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GENERALIZED COUPON COLLECTION:
THE SUPERLINEAR CASE

R. T. SMYTHE,∗ Oregon State University

Abstract

We consider a generalized form of the coupon collection problem in which a random
number, S, of balls is drawn at each stage from an urn initially containing n white balls
(coupons). Each white ball drawn is colored red and returned to the urn; red balls drawn
are simply returned to the urn. The question considered is then: how many white balls
(uncollected coupons) remain in the urn after the kn draws? Our analysis is asymptotic
as n → ∞. We concentrate on the case when kn draws are made, where kn/n → ∞ (the
superlinear case), although we sketch known results for other ranges of kn. A Gaussian
limit is obtained via a martingale representation for the lower superlinear range, and
a Poisson limit is derived for the upper boundary of this range via the Chen–Stein
approximation.
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1. Introduction to the coupon collection problem

In its simplest form, the coupon collection problem has a long history, beginning at least
with De Moivre and Laplace. Consider the problem of placing kn balls in n cells, independently
and at random. Two of the basic questions are then: what is the distribution of the number of
empty cells and how large must kn be (on average) in order that there be no empty cells? Stadje
(1990) provided references to the early history of the problem, and the book by Kolchin et al.
(1978) gives details of much of the prior work in the field.

The connection with collecting coupons is perhaps better seen if we model this problem as
an urn, initially containing n white balls (thought of as coupons). A single ball is picked at
random from the urn; it is colored red and replaced in the urn. Then another ball is drawn;
if it is white, it is painted red and returned to the urn; otherwise, the red ball drawn is simply
returned to the urn. A third ball is drawn, and so forth. After kn draws, the number of white
balls remaining in the urn (uncollected coupons) corresponds to the number of empty cells in
the occupancy problem described above.

The basic problem has been generalized in a myriad of ways, resulting in an enormous
literature concerned with ‘coupon collection problems’, often described as occupancy problems.
The ‘birthday problem’ and the ‘Dixie cup problem’ (the distribution of the number of draws
required to draw some ball or, respectively, each ball at least j > 1 times) are among the
best-known variants of the problem. In another extension of the problem, s balls are drawn at
a time (for some integer s ≥ 1), the white balls in the sample painted red, and all balls returned
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to the urn. In a well-known paper Pólya (1930) gave a formula for the average waiting time
until all balls are colored red (all coupons collected), but this result is difficult to use for large
values of n.

2. Coupon collection with a random number of draws

This paper is concerned with a further generalization, in which the number of balls drawn
each time is a random variable S, taking values in {1, 2, . . . , n}. The S balls are taken as a
sample without replacement. The consecutive draws of size S are independent and identically
distributed. At each draw, each white ball among the S drawn is painted red, and the entire
sample returned to the urn. The same questions asked above can be asked for this problem; we
consider the case where both n and kn grow without bound, and ask what is the (asymptotic)
distribution of the number of red balls; for the superlinear case, our result appears to be new.

Sellke (1995), Ivchenko (1998), and Adler and Ross (2001) studied the waiting time until
all coupons are collected; the survey of Kobza et al. (2007) is a useful reference for the random
sample size problem. (In this work, we assume that all balls in the urn have the same probability
of being drawn; for the case S ≡ 1, unequal probabilities have been considered in Chistyakov
(1964), Rosén (1969), and Holst (1971), among others.)

We classify the number kn into five cases; in this (although not in our nomenclature) we
follow Kolchin et al. (1978).

Case 1. Lower sublinear range: kn → ∞ and kn = o(
√
n).

Case 2. Upper sublinear range: kn = o(n) and
√
n = o(kn).

Case 3. Linear range: kn ≈ αnn, where αn > 0 is bounded above and below.

Case 4. Lower superlinear range: kn = o(n log(n)).

Case 5. Upper superlinear range: n log(n) = o(kn).

Note that there are two ‘boundary cases’ absent from this classification: kn = �(
√
n) and

kn = �(n log(n)). We will see that both of these correspond to ‘phase changes’in the asymptotic
behavior of the number of red balls (equivalently, the number of uncollected coupons).

In a recent paper, Mahmoud (2010) studied the asymptotic distribution, for random S, of
the number of red balls in cases 1–3; we give a quick summary of results for these cases in
Section 3, and concentrate in Section 4 on the superlinear cases. In Section 5 we deal with the
boundary case in the superlinear range, and Section 6 contains some concluding remarks.

