental data is achieved, as shown in Figure 5.

A sensitivity analysis was conducted to verify that the
results of optimized determination of elastic modulus and
pre-strain represented an absolute minimum solution space.
Multiple simulations were performed to calculate and create
the error metric surface plot. Figure 6 shows the results using
a 3D surface along with a contour map of such surface, the x-
axis on the contour plot is the elastic modulus, and the y-axis
is the pre-strain of the film.

From Figure 6(a), it is obvious that the pre-strain sensi-
tively affects the fitted value for the modulus. Further, it can
be shown that the absolute minimum of the fit depends on the

Figure 5. Comparison of experimental and the simulated load/displacement
response using optimized elastic parameters (E). The optimization
algorithm was used to extract elastic parameters (E = 3.28 GPa, ε0 =
0.0018) from the indentation data for a 100 nm thick film. Using
these values, modeled and experimental data are in excellent agreement
throughout the elastic portion of curve.

range over which the curve is fitted. Figure 6(b) shows the
modulus and the error metric as a function of the range over
which this curve is fitted. All fits begin with x = 0 mm
and end at the indentation depth value. The modulus
does not converge toward a number, but increases and then
decreases again. We argue that the closest approximation
of the fit values to the real values lies at the point where
the error metric begins to increase rapidly, around 0.15 mm
indentation depth. For an elastic indentation dataset with
random noise added to it, the fitted value should converge
to the true value for an infinite fit range: at low fit ranges,
the noise might cause the fit to find a value that produces a
lower error metric than the true value does. As the fit range
increases, the fit value will approach the real value while
the error metric will approach the measurement accuracy
(10−6 N measurement precision). In this case, however, the
underlying function transitions from an elastic deformation
to a plastic deformation. If the fitted function contains only
the elastic part, the error value should increase and the fitted
modulus should decrease as the deformation transitions into
the plastic regime. Therefore, the point right before the films
starts deforming plastically will be the best point to extract
the modulus and pre-strain, and that is the point we use for
the rest of this work. For this particular film, the error of the
modulus starts exceeding 10−6 significantly at an indentation
depth of 0.170 mm. Due to the scatter in the error, it is
not certain at which point exactly the error starts increasing,
and the true value could lie between 3.37 GPa (0.15 mm
indentation depth) and 3.22 GPa (0.19 mm indentation
depth). The spread for the elastic modulus is of the order
0.15 GPa, which we would consider the accuracy of the
measurement.
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Figure 6. (a) Contour plot for the error metric surface generated from indentation simulation shown in Figure 5. A valley of linear combinations of pre-strain
and modulus that all come close to satisfying the equation can be seen. (b) Force versus indentation depth (top) and fit values for different indentation depths
(bottom). The fit uses all data points from zero to the given depth. The error of the fit stays low until the behavior transitions from elastic to plastic, between
170 and 190 µm of indentation depth, and in this region, the elastic modulus should be read.

Figure 7. (a) Typical stress–strain curve for a polymer. These complex curves can be approximated with two plasticity materials models in ANSYS, and
utilized in the present work. (b) Bilinear model. The material response consists of an elastic response, characterized by an elastic modulus (E) followed, at
a yield point (σy ), by a simple plastic response characterized by a tangent modulus (ET ). (c) Multilinear model where the material response is described by
a series of stress points (σn ) and their corresponding strain points (εn ).

3.2. Plastic solution

A simple linear elastic model is generally not appropriate
for numerical simulations of conformed mechanical compo-
nents. Such processes have often large permanent deforma-
tions, and require material models that account for deviations
from elastic (linear) behavior and account for nonlinearities
in material response including plastic and/or visco-plastic
behavior. Deviations from simple linear behavior are quite
evident in the present material system.

In order to construct a high fidelity finite element simu-
lation, a number of important parameters must be consid-
ered including mesh quality, solver type, contact behavior,
boundary conditions, and the material properties. One of
the principal difficulties with finite element modeling is
selecting the appropriate properties for the material involved.
The problem becomes more pronounced when the proper-
ties of the material transition from a linear to a nonlinear
response. Figure 7(a) shows a stress–strain curve typical

of polymeric materials. This figure illustrates the range of
material behavior that must be described as one transition
from small strains to ultimate failure when describing the
behavior of polymer films undergoing indentation testing.

