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ASYMPTOTIC PROPERTIES OF THE
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Abstract

For stationary fiber processes, the estimation of the directional distribution is an important
task. We consider a stereological approach, assuming that the intersection points of the
process with a finite number of test hyperplanes can be observed in a bounded window.
The intensity of these intersection processes is proportional to the cosine transform of
the directional distribution. We use the approximate inverse method to invert the cosine
transform and analyze asymptotic properties of the estimator in growing windows for
Poisson line processes. We show almost-sure convergence of the estimator and derive
Berry–Esseen bounds, including formulae for the variance.
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1. Introduction

Many porous materials can be modeled with dilated random fiber processes, i.e. processes
of dilated curves. While, for the estimation of the intensity of such processes, there already
exist some established methods (see, e.g. [13] or [19, Chapter 9]); the estimation of some other
properties is still an open problem. We focus on the so-called directional distribution, i.e. the
distribution of the tangent direction at a typical point of the fibrous media, and analyze some of
the most interesting stochastic properties of the estimator presented in a recent paper by Louis
et al. [10].

Consider a stationary random set of fibers � with intensity λ and directional distribution
density ϕ (with respect to the spherical surface area measure). For the estimation of ϕ, we take
a stereological approach based on counting the intersections of � with test hyperplanes in an
observation window. See [1] for an introduction to stereology.

The essence of the problem can be summarized as follows. For ξ in the unit sphere Sd−1,
denote by g(ξ) the rose of intersections, i.e. the intensity of the process � ∩ ξ⊥. Then the
cosine transform C of the directional distribution ϕ is proportional to g, i.e.

g(ξ) = λCϕ(ξ). (1)
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Here, the cosine transform of ϕ is defined as

Cϕ(ξ) =
∫
Sd−1

|〈ξ, ν〉|ϕ(ν) dν, ξ ∈ Sd−1,

where 〈ξ, ν〉 is the scalar product of ξ and ν, and dν denotes integration with respect to the
surface area measure. For more information about the cosine transform, see [3].

Now, for some unit vectors ξ1, . . . , ξn ∈ Sd−1, we assume that the number of intersections
of � with the test hyperplanes ξ⊥

i , i = 1, . . . n, within the observation window �W = b�(o),
i.e. the closed ball centered at the origin with radius �, are known. This information can be
used to estimate the values of g at ξ1, . . . , ξn. Thus, it remains to invert the cosine transform
based on this discrete information to estimate ϕ.

This problem has already been addressed in, e.g. [7] and [12]. Here, we focus on the method
presented in [10], where it has been shown that the inversion can be done in a numerically stable
way with the method of the approximate inverse, introduced in [9]; see also [15]. The idea is
to calculate a ‘smoothed version’ of ϕ, denoted by ϕγ for some γ > 0, which is defined as

ϕγ (η) =
∫
Sd−1

ϕ(ξ)eγ (η, ξ) dξ, η ∈ Sd−1,

where we assume that ϕγ → ϕ in some sense as γ tends to 0. For the so-called mollifier
eγ ∈ L2(Sd−1 × Sd−1), it is required that∫

Sd−1
eγ (η, ξ) dξ = 1, η ∈ Sd−1.

For a given mollifier, the reconstruction kernel ψγ is defined as the solution of eγ = Cψγ .
Since the cosine transform C is self-adjoint, this allows us to write the smoothed density as

ϕγ (η) = 〈ϕ, eγ (η, ·)〉L2(Sd−1) = 〈ϕ,Cψγ (η, ·)〉L2(Sd−1) = 〈Cϕ,ψγ (η, ·)〉L2(Sd−1), (2)

where the last term is the inner product of two known functions, namely the given data Cϕ and
the reconstruction kernel. This also has computational advantages as the reconstruction kernel
can be calculated in advance (independent of the given data Cϕ), and, thus, the approximate
inversion for one density requires only the calculation of an inner product. For d = 2 and
d = 3, explicit formulae of reconstruction kernels for some interesting mollifiers have been
derived in [10]. See Corollary 3 inAppendix B for reconstruction kernels of Gaussian mollifiers
in arbitrary dimensions d ≥ 3.

In this paper we make the additional assumption on the mollifier eγ (η, ξ) (and, thus, also
on the reconstruction kernel ψγ (η, ξ)) that it depends only on the geodesic distance between ξ
and η.

Although this method can be used for arbitrary stationary fiber processes, in this paper we
restrict to Poisson line processes (cf. [14, Chapter 4.4]). Our considerations also hold for
Poisson cylinder processes, see [17] or [20], if the number of cylinders hitting a test set can be
observed. One should remark that similar results can be obtained for other stationary Poisson
processes, e.g. processes of line segments.

Throughout this paper, we use the following notation for the intersection counts. We
assume that the number of intersections of � with hyperplanes orthogonal to the unit vectors
ξ1n, . . . , ξnn ∈ Sd−1 in a window �W = b�(o) can be observed. These intersection counts
are denoted by Y1n, . . . , Ynn, i.e. Yin = #{� ∩ ξ⊥

in ∩ �W }. To simplify the notation, we will
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write ξi instead of ξin when the value of n is clear, and analogously Yi for Yin. Since � is
a stationary Poisson line process, the process � ∩ ξ⊥

in is also stationary. It has the intensity
λCϕ(ξin) (see [14, Theorem 4.4.6]), and, thus, Yin ∼ Poi(κd−1�

d−1λCϕ(ξin)), where κd−1 is
the volume of the unit ball in R

d−1.
If the intensity λ of the Poisson line process is known, we introduce the notation Ỹ λi =

Yi/κd−1�
d−1λ, which leads to E Ỹ λi = Cϕ(ξi) and var Ỹ λi = Cϕ(ξi)/κd−1�

d−1λ for all �, n,
and i.