Mahmoud’s approach makes use of a martingale central limit theorem (see Hall and Heyde
(1980)). The present work also makes heavy use of a martingale central limit theorem, although
our martingale is constructed differently from Mahmoud’s and makes calculations relatively
simple.

3. The sublinear and linear cases

3.1. Lower sublinear case

Let Rj and Wj respectively denote the number of red and white balls in the urn after j
samples of (random) size S have been drawn. Since Rj = n − Wj , the mean and variance
of either Rj or Wj follow immediately from those of the other. In the lower sublinear range,
letting S1, S2, . . . , Skn denote the kn independent and identically distributed realizations of
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draws from the urn, Mahmoud (2010) showed that

Rj =
j∑
i=1

Si + oP(1) for 0 ≤ j ≤ kn.

From this, it immediately follows that, if µ and σ 2 respectively denote the mean and variance
of S,

Rkn − µkn√
kn

→ N(0, σ 2) in distribution.

Note that, if S ≡ s, we do not have asymptotic normality of Rkn here, but instead the result that

P(Rkn = skn) → 1 as n → ∞.

At the ‘boundary value’ kn = √
n, when S is deterministic, the limit distribution is Poisson:

if S ≡ s, and if k2
ns/2n → λ, then

skn − Rkn → Poisson(λ) in distribution.

Kolchin et al. (1978) attributed this result to Békéssy (1963) when s = 1; Mikhaı̆lov (1977)
stated the result for general s.

3.2. Upper sublinear case

The asymptotic normality result in this case is slightly more subtle. We will need an exact
result for E(Rkn), and we also record, for later use, var(Rkn).

Lemma 3.1. (Mahmoud (2010).) We have

E(Rkn) = n

(
1 −

(
1 − µ

n

)kn)
,

var(Rkn) = n

[
(n− 1)

(
(n− µ)(n− µ− 1)+ σ 2

n(n− 1)

)kn
+

(
n− µ

n

)kn]
−

(
n− µ

n

)2kn
n2.

When S is genuinely random (σ 2 > 0), the following result, also due to Mahmoud, holds
in the upper sublinear range:

Rkn − n(1 − (1 − µ/n)kn)√
kn

→ N(0, σ 2) in distribution.

This result also holds at the boundary kn = c
√
n, so the limiting behavior at the boundary is

different for random S than in the deterministic case.
When S is not random, a smaller normalizing factor suffices in the denominator for asymp-

totic normality in the upper sublinear range: for fixed sample size s,

Rkn − n(1 − (1 − s/n)kn)

kn/
√
n

→ N

(
0,

1

2
s2

)
in distribution.

For the case s = 1, this result is due to Rényi (1962); for general s, Kolchin et al. (1978, p. 215)
appears to have given the first proof.
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3.3. Linear case

The proof of asymptoptic normality was first given in this case, for S ≡ 1, by Weiss (1958).
For the case of random S, let

vn ≡ ne−2µαn(eµαn + αn(σ
2 − µ)− 1).

Mahmoud (2010) showed that

Rkn − n(1 − e−µαn)√
vn

→ N(0, 1) in distribution.

In the linear region, unlike the upper sublinear region, a nondegenerate normal limit follows
from the above result by setting S ≡ s.

4. The superlinear case

4.1. Preliminaries

We will need a few technical results in preparation for the main theorem.

Lemma 4.1. In the superlinear range,

var(Wkn)

ne−µkn/n → 1 as n → ∞.

Proof. Using the result for var(Wkn) in Lemma 3.1, the ratio of the two quantities can be
expressed as

1 + n

((
1 − µ

n− 1
+ σ 2

n(n− 1)(1 − µ/n)

)kn
−

(
1 − µ

n

)kn)
−O(e−kn/(n−1)),

and the second and third terms go to 0 in the superlinear range. (As a consequence of this
result, in the superlinear range the variance of S does not enter into the asymptotic distribution
of Rkn .)

The next two results apply for kn in all ranges.

Lemma 4.2. (i) There exists a C > 1 such that var(Wkn) ≤ C E(Wkn) for n > N(S).

(ii) If σ 2 < µ, C may be taken to equal 1 in (i).

