RESIDUATION THEORY AND MATRIX MULTIPLICATION ON ORTHOMODULAR LATTICES

by J. H. BEVIS and C. K. MARTIN

(Received 27 December, 1967)

In this paper we consider mappings induced by matrix multiplication which are defined on lattices of matrices whose coordinates come from a fixed orthomodular lattice L (i.e. a lattice with an orthocomplementation denoted by ' in which $a \leq b \Rightarrow a \lor (a' \land b) = b$). \mathscr{A}_{mn} will denote the set of all $m \times n$ matrices over L with partial order and lattice operations defined coordinatewise. For conformal matrices A and B the (i, j)th coordinate of the matrix product AB is defined to be $(AB)_{ij} = \bigvee_k (A_{ik} \land B_{kj})$. We assume familiarity with the notation and results of [1]. \mathscr{A}_{mn} is an orthomodular lattice and the (lattice) centre of \mathscr{A}_{mn} is defined as $\mathscr{C}(\mathscr{A}_{mn}) = \{A \in \mathscr{A}_{mn} \mid A \mathscr{C} B$ for all $B \in \mathscr{A}_{mn}\}$, where we say that A commutes with B and write $A \mathscr{C} B$ if $(A \lor B') \land B = A \land B$. In §1 it is shown that mappings from \mathscr{A}_{mn} into \mathscr{A}_{mr} characterized by right multiplication.) This result is used to show the existence of residuated pairs. Hence, in §2 we are able to extend a result of Blyth [3] which relates invertible and cancellable matrices (see Theorem 3 and its corollaries). Finally, for right (left) multiplication mappings, characterizations are given in §3 for closure operators, quantifiers, range closed mappings, and Sasaki projections.

1. After Croisot [4] a monotone mapping $\phi: \mathscr{A} \to \mathscr{B}$ from a lattice \mathscr{A} into a lattice \mathscr{B} is *residuated* if there is a monotone mapping $\phi^+: \mathscr{B} \to \mathscr{A}$ called the *residual* mapping corresponding to ϕ such that $a \leq a\phi\phi^+$ for all a in \mathscr{A} and $b\phi^+\phi \leq b$ for all b in \mathscr{B} . One may show that ϕ and ϕ^+ determine each other uniquely.

THEOREM 1. Given $P \in \mathcal{A}_{nr}$, the mapping $\phi: \mathcal{A}_{mn} \to \mathcal{A}_{mr}$ defined by $A\phi = AP$ is residuated if and only if $P \in \mathcal{C}(\mathcal{A}_{nr})$. If ϕ is residuated, $B\phi^+ = (B'P')'$, where P' is the transpose of P.

Proof. According to [4], a residuated mapping preserves joins. Hence, by Lemma 2 of [1], if $A \to AP$ is residuated, then $P \in \mathscr{C}(\mathscr{A}_{nr})$. If $P \in \mathscr{C}(\mathscr{A}_{nr})$, then

$$\left[(AP)'P'\right]_{ij} = \bigvee_{k} \left[P_{jk} \wedge \bigwedge_{h} (A'_{ih} \vee P'_{hk})\right] = \bigvee_{k} \left[P_{jk} \wedge A'_{ij} \wedge \bigwedge_{h \neq j} (A'_{ih} \vee P'_{hk})\right] \leq A'_{ij}$$

Hence $A \leq [(AP)'P']'$. Similarly $(B'P')'P \leq B$.

For left multiplication we have the result:

THEOREM 1*. Given $P \in \mathcal{A}_{nr}$, the mapping $\phi : \mathcal{A}_{rm} \to \mathcal{A}_{nm}$ defined by $A\phi = PA$ is residuated if and only if $P \in \mathcal{C}(\mathcal{A}_{nr})$. If ϕ is residuated, $B\phi^+ = (P^tB')'$.

Extending the definition of Birkhoff [2, XIII], for P in \mathscr{A}_{nr} and B in \mathscr{A}_{mr} (B in \mathscr{A}_{nm}), we define the *right-residual* B: P (*left-residual* B: P) of B by P as the largest X in \mathscr{A}_{mn} (\mathscr{A}_{rm}), if it exists, satisfying $XP \leq B$ ($PX \leq B$). Such a pair P, B is said to be *residuated on the right* (*left*) if B: P (B: P) exists.

