
Canad. Math. Bull. Vol. 29 (3), 1986 

SOME RESULTS ON GENERALIZED LOTOTSKY 
SUMMABILITY 

BY 

J. F. MILLER 

ABSTRACT. The (F,d„) method is investigated with respect to per-
fectness, strong regularity, and summing bounded divergent sequences. In 
the process the columns of the inverse matrix are characterized in terms of 

R}. 

1. Introduction. We wish to investigate perfectness, strong regularity, and the 
summation of bounded divergent sequences for the Jakimovski methods (F, dn). These 
methods were introduced by Jakimovski in [2] as a generalization of Lototsky 
summability. 

DEFINITION 1.1. The (F,dn) method is defined by the triangular matrix A = (ank) 
which has a00 = 1, aok — 0 when k > 0 and 

z + dj 

,-=i 1 + dj 
(1.2) EI L= S ankz\n 

Here {dn}™ is an arbitrary complex sequence with dn+ — 1. 
For convenience we will denote n"=,(l + dj) by (1 + dn)\ 
If A~x = (bnk), then explicit formulas for ank and bnk are given by (see [2]) 

1 v 
(1.3) ank = 2J dh...djn_k 

(l + d„)\ \*j,<:-<jn_k*„ 
where k < n and the sum is defined to be 1 when k = n, and 

(1.4) bnk = {\ +^)!(- l )"-V; , - . -X'+ 1 ] 

where k < n and we take (1 + d0)\ = 1. 
We note that the formula (1.4) and the proof given in [2, §8] when the d/s are 

pairwise different remain valid even when some of the d,'s are equal, if the definition 
of a divided difference for multiple knots is used (see [3]). 
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In the next section we will use the fact that the divided difference of a function or 
a sequence is a linear functional and that the divided difference [f(d\),... ,f(dm+i)] 
is a linear combination, with non-zero coefficients depending on d\,.. . , dm+, only, of 
f(dj),f(dj)9.. . ,f{Kj~ ])(dj) where r} is the number of times the number dj appears in 
the sequence d i , . . . , dm + i and in the linear combination dj ranges over all the different 
values in the sequence dx,. . . , dm+ ,. 

2. Perfectness and (F,dn) 

DEFINITION 2.1. Let A be a conservative triangle. Then A is perfect if the convergent 
sequences c are dense in cA, the summability field of A, with respect to the usual norm 
topology on cA. 

Before relating perfectness to (F, dn), we give two results characterizing the columns 
of the inverse of the (F,dn) matrix. 

THEOREM 2.2. For the (F,dn) method with associated matrix A = (ank) the following 
are equivalent. 

(i) |d„\ < 1 for each n. 
(ii) A~l has null columns, 

(iii) A~] has convergent columns. 

PROOF. Let A"1 = (bnk). From the remarks at the end of the previous section, for 
n > 1 and a fixed k > 0 

bnk = (-\y-k(\ +dk)l[dï,...,dtt
k+l] 

is a finite linear combination, with non-zero coefficients depending on dx,. . . ,dk+1 
only, of terms of the form n(n — 1). . . (n — r + l)d"~r where dj ranges over all the 
different values in the sequence dx,..., dk+, and r < ry-. The proof follows by consid
ering first bn,o then bnA and so on. 

THEOREM 2.3. For the (F, dn) method with associated matrix A = (ank) we have that 
\dn\ ^ 1 for each n and the dn's of modulus one are distinct if and only if A~x has 
bounded columns. 

PROOF. Let A - 1 = (bnk). If dj appears only once among */,,...,</*+, then its only 
contribution to the sum defining bnk is of the form of a constant times d] (which is a 
geometric sequence). Otherwise dj contributes additional terms which are of the form 
of a constant times each one of the following: nd]~x, n(n - l)d"~2,...,. The proof 
follows again by considering b„t0 then bnA and so on. 

From this last result and Lemma 1 of [8] we obtain a sufficient condition for (F,dn) 
to be perfect. 
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THEOREM 2.4. Let A be the matrix associated with a regular (F,dn) method. If 
\dn\ ^ 1 for each n and the dn's of modulus one are distinct, then A is perfect. 

We note that the converse is not true, e.g., 

d\ = d2 = 1 and dn = 0 for n > 3 or d„ = p > 1, n = 1,2, . . . 

are each regular and perfect. 

3. Strong Regularity for (F,dn) 

DEFINITION 3.1. A bounded sequence x = {xk} is said to be almost convergent to s, 
its generalized limit, if each Banach limit (see [5] p. 58) ofx is s. We denote the class 
of almost convergent sequences by f. 

DEFINITION 3.2. A matrix A = (ank) is strongly regular if it sums every x EL f to the 
value to which it is almost convergent. 

In [5] p. 62 we have the following characterization of strong regularity: 

THEOREM 3.3. A regular matrix A = (ank) is strongly regular if and only if 

lim 2 \ank - anA+] \ = 0. 
"-^°° * = o 

As noted in [5], p. 65, the matrices A = (ank) satisfying max0<£<„ | ank\ -* 0 
(n —> oo) form a wider class than the strongly regular matrices. However, when re
stricted to the (F,dn) matrices with dn > 0 for each n, we have 

THEOREM 3.4. Let (F,d„) with corresponding matrix A = {ank) be regular with 
dn > 0 for each n. Then the following are equivalent. 