Proof. See Appendix A.

Lemma 4.3. Let S be random with mean µ. If lim sup kn/n log(n) < 1/µ then, for j ≤ kn,

Wj

n
= e−jµ/n + oL1(e

−jµ/n).

Proof. Fix ε > 0, and take n > N(S), as in Lemma 4.2. Then

P

(∣∣∣∣Wj

n
− E

(
Wj

n

)∣∣∣∣ > εe−jµ/n
)

≤ var(Wj/n)e2jµ/n

ε2 ≤ Ce−jµ/n

n

e2jµ/n

ε2 ≤ C

ε2

ejµ/n

n
,

and the last term converges to 0 under the conditions given. Hence, we have

P

(∣∣∣∣ Wj

nE(Wj/n)
− 1

∣∣∣∣ > ε
e−jµ/n

E(Wj/n)

)
→ 0,
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i.e.

P

(∣∣∣∣ Wj

ne−jµ/n − 1

∣∣∣∣ > ε

)
→ 0.

Hence, E |Wj/n− e−jµ/n|ejµ/n → 0 and E |Wj/n− e−jµ/n| = o(e−jµ/n).

4.2. The basic martingale

We are finally ready to construct the basic martingale. For a given n, let F in denote the
sigma-field generated by the first i draws from the urn that initially contains n white balls. Let
Xin denote the number of white balls drawn in the ith draw, when the number of balls drawn
is random with mean µ and variance σ 2. Let

�Xin = Xin − E(Xin | Fi−1,n).

Conditional on Si = s, and on Fi−1,n, the distribution of Xin is hypergeometric, and we
have

E(Xin | Fi−1,n, Si = s) = s

n
Wi−1, var(Xin | Fi−1,n, Si = s) = s

n− s

n− 1

Ri−1

n

Wi−1

n
.

Noting that Rkn = ∑kn
i=1Xin and that E(Xin | Fi−1,n) is a linear function of the {Xin}, we

can find constants {bin} such that

Rkn − E(Rkn) =
kn∑
i=1

bin�Xin, (4.1)

and the right-hand side will then be a martingale for each value of n. Recalling Lemma 3.1, a
bit of algebra then gives bin = (1 − µ/n)kn−i . We also have

E(�X2
in | Fi−1,n) = var(�Xin | Fi−1,n)

= var(Xin | Fi−1,n)

= E(var(Xin | Fi−1,n; Si))+ var(E(Xin | Fi−1,n; Si))

= E

(
Si
n− Si

n− 1

Wi−1

n

(
1 − Wi−1

n

))
+ σ 2W 2

i−1

n2

=
(

n

n− 1
µ− σ 2 + µ2

n− 1

)
Wi−1

n

(
1 − Wi−1

n

)
+ σ 2W 2

i−1

n2 . (4.2)

The convergence of the martingale in (4.1) (suitably normalized) to a normal limit will be
shown via a martingale central limit theorem in the form presented in Hall and Heyde (1980,
p. 58). Let �Yin = bin�Xin. The sufficient conditions for this theorem are that, for some
positive increasing sequence λn and all ε > 0,

Un :=
kn∑
i=1

E

((
�Yin

λn

)2

1{�|Yin|>ελn}
∣∣∣∣ Fi−1,n

)
→ 0 in probability,

and that a conditional variance condition requiring (in our case) that

Vn :=
kn∑
j=1

E

((
�Yin

λn

)2 ∣∣∣∣ Fi−1,n

)
→ c2 in probability

holds, where c2 is a positive constant.
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4.3. The central limit theorem in the superlinear case

Here is the main result on asymptotic normality in the lower superlinear case.

Theorem 4.1. Let µ denote the mean of S, the random number of draws, and suppose that
kn/n → ∞ and lim sup kn/n log(n) < 1/µ. Then

Rkn − E(Rkn)√
ne−µkn/n

→ N(0, 1) in distribution.

Proof. We take λ2
n = ne−µkn/n. For any i, Wi/n ≤ 1, and, using (4.2),

E(�X2
in | Fi−1,n) ≤ 2µ+ σ 2 +O

(
1

n

)
.