The first two lemmas are due to Croisot [4], and are used in the proof of Theorem 2.

LEMMA 1. Let $\phi: \mathcal{A} \to \mathcal{B}$ be a residuated mapping, and let ϕ^+ be the corresponding residual mapping. For b in \mathcal{B} , $b\phi^+$ is the greatest element in the non-empty set $\{a \in \mathcal{A} \mid a\phi \leq b\}$.

LEMMA 2. In order that the monotone mapping $\phi: \mathcal{A} \to \mathcal{B}$, where \mathcal{A} and \mathcal{B} are lattices, be residuated, it is necessary and sufficient that for every b in \mathcal{B} the set $\{a \in \mathcal{A} \mid a\phi \leq b\}$ be non-empty and contain a greatest element.

THEOREM 2. For P in \mathcal{A}_{nr} the following conditions are equivalent:

(i) $P \in \mathscr{C}(\mathscr{A}_{nr})$.

(ii) B: P exists for all B in \mathcal{A}_{mr} .

(iii) B::P exists for all B in \mathcal{A}_{nm} .

Moreover, if $P \in \mathscr{C}(\mathscr{A}_{nr})$ and $B \in \mathscr{A}_{mr}$ $(B \in \mathscr{A}_{nm})$, then B: P = (B'P')' (B: P = (P'B')').

Proof. By Theorem 1 and Lemma 1, (i) implies (ii) and (iii). By Lemma 2 and Theorem 1, (ii) or (iii) implies (i).

2. Motivated by Molinaro [9], we define two types of equivalence relations. For P in $\mathscr{C}(\mathscr{A}_{nr})$ define the equivalence relation Ψ_P on \mathscr{A}_{mr} by $A \equiv B(\Psi_P)$ if A: P = B: P, and define the equivalence relation ${}_{P}\Psi$ on \mathscr{A}_{nm} by $A \equiv B({}_{P}\Psi)$ if A: P = B: P. For $P \in \mathscr{A}_{rn}$ define the equivalence relation Θ_P on \mathscr{A}_{nm} by $A \equiv B(\Theta_P)$ if PA = PB, and define the equivalence relation ${}_{P}\Theta$ on \mathscr{A}_{mr} by $A \equiv B(\Theta_P)$ if PA = PB, and define the equivalence relation ${}_{P}\Theta$ on \mathscr{A}_{mr} by $A \equiv B(P\Theta)$ if AP = BP.

LEMMA 3. For P in $\mathscr{C}(\mathscr{A}_{nr})$, each class in \mathscr{A}_{mr} (\mathscr{A}_{nm}) modulo $\Psi_P(_P\Psi)$ has a smallest element; the smallest element in the class containing A is (A:P)P(P(A::P)). For P in $\mathscr{C}(\mathscr{A}_{rn})$, each class in $\mathscr{A}_{nm}(\mathscr{A}_{mr})$ modulo $\Theta_P(_P\Theta)$ has a greatest element; the greatest element in the class containing A is PA::P(AP:P).

Proof. Given $P \in \mathscr{C}(\mathscr{A}_{nr})$ and $A \equiv B(\Psi_P)$ in \mathscr{A}_{mr} ; then $(A:P)P = (B:P)P \leq B$, i.e., (A:P)P is well defined on the class containing A and is a lower bound for the class. From (A:P)P = (A:P)P we obtain $A:P \leq (A:P)P:P$. Also, by the definition of right-residual, $[(A:P)P:P]P \leq (A:P)P \leq A$, which implies that $(A:P)P:P \leq A:P$. Hence $(A:P)P \equiv A(\Psi_P)$. Given $P \in \mathscr{C}(\mathscr{A}_{rn})$ and $A \equiv B(\Theta_P)$ in \mathscr{A}_{nm} , it follows that PA::P = PB::P. From PA = PAwe obtain $A \leq PA::P$, i.e., PA::P is well defined on the class containing A in an upper bound for the class. Now $PA \leq P(PA::P)$ by monotonicity of multiplication and $P(PA::P) \leq PA$ by the definition of left-residual. Hence $PA::P \equiv A(\Theta_P)$. The remaining two parts of the lemma follow in a similar manner.

