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Abstract

Auto-biological beliefs—beliefs about one’s own biology—are an understudied component of
personal identity. Research participants who are led to believe they are biologically vulnerable to
affective disorders report more symptoms and less ability to control their mood; however, little
is known about the impact of self-originating beliefs about risk for psychopathology, and
whether such beliefs correspond to empirically derived estimates of actual vulnerability.
Participants in a neuroimaging study (n = 1256) completed self-report measures of affective
symptoms, perceived stress, and neuroticism, and an emotional face processing task in the scan-
ner designed to elicit threat responses from the amygdala. A subsample (n = 63) additionally
rated their own perceived neural response to threat (i.e., amygdala activity) compared to peers.
Self-ratings of neural threat response were uncorrelated with actual threat-related amygdala
activity measured via BOLD fMRI. However, self-ratings predicted subjective distress across
a variety of self-report measures. In contrast, in the full sample, threat-related amygdala activity
was uncorrelated with self-report measures of affective distress. These findings suggest that
beliefs about one’s own biological threat response—while unrelated to measured neural
activation—may be informative indicators of psychological functioning.

Understanding the biological basis of human behavior has long been of interest to the scientific
community and the general public. Indeed, biological explanations for behavior appeal to the
human tendency to “essentialize” or categorize people based on what are perceived to be fun-
damental, underlying natural characteristics (Haslam, 2011; Haslam & Ernst, 2002; Rothbart &
Taylor, 1992). This tendency is particularly powerful in the arena of mental health. Biological
explanations for disorders like depression or schizophrenia—while initially promoted to reduce
blame and stigma against affected individuals—have had the paradoxical effect of increasing
stigma, in part by implying the biological “otherness” of those affected (Haslam & Kvaale,
2015). Essentialist attitudes are present within the mental health community as well: clinicians
in one study reported less empathy towards potential patients after being given a biological
explanation for their symptoms (Lebowitz & Ahn, 2014).

Whether such biological essentialism extends to attitudes about one’s own biology—or
auto-biology—is less clear (Lebowitz, 2014). The term auto-biology, as we use it here, refers to one’s
knowledge, attitudes, or beliefs about one’s own biological systems (MacDuffie & Strauman,
2017). Prior studies have employed false feedback to individuals about their own biology to test
the impact of auto-biological beliefs on mental health. For example, participants with a history
of depression were shown results from a fictional “Rapid Depression Test,” conducted via cheek-
swab (Kemp, Lickel, & Deacon, 2014). Those who received results describing a serotonin imbal-
ance were more pessimistic about their mood-regulation abilities and prognosis compared to
participants who received “normal” results. Similarly, participants who were told via a fictional
test that they were genetically susceptible to depression reported higher retrospective ratings of
depressive symptoms compared to participants who were told they were not genetically suscep-
tible (Lebowitz & Ahn, 2017). Providing fictional feedback about biological vulnerability, there-
fore, appears to increase essentialist thinking about one’s own biology and risk formental illness.

To our knowledge, no studies have examined auto-biological beliefs about vulnerability to
mental illness directly.We aimed to capture auto-biological beliefs relevant tomental health and
explore their association with self-reported distress and with an individual’s actual biology.
We investigated beliefs about a specific biological signature—threat-related amygdala activity
(TRA)—which is associated with risk for stress-related psychopathology but is measurable in the
general population (Swartz, Knodt, Radtke, & Hariri, 2015). After learning about TRA as a risk
biomarker, participants were asked to rate their own amygdala activity. Participants’ self-ratings
of amygdala activity (hereafter SRA) were subsequently compared to their actual TRA as mea-
sured by BOLD fMRI. Finally, we explored the associations between SRA, TRA, and commonly
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used self-report measures of personality and affective distress. Data
were analyzed in an exploratory manner, with the goal of deter-
mining whether beliefs about one’s own biological vulnerability
for affective disorders correspond to actual neural activity, and
the relationship of each to self-reported distress.