By hypothesis, there exists a δ > 0 such that, for sufficiently large n, kn/n log(n) <
(1 − δ)/µ. This implies that

ne−µkn/n ≥ nδ

for large n; since |bin| ≤ 1, it follows easily that |�Y 2
in| ≤ ε2λ2

n when n is sufficiently large,
and the condition Un → 0 is satisfied.

To examine the quantity Vn, we divide the sum from 1 to kn into two sums: the first goes
from 1 to Mn, where M is an arbitrary positive integer, and the second goes from Mn to kn.
Denote these sums by Vn1 and Vn2, respectively.

First consider Vn1. Here we use the bound of Lemma 4.3, with ρn ≡ n/(n− µ), to write

Vn1 ≤ 2
(1 − µ/n)2kn

λ2
n

Mn∑
j=1

ρ
2j
n (µe−µj/n + σ 2e−2µj/n + oL1(e

−µj/n)).

Note first that
Mn∑
j=1

µ(ρ2
ne−µ/n)j = n(1 + o(1))(e−Mµρ2Mn

n − 1),

so that taking λ2
n = ne−µkn/n means that this contribution to the sum is O(e−µkn/n), which

converges to 0 in the range of kn considered.
For the second sum, observe that

Mn∑
j=1

σ 2(ρ2
ne−2µ/n)j = (n2)(1 + o(1))

σ 2

µ2 (e
−2µMρ2Mn

n − 1) = 2nMσ 2 + o(n),

so the second part of Vn1 is also O(e−µkn/n). Putting the two parts together gives Vn1 → 0.
We turn now to Vn2, the sum from Mn to kn. Using (4.2) and Lemma 4.3, Vn2 is asymptot-

ically equivalent to

(1 − µ/n)2kn

ne−µkn/n
kn∑

j=Mn
µ(ρ2

ne−µ/n)j +
kn∑

j=Mn
(σ 2 − µ)(ρ2

ne−2µ/n)j .
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The first of these two sums is equal to

(1 − µ/n)2kn

ne−µkn/n n(1 + o(1))((ρ2
ne−µ/n)kn − (ρ2

ne−µ/n)Mn)

= e−µkn/n
(

eµkn/n
(

1 +O

(
kn

n2

))
− eµM

(
1 +O

(
1

n

)))
+ o(1),

which converges to 1 as n tends to ∞. The second of these two sums converges to 0. The
contribution to Vn2 from the second sum is asymptotically equal to

(1 − µ/n)2kn

ne−kn/n
n2(1 + o(1))(σ 2 − µ)

µ2 ((ρ2
ne−2µ/n)kn − (ρ2

ne−2µ/n)Mn)

= n2(1 + o(1))(σ 2 − µ)

nµ2e−µkn/n

(
e−2µkn/n − ρ2Mn

n e−2µM
(

1 − µ

n

)2kn)

= n(1 + o(1))(σ 2 − µ)

µ2e−µkn/n e−2µkn/n
(

1 −
(

1 − µ

n

)2kn
ρ2Mn
n e2µ(kn/n−M)

)

= n(1 + o(1))(σ 2 − µ)

µ2 e−µkn/n
(

1 − e2µkn/n
(

1 − µ

n

)2kn(
1 +O

(
1

n

)))

= n(1 + o(1))(σ 2 − µ)

µ2 e−µkn/n
(
O

(
kn

n2

))

= σ 2 − µ

µ2 e−µkn/nO
(
kn

n

)
+ o(1),

and this goes to 0 as n → ∞. Hence,

Vn → 1 in probability,

completing the proof.

For S ≡ 1, the result was established in Zubkov and Mikhaı̆lov (1974); the extension to
S ≡ s is attributed to Kolchin et al. (1978, p. 221).

4.4. Extension to S = S(n)

So far we have assumed that the same random variable S is used to determine the number
of draws for each value of n. Some extensions of our results hold for the case when S has a
possibly different distribution depending on n. Suppose that the draws from the urn of size n are
governed by a random variable S(n) with mean µn and variance σ 2

n . Under some fairly strong
conditions on the growth of µn and σ 2

n , we can state the following corollary to Theorem 4.1.

Corollary 4.1. Suppose that S(n) has mean µn and variance σ 2
n . Assume that

(i) lim supµnkn/n log(n) < 1;

(ii) either {σ 2
n } is bounded, or σ 2

n < µn for n > n0 and σ 2
n = o(eµnkn/n).