We are now ready to extend a result of Blyth [3] for Boolean matrices, to matrices over orthomodular lattices.

LEMMA 4. For P in \mathscr{A}_{rn} , $A \equiv B(\Theta_P)$ in $\mathscr{A}_{nm} \Leftrightarrow A^t \equiv B^t(P,\Theta)$ in \mathscr{A}_{mn} . For P in $\mathscr{C}(\mathscr{A}_{nr})$, $A \equiv B(\Psi_P)$ in $\mathscr{A}_{mr} \Leftrightarrow A^t \equiv B^t(P,\Psi)$ in \mathscr{A}_{rm} .

Proof. The first part is an immediate consequence of $(AP)^t = P^t A^t$. With P in $\mathscr{C}(\mathscr{A}_{nr})$, by Theorem 2 we obtain $A: P = (A'P^t)' = (PA'^t)'^t = (A^t: P^t)^t$. Thus $A \equiv B(\Psi_P)$ in $\mathscr{A}_{mr} \Leftrightarrow (A^t: P^t)^t = (B^t: P^t)^t \Leftrightarrow A^t \equiv B^t(P_t \Psi)$.

LEMMA 5. For P in $\mathscr{C}(\mathscr{A}_{nr})$, $A \equiv B(\Theta_{Pt})$ in $\mathscr{A}_{nm} \Leftrightarrow A' \equiv B'({}_{P}\Psi)$ in \mathscr{A}_{nm} , and $A \equiv B({}_{Pt}\Theta)$ in $\mathscr{A}_{mr} \Leftrightarrow A' \equiv B'(\Psi_{P})$ in \mathscr{A}_{mr} .

Proof. By Lemma 3, the smallest element in the class containing A modulo ${}_{P}\Psi$ is $P(A:P) = P(P^{t}A')'$. The greatest element in the class containing A modulo $\Theta_{P^{t}}$ is $P^{t}A:P^{t} = [P(P^{t}A)']'$. Now

$$A \equiv B(\Theta_{P^t}) \Leftrightarrow [P(P^tA)']' = [P(P^tB)']' \Leftrightarrow P(P^tA)' = P(P^tB)' \Leftrightarrow A' \equiv B'(P^{\Psi}).$$

The remainder of the lemma is proved similarly.

We say that P in \mathscr{A}_{nr} is left (right) cancellable in \mathscr{A}_{rm} (\mathscr{A}_{mn}) if PA = PB (AP = BP) implies A = B whenever $A, B \in \mathscr{A}_{rm}$ ($A, B \in \mathscr{A}_{mn}$). Note that P is left (right) cancellable if and only if $\Theta_P(P\Theta)$ is the identity relation on $\mathscr{A}_{rm}(\mathscr{A}_{mn})$. E will denote a matrix with $E_{ij} = \delta_{ij}$.

THEOREM 3. If $P \in \mathcal{C}(\mathcal{A}_{nr})$ and $r \leq m$ ($n \leq m$), then the following are equivalent: (i) P is left (right) cancellable in $\mathcal{A}_{rm}(\mathcal{A}_{mn})$.

(ii) There exists $X \in \mathcal{A}_{mn}$ ($Y \in \mathcal{A}_{rm}$) such that $XP = E \in \mathcal{A}_{mr}$ ($PY = E \in \mathcal{A}_{nm}$).

(iii) There exists $X \in \mathcal{C}(\mathcal{A}_{mn})$ ($Y \in \mathcal{C}(\mathcal{A}_{rm})$), such that $XP = E \in \mathcal{A}_{mr}$ ($PY = E \in \mathcal{A}_{nm}$).

(iv) P is left (right) cancellable in $\mathscr{C}(\mathscr{A}_{rm})$ ($\mathscr{C}(\mathscr{A}_{mn})$).