1. Methods

1.1 Participants

1.1.1 Full sample
Participants were young-adult university students enrolled in the
Duke Neurogenetics Study (DNS)—a large-scale investigation
capturing a wide range of behavioral and biological traits, with
the goal of understanding how neurogenetic and experiential
factors interact to predict psychopathology in early adulthood.
Participants were recruited via on-campus advertising, and
informed consent was obtained in accordance with the Duke
University School of Medicine Institutional Review Board.
Exclusion criteria for the DNS included: (1) medical diagnoses
of cancer, stroke, head injury with loss of consciousness, untreated
migraines, diabetes requiring insulin treatment, chronic kidney or
liver disease, or lifetime history of psychotic disorder; (2) use of
psychotropic, glucocorticoid, or hypolipidemic medication; and
(3) conditions affecting cerebral blood flow and metabolism
(e.g., hypertension). A total of 1256 participants (713 female, mean
age = 19.7 years) were included in the current analyses. All had
complete self-report data on includedmeasures and fMRI data that
met quality control standards (see below).

1.1.2 Self-rating subsample
Sixty-three participants (42 women, mean age = 19.8 years) also
took part in the amygdala self-rating sub-study. The racial/
demographic characteristics of the subsample were representative
of the full DNS sample.

1.2 Threat-related amygdala activity (TRA)

Our widely utilized face-matching task has been used extensively to
elicit robust amygdala activity across an array of experimental proto-
cols and sample populations (Barch et al., 2013; Bertolino et al., 2005;
Meyer-Lindenberg et al., 2009; Miller et al., 2016; Tesli et al., 2013).

The task consists of four experimental blocks interleaved with
five control blocks. In the DNS version of this task, there is one
experimental block each of fearful, angry, surprised, and neutral
facial expressions presented in a pseudorandom order across

participants. During these experimental blocks, participants view
a trio of faces and select one of two faces (on the bottom) identical
to a target face (on the top, see Figure 1). Each of these blocks con-
sists of six images, balanced for gender, all of which were derived
from a standard set of pictures of facial affect (Ekman & Friesen,
1976). During the control blocks, participants view a trio of simple
geometric shapes (circles and vertical and horizontal ellipses) and
select one of two shapes (bottom) that are identical to a target shape
(top). Each of these blocks consists of six different shape trios. All
the blocks are preceded by a brief instruction (“Match Faces” or
“Match Shapes”) that lasts 2 s. In the experimental task blocks, each
of the six face trios is presented for 4 s with a variable interstimulus
interval (ISI) of 2–6 s (mean= 4 s) for a total block length of 48 s. A
variable ISI is used to minimize expectancy effects and resulting
habituation and maximize amygdala reactivity throughout the
paradigm. In the control blocks, each of the six shape trios is pre-
sented for 4 s with a fixed ISI of 2 s for a total block length of 36 s.
Total task time is 390 s.

1.2.1 BOLD fMRI data acquisition
Each participant was scanned using one of two identical research-
dedicated GE MR750 3 T scanners equipped with high-power
high-duty-cycle 50-mT/m gradients at 200 T/m/s slew rate, and
an eight-channel head coil for parallel imaging at high bandwidth
up to 1MHz at the Duke-UNCBrain Imaging andAnalysis Center.
A semi-automated high-order shimming program was used to
ensure global field homogeneity. A series of 34 interleaved axial
functional slices aligned with the anterior commissure-posterior
commissure plane were acquired for full-brain coverage using
an inverse-spiral pulse sequence to reduce susceptibility artifacts
(TR/TE/flip angle = 2000 ms/30 ms/60; FOV = 240 mm; 3.75 ×
3.75× 4mm voxels; interslice skip= 0). Four initial radiofrequency
excitations were performed (and discarded) to achieve steady-state
equilibrium. To allow for spatial registration of each participant’s
data to a standard coordinate system, high-resolution three-
dimensional structural images were acquired in 34 axial slices
coplanar with the functional scans (TR/TE/flip angle = 7.7
s/3.0 ms/12; voxel size = 0.9 × 0.9 × 4 mm; FOV= 240 mm, inter-
slice skip = 0).

1.2.2 BOLD fMRI data preprocessing
Anatomical images for each subject were skull-stripped, intensity-
normalized, and nonlinearly warped to a study-specific average
template in the stereotactic space of the Montreal Neurological
Institute using the ANTs open-source registration tools

Figure 1. Emotional face processing task. Experimental blocks of a perceptual face-matching task alternate with control blocks of a shape-matching task. In each, participants
are instructed to select which of the two stimuli on the bottom of the screen matches the top stimulus.
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(Klein et al., 2009). BOLD time series for each subject were proc-
essed in AFNI (Cox, 1996). Images for each subject were despiked,
slice-time-corrected, realigned to the first volume in the time series
to correct for head motion, coregistered to the anatomical image
using FSL’s Boundary Based Registration (Greve & Fischl,
2009), spatially normalized into MNI space using the nonlinear
warp from the anatomical image, resampled to 2 mm isotropic
voxels, and smoothed to minimize noise and residual difference
in gyral anatomy with a Gaussian filter, set at 6-mm full-width
at half-maximum. All transformations were concatenated so that
a single interpolation was performed. Voxel-wise signal intensities
were scaled to yield a time series mean of 100 for each voxel.
Volumes exceeding 0.5 mm frame-wise displacement or 2.5 stand-
ardized DVARS (Nichols, 2017; Power et al., 2014) were censored
from further analyses.