(i) (F,dn) is strongly regular. 

(ii) max \ank\ —> 0 (n —» °°). 
o < * < « 

. v d» 
(m) 2J : = °°. 

PROOF, (iii) => 0). This is due to Groetsch in [1]. (i) => (ii). This follows from 
Theorem 3.3 and the remark following it. (ii) => (iii). 
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Assume 

^ d„ 
(3.5) 2 : < ». 

n=l (1 + d n ) 2 

From Lemma 2.2 of [6] we have 

(3.6) An (F,dn) method with d„ > 0 for each n is regular if and only if 

V 1 
ZJ = oo. 

n=\ 1 + dn 

From (ii) and (1.3) we have a„„ = 1/(1 + d„)\ -» 0 (n -> oo), i.e., (1 + d„)! -» oo 
(^ —» oo) and thus 

(3.7) E d„ = oo. 
/ ? = i 

We have lim„_ *></,, = °°. Otherwise, there would exist an L > 0 such that dn < L 
for each n. Thus, for each w, <i„/(l + dn)

2 > d„/(l + L)2, which along with our 
assumption (3.5) implies 2^= , dn < °°. This contradicts (3.7). Similarly, limJ„ = 0. If 
not, then there would exist an e > 0 such that d„ -- e for n sufficiently large. The 
function x/\ + x is increasing for JC > 0 hence 

d„ 1 e 

(1 + dnf 1 + dn 1 + e 

which forces 

< 00. 

« = i 1 + dn 

This contradicts (3.6). 
Consider the subsequences of n given by 

{vi\dv. < 1} and {/,•!</,.> 1}. 

Then 

4, + S 
„=i (1 + dn)

2 /=, (1 + dv.)
2 /=i (1 + d,.)2 

Since each series converges by our assumption in (3.5), we have 

(3.8) 2 dv. < oo and E < °° 
/= 1 ;= 1 1 + d\ 
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by the same arguments used to determine \imn^xdn and lim,^ocdn. Now let m — m(n) 
be the number of d/s, 1 < 7 < AI, such that dj> 1. We may suppose, by (3.7), that 
n is sufficiently large such that m > 1. Consider the nth row of A = (ank). By (1.3) 
with k — n — m, 

1 y 

(1 + a J ! 1 </, <./2 <•••</„,<* 

n(.- — 
(3.9) s — 

n ci + dv,) 
/ • = 1 

But by (3.8) 11, = ,(1 + dv) converges and hence is bounded, say nr=,(l + dv)<M 
for all N. Also nj°= j( 1 - 1/1 + dt) converges by (3.8). These imply from (3.9) that 

00 / 1 

n (1-—— 
#„,„-,„ ^ — = const > 0. 

M 

Thus maxo<*<„|a„*| ^> 0(w_>ao). 
This contradicts hypothesis (ii). Hence 

2 
n = l ( l + ^ ) 2 

4. Summation of Bounded Divergent Sequences for (F,dn). Applying the corol
lary on p. 505 of [7] and Theorem 2.3 we have 

THEOREM 4.1. Let (F,dn) be regular with \d„\ ^ 1 for each n and such that the dn 's 
of modulus one are distinct. Then (F,dn) is either Mercerian or sums a bounded 
divergent sequence. 

From this result we have the following special cases. 

COROLLARY 4.2. Under the same hypotheses as in Theorem 4.1, if at least one dn is 
such that \dn\ = 1, then (F,dn) sums a bounded divergent sequence. 

PROOF. This follows from Theorem 2.1 (iv) of [4]. 

COROLLARY 4.3. If(F,dn) is regular, non-Mercerian, and sums no bounded diver
gent sequences, then 
(i) I d„ I ¥= 1 for each n, and 

(ii) Idn\ > 1 for some n. 
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PROOF, (i) If some dn has modulus one, say dN, then the (F,d'„) method given by 
d'n = dnforn j= 1 andjV,<i[ = dN,mdd'N = d\, sums the columns of its own inverse. 
But the first column of the inverse for (F,d'fl) is by (1.4) b'no = (—dN)", a bounded 
divergent sequence. It is easily seen from (1.2) that interchanging two d / s (or any finite 
number for that matter) results in essentially the same (F,d„) matrix, i.e., for suf
ficiently large n, ank = a'nk for each k. Therefore (F\d„) sums a bounded divergent 
sequence. 

(ii) This now follows from Theorem 4.1 and (i). 

If we restrict {dn} to dn ^ 0 for each n, then, since / clearly contains bounded 
divergent sequences, from Theorem 3.4 we have 

COROLLARY 4.4. Let (F dn) be regular with dn > Ofor each n. If(F,dn) sums no 
bounded divergent sequences, then 

^ dn 

n=i (1 + dnf 

From this last result and an argument in the proof of Theorem 3.4, it follows that 
\\md„ = 0. In particular then, dn -f> <*> (n —» oo). Thus we have 

COROLLARY 4.5. If(F, d„) is regular with d„ ^ Ofor each n and dn —̂  ^ (n —» oo)? 

then (F,dn) sums a bounded divergent sequence. 
The conclusion of Corollary 4.4 yields 

COROLLARY 4.6. If(F,d„) is regular with dn > Ofor each n and sums no bounded 
divergent sequences, then dn is either a null sequence (in fact is in I) or has exactly 0 
and o° as limit points. 
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