Proof. If P in $\mathscr{C}(\mathscr{A}_{nr})$ is left cancellable in \mathscr{A}_{rm} , then Θ_P is the identity relation on \mathscr{A}_{rm} . By Lemma 5, $_{Pt}\Psi$ is also the identity relation on \mathscr{A}_{rm} . The smallest element of the class containing E in \mathscr{A}_{rm} modulo $_{Pt}\Psi$ is thus E = P'(E : : P'). By taking the transpose of each side, we obtain (i) \Rightarrow (ii). Suppose that $X \in \mathscr{A}_{mn}$ and XP = E; then $X \leq E : P$. Now

$$E = XP \leq (E:P)P \leq E.$$

By Theorem 2, E: P = (E'P')' which is in $\mathscr{C}(\mathscr{A}_{mn})$. For (iii) \Rightarrow (i), let $X \in \mathscr{C}(\mathscr{A}_{mn})$ and $XP = E \in \mathscr{A}_{mr}$. Since two of the three matrices involved are central, (X, P, A) is an associative triple for any A in \mathscr{A}_{rm} . Hence PA = PB implies that EA = EB, where $E \in \mathscr{A}_{mr}$. If $r \leq m$, then EA = EB implies that A = B. Clearly (i) \Rightarrow (iv). By applying the result (i) \Rightarrow (iii) to matrices over $\mathscr{C}(L)$ we obtain (iv) \Rightarrow (iii).

COROLLARY 1. If $P \in \mathscr{C}(\mathscr{A}_{nr})$, and if there exists a positive integer m such that $r \leq m$ $(n \leq m)$ and P is left (right) cancellable in $\mathscr{A}_{rm}(\mathscr{A}_{mn})$, then P is left (right) cancellable in $\mathscr{A}_{rs}(\mathscr{A}_{sn})$ for every $r \leq s$ $(n \leq s)$.

Proof. Let A be the matrix formed by the first r rows of the matrix described in (iii) of Theorem 3. For any $s \leq r$, form A(s) by augmenting A to an s rowed matrix whose last s-r rows consist of zeros. Thus $A(s) \in \mathscr{C}(\mathscr{A}_{sn})$ and $A(s)P = E \in \mathscr{A}_{sr}$.

COROLLARY 2. If $P \in \mathscr{C}(\mathscr{A}_{nn})$, $n \leq m$, and P is left (right) cancellable in $\mathscr{A}_{mn}(\mathscr{A}_{mn})$, then $PP^{t} = P^{t}P = E$.

Proof. Let A be the matrix formed by the first n rows of the matrix described in (iii) of Theorem 3. Then $A \in \mathscr{C}(\mathscr{A}_{nn})$ and AP = E. The result now follows from a result of Rutherford [10, §3].

3. In this section we consider mappings from \mathscr{A}_{mn} into itself which arise from matrix multiplication. Thus for right (left) multiplication by P, we necessarily require that $P \in \mathscr{A}_{nn}$ $(P \in \mathscr{A}_{mm})$. After Foulis [5], for an orthomodular lattice \mathscr{A} , define $S(\mathscr{A})$ to be the set of all those monotone mappings $\phi: \mathscr{A} \to \mathscr{A}$ such that there exists at least one, and hence exactly one, monotone mapping $\phi^*: \mathscr{A} \to \mathscr{A}$ with the property that $(a'\phi)'\phi^* \leq a$ and $(a'\phi^*)'\phi \leq a$ for every a in \mathscr{A} . Foulis shows that, if $\phi \in S(\mathscr{A})$, then ϕ is residuated, and that ϕ^* is given by $a\phi^* = (a'\phi^+)'$. Thus $\phi: A \to AP$ ($\phi: A \to PA$) is in $S(\mathscr{A}_{mn})$ if and only if $P \in \mathscr{C}(\mathscr{A}_{nn})$ $(P \in \mathscr{C}(\mathscr{A}_{mm}))$, and in this case ϕ^* is given by right (left) multiplication by P^t . A mapping ϕ on a lattice \mathscr{A} is called a *closure operator* if $a \leq a\phi$ and $a\phi = (a\phi)\phi$ for all a in \mathscr{A} . ϕ is called a *quantifier* on \mathscr{A} if $o\phi = o$, $a \leq a\phi$, and $(a \wedge b\phi)\phi = a\phi \wedge b\phi$ for all a, b in \mathscr{A} .

LEMMA 6. For $P \in \mathcal{A}_{nn}$ $(P \in \mathcal{A}_{mm})$, $\phi: A \to AP$ $(\phi: A \to PA)$ is a closure operator on \mathcal{A}_{mn} if and only if $E \leq P$, $P = P^2$, and (A, P, P) ((P, P, A)) is an associative triple for all A in \mathcal{A}_{mn^*} .