1.2.3 fMRI quality assurance criteria
Quality control criteria for inclusion of a participant’s fMRI data
were:>5 volumes for our condition of interest (see below) retained
after censoring for FD and DVARS and sufficient temporal SNR
within the bilateral amygdala, defined as >3 standard deviations
below the mean of this value across participants. The amygdala
was defined anatomically using a high-resolution template gener-
ated from 168 Human Connectome Project datasets (Tyszka &
Pauli, 2016). Additionally, data were only included in further
analyses if the participant demonstrated sufficient engagement
with the task, defined as achieving at least 75% accuracy during
the face matching condition.

1.2.4 BOLD fMRI data analysis
Following preprocessing, the AFNI program 3dREMLfit (Cox,
1996) was used to fit a general linear model for first-level fMRI data
analyses. A linear contrast employing canonical hemodynamic
response functions was used to estimate effects of threatening faces
(Angry + Fearful block > Control blocks) for each individual.

These individual contrast images were then used in second-level
random effects models in SPM12 (http://www.fil.ion.ucl.ac.uk/
spm) accounting for scan-to-scan and participant-to-participant
variability to determine mean condition-specific regional
responses using one-sample t-tests. A statistical threshold of
p < 0.05, FWE corrected across our amygdala region of interest
(Tyszka & Pauli, 2016), and ≥10 contiguous voxels were applied
to the contrast of interest. This was performed for the entire amyg-
dala (all 10 subnuclei in the Tyszka atlas), the combined Basolateral
nuclei, the combined Central and Medial nuclei, and the Central
nucleus alone (as this subregion is only 5 voxels in each hemi-
sphere, the 10 contiguous voxel criteria was relaxed), and single
subject parameter estimates were extracted from the resulting
significant functional clusters.

1.3 Self-rated amygdala activity (SRA)

The amygdala self-rating was collected after participants completed
the fMRI task. Participants watched a short video, developed for the
current study, which described TRA as a marker of vulnerability for
emotional disorders (narration text of the video is provided as
Appendix A). Comprehension of the video was assessed via two quiz
questions, which were answered accurately by 100% of participants.
Participants were then shown a histogram of TRA values from
>1000 previous DNS participants and asked to rate themselves in
reference to this “amygdala bell curve” (Figure 2), using a sliding
scale from 0 to 100, with 50 representing average amygdala activity.

1.4 Self-report questionnaires

Data from five self-report measures of affective symptoms and/or
distress were included in the current analyses: the Center for
Epidemiologic Studies Depression Scale-Revised (CESD; Eaton,
Smith, Ybarra, Muntaner, & Tien, 2004), a 20-item screening
instrument for depression; the Mood and Anxiety Symptom
Questionnaire (MASQ; Watson et al., 1995), a 77-item measure

Figure 2. Amygdala self-rating scale. Participants used a slide to indicate their own perceived level of amygdala reactivity on this “amygdala bell curve”—a histogram depicting
bilateral threat-related amygdala activity from other study participants.
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assessing depressive, anxious, and mixed symptomatology; the
Perceived Stress Scale (PSS; Cohen, Kamarck, & Mermelstein,
1983), a 10-item measure of the degree to which participants per-
ceive their lives as stressful (i.e., unpredictable and uncontrollable);
the State-Trait Anxiety Inventory-Trait version (STAI-T;
Spielberger, 1983), a 20-item instrument widely used to measure
trait anxiety; and the NEO-Revised Personality Inventory (Lord,
2007), a 243-item measure that yields scores across five domains
of personality—the Neuroticism scale (NEON) was selected for
the current analysis, given its relevance to psychopathology
(Tackett & Lahey, 2017). Self-report measures were completed
either on the same day as the fMRI scan or within 1 week.