Several options are available for describing nonlinear
material behavior in ANSYS. Two models were used for
calculating the plasticity parameters in the present study. The
first is a bilinear kinematic hardening model (BKIN). The
relatively simple BKIN model is often used in large strain
analysis. Using the bilinear model the material response is
described in terms of three parameters; an elastic modulus
(E), a yield point (σy) and a tangent modulus (ET ) [see
Figure 7(b)]. The back stress tensor for bilinear kinematic
hardening evolves so that the effective stress versus effective
strain curve is bilinear. The initial slope of the curve is the
elastic modulus of the material and beyond the user specified
initial yield stress (σy), plastic strain develops and the back
stress evolves to that stress versus total strain continues

https://doi.org/10.1017/hpl.2017.27 Published online by Cambridge University Press

https://doi.org/10.1017/hpl.2017.27


6 F. Espinosa-Loza et al.

Figure 8. A 1 mm indentation depth was simulated with only elastic
modulus (E) and pre-strain (ε0), (open circles) and elastic modulus, pre-
strain, yield strength (σy ) and tangent modulus (TanMod) (open diamonds).
The elastic regime extends only about 200 µm into the indentation. The
bilinear model fits the data well for the depth shown, but deviations can
already be seen near 0.8 mm indentation, and the difference increases
with larger depth. Mechanical properties used for the simulation are E =
3.28 GPa, ε0 = 0.0018, σy = 43.50 MPa, TanMod = 100 MPa.

along a line with slope defined by the user specified tangent
modulus (ET ). This tangent modulus cannot be less than
zero or greater than the elastic modulus.

The second, more complicated, method of describing the
relevant material response is through the use of a multilinear
kinematic hardening model (KINH). In this case the stress–
strain behavior is described by a series of linear functions,
each characterized by individual stress (σn) and its corre-
sponding strain point εn [see Figure 7(c)]. The back stress
tensor for multilinear kinematic hardening evolves so that
the effective stress versus effective strain curve is multilinear
with each of the linear segments defined by a set of user input
stress–strain points.

For the optimization process on the plastic region, we
used the elastic parameters from the elastic analysis and we
calculate the yield strength and tangent modulus, Figure 8

shows the result of the optimization process, both for elastic
parameters only as well as for the plastic parameters.

The figure shows that the bilinear model is most suitable
for a small plastic deformation, where it is in good agreement
with the data. For larger indentation depths, however,
the difference between the model and the data increases
substantially. In order to get indentation depth simulation of
the order of 2 mm or higher, we used a multilinear kinematic
hardening material model with stress–strain pairs. The
model was developed by fitting the indentation data in small
increments of 100 µm. We begin with the elastic curve going
up to a stress close to the yield point, and then begin the fit
with an estimate for ε1 and σ1. The output curve is compared
with the data only up to the indentation depth than can be
reached with ε1. Once the error metric has been minimized
for ε1 and σ1, we fix those two values and move on ε2 and σ2,
thus gradually assembling the multilinear curve. ANSYS is
able to handle up to 20 stress–strain points in the kinematic
hardening material model. Figure 9(a) shows the indentation
data and the optimized simulation, and Figure 9(b) shows the
optimized material model for a 2.0 mm of indentation. It is
a unique solution where the optimized material model shows
features in the solution very similar to the typical polymer
stress–strain curve depicted in Figure 7.

The multilinear model can be obtained for any indentation
depth up to the failure depth, which was 3.7 mm for this
specific sample. The multilinear model clearly explains why
the bilinear model fails beyond 1 mm indentation range: the
stress–strain curve changes slope at a strain of 0.5, which
corresponds to about 1 mm of indentation depth. The curve
also shows that the film fails at a strain of 0.9, remarkably
large strain for a nonrubbery plastic. This large failure strain
is reproducible and may be attributable to the low strain
rates. The multilinear model also naturally adapts to the
strain-softening feature around a strain of 0.02, where the

Figure 9. (a) 2 mm indentation simulation. The multilinear simulation result follows the data very well. (b) Optimized multilinear kinematic hardening
material model for a film thickness of 100 nm. The inset shows the yield regime in greater detail. The points marked in diamonds on the plot are the points
that were entered into the simulation.
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slope of the stress–strain curve is briefly negative before
leveling off and increasing again.

4. Conclusions

A finite element model using ANSYS was created and an
optimization script was developed in python to extract the
material properties from indentation tests for ultra-thin films.
The elastic regime was identified for indentation depths of
150–200 µm, after which the film yields until failure. A
bilinear material model is a good approach for indentation
depths up to 1.0 mm. Beyond this depth, a multilinear model
is required to get an accurate description of the experimental
data. This method can be used to characterize mechanical
properties for ultra-thin films that were fabricated under
different conditions to find values that have hitherto eluded
characterization, such as yield stress and failure strain.
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