Proof. If $E \leq P$, then $A = AE \leq AP$. Conversely, $E \leq E\phi = EP = P$. $A\phi = (A\phi)\phi$ implies that $P = EP = (EP)P = P^2$ and $(AP)P = AP = AP^2$. If $P = P^2$ and (A, P, P) is an associative triple, then $(AP)P = AP^2 = AP$.

COROLLARY. If $E \leq P = P^2$ and $P \in \mathscr{C}(\mathscr{A}_{nn})$ $(P \in \mathscr{C}(\mathscr{A}_{mm}))$, then $\phi: A \to AP$ $(\phi: A \to PA)$ is a closure operator on \mathscr{A}_{mn} .

LEMMA 7. If $P = P^t \in \mathcal{A}_{nn}$, or if $E \leq P \in \mathcal{A}_{nn}$, then $P = P^2 \Leftrightarrow P_{ij} \geq P_{ik} \wedge P_{kj}$ for all i, j, k = 1, ..., n.

Proof. Suppose that $P = P^t$ and $P_{ij} \ge P_{ik} \land P_{kj}$. Then $P_{ii} \ge P_{ik} \land P_{ki} = P_{ik}$. Now

$$P_{ij} \ge (P_{ij} \land P_{jj}) \lor \bigvee_{k \neq j} (P_{ik} \land P_{kj}) = P_{ij} \lor \bigvee_{k \neq j} (P_{ik} \land P_{kj}) \ge P_{ij},$$

i.e. $P_{ij} = P_{ij}^2$. Conversely, if $P = P^t = P^2$, then $P_{il} = P_{il} \vee \bigvee_{n \neq l} P_{ik}$, i.e. $P_{il} \ge P_{ik}$. Now

$$P_{ij} = (P_{ij} \lor P_{jj}) \lor \bigvee_{k \neq j} (P_{ik} \land P_{kj}) = P_{ij} \lor \bigvee_{k \neq j} (P_{ik} \land P_{kj}).$$

Hence $P_{ij} \ge P_{ik} \wedge P_{kj}$ for all i, j, k = 1, ..., n. If $P \ge E$, then $P_{ii} \ge P_{ik}$ and an obvious modification of the above proof establishes the result.

LEMMA 8. Given $P \in \mathcal{A}_{nn}$ ($P \in \mathcal{A}_{mm}$), the mapping $A \to AP$ ($A \to PA$) is a quantifier on \mathcal{A}_{mn} if and only if $E \leq P = P^2 = P^t$, $P \in \mathcal{C}(\mathcal{A}_{nn})$ ($P \in \mathcal{C}(\mathcal{A}_{mm})$), and the columns (rows) of P possess property \mathcal{D} on L. (See [1, §1] for the definition of property \mathcal{D} .)

Proof. For the sufficiency of the conditions, all that remains is to show that

$$(A \wedge BP)P = AP \wedge BP.$$

By [1, Lemma 1], $(A \land BP)P \leq AP \land (BP)P = AP \land BP$. By Lemma 7, $P_{hk} \geq P_{hj} \land P_{jk}$, and hence, by property \mathcal{D} ,

$$(AP \land BP)_{ij} = \bigvee_{k} [A_{ik} \land P_{kj} \land (BP)_{ij}] = \bigvee_{k} [A_{ik} \land P_{kj} \land \bigvee_{h} (B_{ih} \land P_{hj} \land P_{jk})]$$

$$\leq \bigvee_{k} [A_{ik} \land P_{kj} \land \bigvee_{h} (B_{ih} \land P_{hk})] = [(A \land BP)P]_{ij}.$$

Conversely, if $A \to AP$ is a quantifier on \mathscr{A}_{mn} , then, by Janowitz [7, Theorem 2],

$$P = P^2 = P^t \in \mathscr{C}(\mathscr{A}_{nn}).$$

As before, $A \leq AP$ implies that $E \leq P$. Let $b \in L$ and let B be such that $B_{ij} = b$ for all i, j = 1, ..., n. Then $AB \wedge BP = (A \wedge BP)P$ becomes $b \wedge \bigvee_k (A_{ik} \wedge P_{kj}) = \bigvee_k (A_{ik} \wedge P_{kj} \wedge b)$, that is, the columns of P possess property \mathcal{D} on L.