1.5 Data analytic strategy

Analyses were designed to sequentially address three questions: (1)
How does TRA relate to affective distress in the broader DNS sam-
ple? (2) How does SRA relate to TRA? and (3) Does SRA relate to
affective distress after accounting for TRA? By necessity, all analyses
using the SRA measure were tested on the subsample who provided
this rating. Outlier analyses revealed one SRA outlier with a rating
>3 standard deviations below the sample mean; with this individual
excluded, the final subsample size for SRA analyses was 62. Analyses
of associations between TRA and self-report measures of affective
distress were conducted on the full DNS sample (n = 1256).

All results were FDR corrected for multiple comparisons.
Associations between TRA for the left and right hemispheres
and each self-report measure were tested with individual regres-
sion models. Associations between SRA and self-report measures
were tested with regression models controlling for mean TRA.
Finally, all the analyses that included SRA were tested with both
linear and quadratic regression models; due to the design of the
amygdala self-rating, we sought to test the possibility that associ-
ations with SRA could be linear and/or parabola-shaped (i.e., as
perhaps belief in “difference from average,” whether above or
below, could be associated with subjective distress and/or TRA).
Linear vs. quadratic models were compared by adding an orthogo-
nal quadratic term to the regression equations and assessing
for improvement in model fit. All analyses were conducted in R
(R Core Team, 2017). Analysis code is publicly available at
http://faculty.washington.edu/kmacd/SRAmy_analysis.html.

2. Results

2.1 TRA and affective distress

Associations between left and right hemisphere TRA and each of
five self-report measures (NEON, PSS, STAI-T, CESD, and

MASQ) were tested across the entire sample (n = 1256) and cor-
rected for multiple comparisons. None of the self-report measures
were significantly associated with left or right TRA (all ps > 0.5).
This suggests that, across the entire sample, measured threat-
related amygdala reactivity did not correspond to self-reported
affective symptoms, perceived stress, or neuroticism.

2.2 SRA and TRA

Associations between TRA and SRA were tested in the subsample
that completed the amygdala self-rating protocol (n = 62). SRA
was not associated with left or right TRA (Left: adjusted
R2 = −0.02, F[1,60] = 0.0005, p = 0.98; Right: adjusted
R2 = −0.02, F[1,60] = 0.01, p = 0.91) suggesting that participants’
rating of their own amygdala activity did not correspond to their
actual TRA measured in the scanner. Adding the quadratic term
did not improve fit for either model (Left: F[1,59] = 0.23,
p = 0.63; Right: F[1,59] = 0.22, p = 0.64). Given that there were
no laterality effects in the first two analysis steps, and the high
correlation between left and right TRA across the whole sample
(Pearson’s r = 0.76, p < 0.0001), an averaged bilateral amygdala
reactivity value was calculated across hemispheres and used for
the final analysis step.

2.3 SRA and affective distress (accounting for TRA)

Associations between SRA and each of the five self-report mea-
sures were tested, controlling for mean TRA. In four of the five
models, SRA significantly predicted the outcome (NEON, PSS,
STAI-T, and CESD) over and above TRA and after correcting
for multiple comparisons; one model showed an association at
trend-level (MASQ). When the quadratic term was added to the
model, the fit for NEON (F[1,58] = 7.1, p = 0.009) and STAI-T
(F[1,58] = 6.3, p = 0.01) showed significant improvement. In con-
trast, the model fit for PSS (F[1,58] = 2.5, p = 0.12) and CESD
(F[1,58] = 2.4, p = 0.12) was not significantly improved with
the addition of the quadratic term. Parameter estimates for the full
models (including both linear and quadratic SRA terms, as well as
TRA) are presented in Table 1, and plots of SRA and each outcome
measure are shown in Figure 3. These results suggest that while a
linear model was the best fit for predicting perceived stress (PSS)
and depressive symptoms (CESD) from SRA and TRA, a quadratic
fit was better for predicting trait anxiety (STAI-T) and neuroticism
(NEON). The model predicting affective (i.e., both anxious
and depressive) symptoms on the MASQ showed a trend
towards fit improvement with inclusion of the quadratic term
(F[1,58] = 4.0, p = 0.05). However, even with the quadratic term
the full model for MASQ failed to reach significance (see Table 1).