Then
Rkn − E(Rkn)√
ne−µnkn/n

→ N(0, 1) in distribution.
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Proof. The proof follows along the same lines as that of Theorem 4.1. We note that
condition (i) implies, since kn/n → ∞, that µn = o(log(n)). The strong condition on the
variances is imposed by our proof of Lemma 4.2, which is key to the basic inequality in
Lemma 4.3.

4.5. The upper superlinear case

To complete the picture for kn superlinear, we state briefly a result in the upper superlinear
range. In the upper superlinear range, as in the lower sublinear range, the limit behavior of Rkn
is degenerate.

Lemma 4.4. Suppose that lim inf kn/n log(n) > 1/µ. Then

Wkn = n− Rkn → 0 in probability.

Proof. We have P(Wkn ≥ 1) ≤ E(Wkn) = n(1 − µ/n)kn and this goes to 0 in the range of
kn specified.

5. The superlinear boundary

If S ≡ s and kn = (n/s) log(n/λ), a special case of the results of Mikhaı̆lov (1977) is that

Wkn = n− Rkn → Poisson(λ) in distribution.

Kolchin et al. (1978, p. 30) attributed this result for the case S ≡ 1 to von Mises (1939). Here
we present, with a simple proof using the Chen–Stein Possion approximation, a corresponding
result due to Ivchenko (1998) for the case of random S. We begin with an easy lemma.

Lemma 5.1. Suppose that µkn/n log(n/λ) → 1 for λ > 0 and that φ(n) is a function of n
that increases without bound. Then, for ε > 0,

P(Wkn > εφ(n)) → 0 in probability.

Proof. We have P(Wkn > εφ(n)) ≤ E(Wkn)/εφ(n). However, under the assumptions,
E(Wkn) = ne−µkn/n ≈ λ and 1/φ(n) → 0.

Theorem 5.1. Suppose that µkn/n log(n/λ) → 1 for λ > 0. Then

Wkn = n− Rkn → Poisson(λ) in distribution.

Proof. We use a Poission approximation theorem, as presented in Arratia et al. (1990). Start
with n white balls in the urn, labeled 1, 2, . . . , n, and let kn draws of a random number, S, of
balls be made from the urn, where n = o(kn). Let Yi := 1, i = 1, 2, . . . , n, if ball i is never
drawn in the kn draws. Then

pi := P(Yi = 1) =
kn∏
j=1

(
1 − Sj

n

)
,

where Sj denotes the number of balls drawn in the j th draw. Then, because the {Yi} are
exchangeable and

∑n
i=1 pi = E(Wkn) = n(1 − µ/n)kn → λ, we must have pi = (1−µ/n)kn .

In the approach of Arratia et al. (1990, p. 405), a ‘neighborhood’ of each point i is specified
and three quantities, b1, b2, and b3, evaluated; the total variation distance between the law of
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Wkn and a Poisson(λ) distribution is then bounded by 2(b1 + b2 + b3). We take the singleton
{i} as the neighborhood of the point i. Using this notation, we have

b1 =
n∑
i=1

p2
i = n

(
1 − µ

n

)2kn
≤ ne−2µkn/n = λ2

n
+ o

(
1

n

)

and

b2 =
n∑
i=1

n∑
j 	=iε{i}

E(1{Yi=1} 1{Yj=1}) = 0.

The exchangeability of the Yi gives b3 = nE(| E(Yi − pi) | Yj , j 	= i|). It remains to
compute E(Yi | Yj , j 	= i). This conditional expectation will depend on {Yj , j 	= i} only
through

∑
j 	=i Yj . If this sum equals m, where m must satisfy m ≤ n− max(S1, . . . , Skn), the

conditional expectation will be
kn∏
i=1

(
1 − Si

n−m

)
.

Hence,

E

(
Yi

∣∣∣∣
∑
j 	=i

Yj = m

)
= e−µkn/(n−m) 1{m≤n−max{Sj }}�(1)

and

E

(
Yi

∣∣∣∣
∑
j 	=i

Yj

)
= exp

[
− µkn

n− ∑
j 	=i Yj

]
P

(
n−

∑
j 	=i

Yj ≥ max{Sj }
)
�(1).