Let \mathscr{A} be a lattice with o and 1, and for a in \mathscr{A} let $\mathscr{A}(o, a) = \{x \in \mathscr{A} \mid x \leq a\}$. A mapping $\phi: \mathscr{A} \to \mathscr{A}$ is said to be *range closed* if $\phi: \mathscr{A} \to \mathscr{A}(o, 1\phi)$ is a surjective mapping.

For the next lemma we introduce a notation of Rutherford [10]. If P is a matrix with entries in an orthocomplemented lattice, let \overline{P} be the matrix with $\overline{P}_{ij} = P_{ij} \wedge (\bigwedge_{n \neq j} P'_{kj})$ and \underline{P} be the matrix with $\underline{P}_{ij} = P_{ij} \wedge (\bigwedge_{k \neq i} P'_{kj})$.

LEMMA 9. Given $P \in \mathcal{C}(\mathcal{A}_{nn})$ ($P \in \mathcal{C}(\mathcal{A}_{mm})$), the mapping $A \to AP$ ($A \to PA$) is range closed in \mathcal{A}_{mn} if and only if any of the following conditions obtain:

- (i) $(E'P')'P = E \wedge IP (P(P'E')' = E \wedge PI).$
- (ii) $\bigvee_h [P_{hj} \wedge (\bigwedge_{k \neq j} P'_{hk})] = \bigvee_h P_{hj}$ for all j = 1, ..., n, $(\bigvee_h [P_{ih} \wedge (\bigwedge_{k \neq j} P'_{hk})] = \bigvee_h P_{ih}$ for all i = 1, ..., m.

(iii)
$$I\overline{P} = IP (PI = PI)$$
, where $I_{ij} = 1$ for all i, j .

Proof. First we note that (ii) is the assertion $[(E'P')'P]_{jj} = [E \wedge IP]_{jj}$ so that (i) \Rightarrow (ii). By [8, Lemma 3.2], $A \to AP$ is range closed if and only if $(A'P')'P = A \wedge IP$ for all A in \mathscr{A}_{mn} . When A = E one obtains the necessity of (i) and (ii). Conversely, $A \ge (A'P')'P$ and $IP \ge (A'P')'P$ imply that $A \wedge IP \ge (A'P')'P$ for all A in \mathscr{A}_{mn} . Since $(A_{ij} \vee P'_{hj}) \wedge P_{hj} = A_{ij} \wedge P_{hj}$, we find that

$$[(A'P')'P]_{ij} = \bigvee_{h} [A_{ij} \wedge P_{hj} \wedge \bigwedge_{k \neq j} (A_{ik} \vee P'_{hk})]$$

$$\geq \bigvee_{h} [A_{ij} \wedge P_{hj} \wedge \bigwedge_{k \neq j} P'_{hk}] = A_{ij} \wedge \bigvee_{h} [P_{hj} \wedge \bigwedge_{k \neq j} P'_{hk}]$$

$$= A_{ij} \wedge \bigvee_{h} P_{hj} = (A \wedge IP)_{ij}.$$

Hence $(A'P')'P = A \wedge IP$ for all A in \mathscr{A}_{mn} , and (i) \Rightarrow (ii) $\Rightarrow A \rightarrow AP$ is range closed. (iii) is of course another way of writing (ii).

COROLLARY. If $P \in \mathscr{C}(\mathscr{A}_{nn})$ $(P \in \mathscr{C}(\mathscr{A}_{mm}))$ and if the elements of each row (column) of P form a mutually orthogonal subset of L, that is $P_{ij} \leq P'_{ik}$ $(P_{ji} \leq P'_{ki})$ for all i, j, k with $j \neq k$, then the mapping $A \to AP$ $(A \to PA)$ is range closed.

LEMMA 10. Given $P \in \mathscr{C}(\mathscr{A}_{nn})$ $(P \in \mathscr{C}(\mathscr{A}_{mm}))$. $A \to AP$ $(A \to PA)$ is range closed in \mathscr{A}_{mn} if and only if $A'P' = B'P' \Rightarrow A \land IP = B \land IP$ $(P'A' = P'B' \Rightarrow A \land PI = B \land PI)$.