Table 1. Regression results

Linear SRA β Quadratic SRA β Bilateral TRA β Full Model adj. R2 F Statistic (df)

NEON 2.74 (0.91)** 2.42 (0.91)** −0.02 (0.12) 0.18 5.45 (3,58)**

PSS 3.04 (0.92)** 1.46 (0.92) −0.08 (0.12) 0.15 4.67 (3,58)**

STAI-T 2.21 (0.93)* 2.34 (0.93)* 0.10 (0.12) 0.13 4.11 (3,58)*

CESD 2.63 (0.95)** 1.48 (0.95) −0.02 (0.12) 0.12 3.41 (3,58)*

MASQ 1.76 (0.97)† 1.93 (0.97)† −0.02 (0.12) 0.07 2.47 (3,58)†

Parameter estimates andmodel statistics for models predicting self-report scores from self-rated and actual threat-related amygdala activity (SRA and TRA). Models included orthogonal linear
and quadratic SRA predictors.
Numbers in parentheses are standard errors, unless otherwise indicated.
* p < 0.05, ** p < 0.01, † p < 0.1 (trending).
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3. Discussion

To our knowledge, this study represents the first time that auto-
biological beliefs have been compared to an individual’s own brain
function—in this case, threat-related amygdala activity during an
emotional face matching task. We found no significant correspon-
dence between self-rated and measured amygdala activity within
the constraints of available statistical power. The observed associ-
ation between self-rated amygdala reactivity and perceived stress
and depressive symptoms was linear, suggesting that participants
who believed their amygdala activity was higher than average were
likely to report more stress and symptoms of depression. However,
trait anxiety and neuroticism showed a quadratic association with
SRA, suggesting that participants who rated themselves as further
from average activity, in either direction, tended to be more anx-
ious and prone to negative affect. The finding that belief in auto-
biological “difference-from-average” was a robust predictor of
negative affectivity is consistent with prior evidence that feeling
different from one’s peer group is associated with self-reported
psychopathology (Allan & Gilbert, 1995).

These data and prior work suggest that auto-biological beliefs
may be a useful indicator of psychological functioning. Indeed,
self-rated amygdala activity, while unrelated to actual TRA,
predicted affective distress across a variety of self-report mea-
sures. The fact that a self-rating predicted other self-report
measures is perhaps unsurprising; however, the variety of affec-
tive domains predicted by SRA (perceived stress, depressive
symptoms, trait anxiety, and neuroticism) is noteworthy given
that it was a single item querying beliefs about one's own biology.
If replicated in further studies, the auto-biological measure

developed here may prove to be an efficient and revealing index
of subjective distress.

Emerging evidence from the physical (rather than mental)
health literature suggests that auto-biological beliefs can impact
actual physiology. Turnwald and colleagues (2019) recently found
that telling individuals that they were at high vs. low genetic risk for
obesity (via either cardiorespiratory exercise capacity or physio-
logical satiety) impacted not only their subjective ratings of exer-
cise and fullness, but also their actual exercise and satiation-related
physiology (i.e., metabolic gas exchange, ventilatory flow rate, and
glucagon-like peptide-1 response). In some cases, an individual’s
beliefs appeared to influence their physiological response more
strongly than actual genetic risk status (Turnwald et al., 2019).
While similar physiological impacts of auto-biological beliefs
about mental illness have yet to be demonstrated, these results
are consistent with prior work showing the negative emotional
impact of learning in an experiment that one is biochemically or
genetically at risk for depression (Kemp et al., 2014; Lebowitz &
Ahn, 2017). Taken together, these data suggest that auto-biological
beliefs may involve similar mechanisms as the placebo and nocebo
effects, with appreciable (and potentially clinically significant) con-
sequences for subjective and objective health outcomes (Finniss,
Kaptchuk, Miller, & Benedetti, 2010; Kaptchuk & Miller, 2015).

Our results could be interpreted as reflecting a disconnect
between participants’ beliefs about their auto-biology and their
actual, measurable biological response to threatening stimuli.
However, the results could also reflect a methodological weakness
in the reliability of ROI-based analyses of task-based functional
neuroimaging data. An increasing number of studies report that