Then, from Lemma 5.1,

E(Yi | Yj , j 	= i)− pi =
(

1 − µ

n

)kn
�p(1)

(exp[−µkn/(n− ∑
j 	=i Yj )]

(1 − µ/n)kn
− 1

)
.

Since (1 − µ/n)kn = (λ/n)(1 + o(1)), to prove that b3 → 0, it suffices to show that

E

∣∣∣∣
exp[−µkn/(n− ∑

j 	=i Yj )]
(1 − µ/n)kn

− 1

∣∣∣∣ → 0. (5.1)

It is easily shown that the fraction inside the expectation in (5.1) is bounded in n. We have
Rkn ≤ n− ∑

j 	=i Yj ≤ n, so to finish the proof that b3 → 0, we invoke Lemma 5.1 to show
that eµkn/Rkn /e−µkn/n → 1 in probability.

We now have b1 → 0, b2 = 0, and b3 → 0 as n → ∞, so convergence in distribution to
Poisson(λ) is established.

6. Concluding remarks

At the risk of belaboring the obvious, we comment on two points regarding our problem. One
concerns the symmetry between the sublinear and superlinear cases when S is deterministic,
with degenerate limits in the extreme regions, Poisson limits at the two boundary cases, and
Gaussian limiting distributions in the upper sublinear and lower superlinear ranges. This
symmetry does not persist in the case of random S, where a Gaussian limit holds in the entire
sublinear range. The second (related) point is the role of the variance σ 2 of S, the random
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number of draws. In the sublinear range, the influence of σ 2 is considerable; for the upper
sublinear range, the sequence of normalizing constants that give a limit distribution in the case
of deterministic s is of a smaller order of magnitude than in the random case. In the linear range,
a nonzero variance serves to ‘tweak’ the normalizing constants, but does not affect their order
of magnitude; in the superlinear range, the variance of S does not affect the asymptotic results.
As a result, the discontinuity between the lower and upper superlinear regimes persists in the
random case, in contrast to the sublinear regime, where the discontinuity disappears when the
variance of S becomes positive.

Finally, we observe that the basic martingale constructed in Section 4 gives rather easily,
using an approach similar to that of Theorem 4.1, the known Gaussian limits for the sublinear
and linear ranges of kn.

Appendix A. Proof of Lemma 4.2

Using Lemma 3.1, let An = (1 − µ/n) and Bn = σ 2/n(n− 1). Then

var(Wkn) ≤ n2{(A2
n + Bn)

kn − A2kn
n + nAknn }.

Fix ε > 0. Then the claim is that

n2{(A2
n + Bn)

kn − A2kn
n } ≤ (C − 1)nAkn if n > N(ε, S). (A.1)

Dividing both sides of (A.1) by nAknn , we obtain

n

{(
An + Bn

An

)kn
− Aknn

}
≤ C − 1

for sufficiently large n. Note that Bn/An = σ 2
S /(n− 1)(n− µS) = O(1/n2).

By the mean value theorem,
(
An + Bn

An

)kn
− Aknn = Bn

An
knψ

kn−1
n

for some ψn satisfying An ≤ ψn ≤ An + Bn/An, so that

ψn ≤ 1 − µ

n
+ σ 2

(n− 1)(n− µ)
.

We have ψnn ≤ C1e−µ for n > N(S), so that

n

{(
An + Bn

An

)kn
− Aknn

}
≤ C2

kn

n
e−µkn/n

for n > N(S). The quantity (kn/n)e−µkn/n is bounded by e−1/µ ≤ e−1, so, for sufficiently
large n,

n

{(
An + Bn

An

)kn
− Aknn

}
≤ C2

kn

n
e−µ(kn/n) < C − 1.

To prove part (ii) of the lemma, it suffices to show that
(
(n− µ)(n− 1 − µ) + σ 2

n(n− 1)

)kn
≤

(
n− µ

n

)2kn
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for large enough n, when σ 2 < µ. This holds if

(n− µ)(n− µ− 1)+ σ 2

n(n− 1)
≤

(
n− µ

n

)2

,

or
n− 1 − µ

n− 1
+ σ 2

(n− 1)(n− µ)
≤ n− µ

n
,

or

(n− 1 − µ)+ σ 2

n− µ
≤ n− 1

n
(n− µ),

which reduces to
σ 2

µ
< 1 − µ

n
,

and this holds if n > N(S).
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