Proof. The result follows from [6, Theorem 2].

COROLLARY 1. If $P \in \mathscr{C}(\mathscr{A}_{nn})$ ($P \in \mathscr{C}(\mathscr{A}_{mm})$) and if $A \to AP^{t}$ ($A \to P^{t}A$) is range closed, then, for $A \ge (IP^{t})'$ ($A \ge (P^{t}I)'$), $A \leftrightarrow AP$ ($A \leftrightarrow PA$) is a one to one correspondence.

COROLLARY 2. Suppose that $P \in \mathscr{C}(\mathscr{A}_{nn})$ ($P \in \mathscr{C}(\mathscr{A}_{mm})$), P is row (column) consistent and $A \to AP^t$ ($A \to P^tA$) is range closed on \mathscr{A}_{mn} ; then $A \leftrightarrow AP$ ($A \leftrightarrow PA$) is a one to one correspondence on \mathscr{A}_{mn} .

Let \mathscr{A} be an orthomodular lattice and let $e \in \mathscr{A}$. Define a mapping ϕ_e by $a\phi_e = (a \lor e') \land e$ for a in \mathscr{A} . Such mappings are called *Sasaki projections* and are especially interesting members of $S(\mathscr{A})$. Foulis notes that when $\phi = \phi^2 = \phi^* \in S(\mathscr{A})$, ϕ is a Sasaki projection if and only if ϕ is range closed. Thus we have the following:

THEOREM 4. Let $P \in \mathscr{C}(\mathscr{A}_{nn})$ $(P \in \mathscr{C}(\mathscr{A}_{mm}))$, and let $P = P^2 = P'$. The mapping $A \to AP$ $(A \to PA)$ is a Sasaki projection in \mathscr{A}_{mn} if and only if P is a diagonal matrix, i.e. $P_{ij} = o$ for $i \neq j$.

Proof. If P is a diagonal matrix, then, by the Corollary to Lemma 9, the mapping $A \to AP$ is range closed and hence is a Sasaki projection. Conversely, by Lemma 7, $P_{ij} \ge P_{ik} \wedge P_{kj}$ and $P_{jj} \ge P_{jk}$. Since $P_{hj} \wedge P_{hh} = o$, it follows from Lemma 9 that

$$P_{jk} \leq P_{jj} = \bigvee_h P_{hj} = \bigvee_h [P_{hj} \land \bigwedge_{k \neq j} P'_{hk}] = P_{jj} \land \bigvee_{k \neq j} P'_{jk} \leq P'_{jk} \quad \text{for} \quad j \neq k.$$

Thus $P_{jk} = P_{jk} \wedge P'_{jk} = o$ for $j \neq k$.

REFERENCES

1. J. H. Bevis, Matrices over orthomodular lattices, Glasgow Math. J. 10 (1968), 55-59.

2. G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloquium Publications, Vol. 25, rev. ed. (New York, 1948).

3. T. S. Blyth, Residuation theory and Boolean matrices, Proc. Glasgow Math. Assoc. 6 (1964), 185-190.

4. R. Croisot, Applications residuées, Ann. Sci. Ecole Norm. Sup. (3) 73 (1956), 453-474.

5. D. J. Foulis, Baer *-semigroups, Proc. Amer. Math. Soc. 11 (1960), 648-654.

6. D. J. Foulis, Conditions for the modularity of an orthomodular lattice, *Pacific J. Math.* 11 (1961), 889-895.

7. M. F. Janowitz, Quantifiers and orthomodular lattices, Pacific J. Math. 13 (1963), 1241-1249.

8. M. F. Janowitz, A semigroup approach to lattices, Canad. J. Math. 18 (1966), 1212-1223.

9. J. Molinaro, Demi-groupes résidutifs, J. Math. Pures Appl. 39 (1960), 319-356.

10. D. E. Rutherford, Inverses of Boolean matrices, Proc. Glasgow Math. Assoc. 6 (1963), 49-53

VIRGINIA POLYTECHNIC INSTITUTE BLACKSBURG, VIRGINIA