Figure 3. Amygdala self-rating and self-reported affective symptoms/distress. Depicted in green are models that showed a linear relationship between SRA and the outcome
variable, which did not improvewith addition of a quadratic term. Depicted in yellow aremodels that improvedwith addition of quadratic term. Dotted lines representmodels that
did not meet the significance threshold (p > .05). Shaded area represents a 95% confidence interval.
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amygdala activity measured with tasks that use emotional facial
expressions as stimuli—including the task used in our protocol
—yields poor test–retest reliability (Lipp, Murphy, Wise, &
Caseras, 2014; Lois, Kirsch, Sandner, Plichta, & Wessa, 2018;
Nord, Gray, Charpentier, Robinson, & Roiser, 2017; Plichta
et al., 2012; Sauder, Hajcak, Angstadt, & Phan, 2013), and many
prior published associations between TRA and genetic markers
have failed to replicate (Avinun, Nevo, Knodt, Elliott, & Hariri,
2017). These findings highlight a critical challenge for individ-
ual-differences neuroimaging research: the difficulty of predicting
trait-like differences in psychopathology from neural responses
that show limited reliability over time and are susceptible to state
influences (Dubois & Adolphs, 2016; Sauder et al., 2013). Indeed,
our observation that SRA significantly predicted a range of
self-report measures of emotional distress but actual TRA did
not, even in themuch larger full study sample, adds further support
to the notion that single-timepoint, task-elicited activation values
from ROIs may not be optimal predictors of trait-like individual
differences.

Additional limitations of this exploratory research are worth not-
ing. The sample size for the amygdala self-rating was small, and rat-
ings were made via a single item. Firm conclusions about the utility
of self-rated auto-biological measurements as indices of emotional
distress or other aspects of personality will depend on further testing
with larger samples and an expanded set of items. While the video
narration was intended to be emotionally neutral (see Appendix A),
it is possible that the video itself created a negativemood state, which
could have impacted participants’ ratings. The finding that some of
the self-report measures showed a linear and others a quadratic rela-
tionship with SRA was unexpected; extrapolating beyond the
observed patterns to conclude a difference between the constructs
based on the linear vs. quadratic relationship would be speculative
at this point. Finally, our auto-biological rating contained an
embedded social comparison, as participants were asked to rate
themselves in reference to DNS peers. For our participants—
undergraduates in a competitive academic environment—such
comparison may have been particularly salient (Allan & Gilbert,
1995). Future iterations should attempt to disentangle beliefs about
auto-biology from comparison to peers.

4. Conclusion

How individuals think about their own biology is an important yet
understudied topic, particularly when considered in relation to
mental health. The results from this study suggest that, in a sample
of university students, perceiving oneself as biologically different
from peers is associated with negative affectivity and emotional
distress. The specificity of these findings to auto-biological ratings
(vs. social comparison in general) remains to be determined.
However, these preliminary findings contribute to the growing evi-
dence that reductive biological explanations for mental disorders
can be harmful, increasing stigma and prognostic pessimism in
patients, clinicians, and the general public alike (Haslam &
Kvaale, 2015; Lebowitz, 2014; Lebowitz & Ahn, 2014). Auto-
biological beliefs are poised to gain increasing relevance as mental
health research and treatment become more biologically informed
(MacDuffie & Strauman, 2017). Understanding an individual’s
beliefs about his or her own biological vulnerabilities is an impor-
tant first step towards correcting maladaptive beliefs that could
hinder treatment seeking and recovery.
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Appendix A.: Narration of video describing TRA and
introducing the amygdala self-rating

Hello! Welcome to our experiment on face processing and emo-
tion. Thank you for participating. You have been asked to partici-
pate in this experiment because you are enrolled in the Duke
Neurogenetics Study, or DNS for short. As part of the DNS study,
you completed a task in the MRI scanner in which you had to
match pictures of faces, some of which were expressing negative
emotions such as anger and fear. While you were completing that
task, we were collecting data from an area of your brain called the
amygdala.

The amygdala is a small, almond-shaped structure near the
center of your brain that is responsible for processing emotions,
particularly those associated with threat (such as anger or fear).
We collected information on how your amygdala responded to
facial expressions depicting anger and fear, and then we combined
that information with a number of other genetic, personality, and
cognitive measures that we collected.

The reason that we are interested in how your amygdala
responds to angry and fearful faces is because studies from our
lab and others have shown that amygdala reactivity is a marker
of vulnerability for emotional disorders such as depression and
anxiety. Furthermore, we know that people with a particular
genetic profile have higher amygdala reactivity.

This graph [Figure 2] shows amygdala reactivity to fearful and
angry faces in the sample of more than 1000 undergraduates who
have participated in the DNS study thus far. The higher the bar, the
more participants are represented. You can see that this graph is in
the shape of a bell curve, with most students falling in the average
range and a few with very low or very high amygdala reactivity.
Judging from your own sense of yourself, your moods, and your
responsiveness to emotions, where do you think you fall on this
graph?We’ll pause briefly now so you can advance to the next page.
There you can mark clearly, using the slider, where you think your
own amygdala reactivity falls on this distribution from very low to
very high.
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