Now, we can introduce the estimator

ϕ̂λγ (η) :=
n∑
i=1

Ỹ λi ψγ (η, ξi)�i (3)

for the density ϕ at the point η ∈ Sd−1, which can be seen as a discretized version of (2). Here,
the weight �i is defined as follows. Introduce the spherical Voronoi cell at ξi as

c(ξi) = {ν ∈ Sd−1 : d(ν, ξi) ≤ min{d(ν, ξj ), d(ν,−ξj )} for all j �= i},
where d(·, ·) denotes the geodesic distance, i.e. the length of the shortest path in Sd−1 between
two unit vectors. Then we set the weight �i of the estimator (3) to be two times the area of
the Voronoi cell c(ξi) at ξi, which leads to

∑n
i=1�i = ωd−1, where ωd−1 is the surface area

of Sd−1.
If λ is unknown, we use the following estimator for the intensity:

λ̂ := 1

2κd−1

n∑
i=1

Yi

κd−1�d−1�i.

Furthermore, we introduce the notation Ỹi = Yi/κd−1�
d−1λ̂ analogously to the case of known

intensity, where we use the convention 0/0 = 0 in the case λ̂ = 0, i.e. Yi = 0 for i = 1, . . . , n.
Here, we use the estimator

ϕ̂γ (η) :=
n∑
i=1

Ỹiψγ (η, ξi)�i = λ

λ̂
ϕ̂λγ (η). (4)

Remark 1. The formulae for the estimators in (3) and (4) have a form similar to kernel density
estimators (KDEs). However, here, one has to solve an inverse problem instead of observing
the searched-for random variable directly (or with some additional noise). As a result, the
reconstruction kernel ψγ has a different form to the usual KDE kernels (see Figure 1) and the
estimators cannot be regarded as standard KDEs.

Note that the supremum of the absolute value of the reconstruction kernel ψγ tends to ∞
for γ → 0. Therefore, ϕ̂λγ (and ϕ̂γ ) does not converge to ϕ pointwise or in the L2(Sd−1)-sense.
To overcome this, we fix γ > 0 and analyze the properties of the estimator ϕ̂λγ , especially the
convergence to the mollified density ϕγ as �, n → ∞. For suitable mollifiers (cf. [10]), ϕγ
approximates ϕ as γ → 0.

This paper is organized as follows. In the next section, strong convergence of the estimators
ϕ̂λγ and ϕ̂γ to the mollified density ϕγ is analyzed. We show that the supremum of the difference
between the two functions converges almost surely to 0 under mild assumptions on the directions
of the test hyperplanes and the growth rate of the observation window radius. In Section 3,
Berry–Esseen bounds for the estimator ϕ̂λγ are derived, and a central limit theorem is used
to construct asymptotic tests on the directional distribution. In Section 4, the large deviation
behavior of ϕ̂λγ is studied and in the final section, some results of simulation studies are presented.
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Figure 1: The Gaussian reconstruction kernel in three dimensions as a function of the polar angle and its
graph on the sphere (with the north pole the reconstruction point).

2. Almost-sure convergence

We derive sufficient conditions for almost-sure convergence of the estimator ϕ̂λγ in the
supremum norm, i.e.

sup
η∈Sd−1

|ϕ̂λγ (η)− ϕγ (η)| → 0 as n → ∞.

For this, some results on the convergence speed of the estimator are derived (in Lemma 3
below), which are of interest in their own right. Yet, we focus on the almost-sure convergence,
so no attempt has been made to achieve optimality in the convergence rates.

In this section, a frequent prerequisite is that the reconstruction kernel is Lipschitz
continuous. By this, we mean that it is Lipschitz continuous in both components, i.e. for
η, ξ1, ξ2 ∈ Sd−1, we have

|ψγ (η, ξ1)− ψγ (η, ξ2)| ≤ Lψγ d(ξ1, ξ2)

for some Lψγ < ∞, and the same holds for the first component if we fix the second. Since
Sd−1 is compact, this also means that ψγ is bounded.

Similarly to [4], we define the symmetrized mesh norm of a set of points {ξ1, . . . , ξn} as the
mesh norm of the set {ξ1, . . . , ξn,−ξ1, . . . ,−ξn}, i.e.

h∗(ξ1, . . . , ξn) = h(ξ1, . . . , ξn,−ξ1, . . . ,−ξn) = max
ν∈Sd−1

min
1≤i≤n{d(ν, ξi), d(ν,−ξi)}.

Note that the weights �i, i= 1, . . . , n, of the estimator (3) are thus bounded by 2κd−1h
∗(ξ1,

. . . , ξn)
d−1, as the maximal geodesic radius of one cell is h∗(ξ1, . . . , ξn). Throughout this

section, we use the following auxiliary result on the cosine transform.

Lemma 1. For arbitrary densities ϕ on Sd−1, the cosine transform Cϕ is Lipschitz continuous
with respect to the geodesic distance. The Lipschitz constant is at most 1. Furthermore, Cϕ is
bounded by 1.
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Proof. For ζ, η ∈ Sd−1, we have

|Cϕ(ζ )− Cϕ(η)| =
∣∣∣∣ ∫
Sd−1

(|〈ζ, ν〉| − |〈η, ν〉|)ϕ(ν) dν

∣∣∣∣
≤ sup
ν∈Sd−1

||〈ζ, ν〉| − |〈η, ν〉||

≤ d(ζ, η).

The inequality Cϕ(ζ ) = ∫
Sd−1 |〈ζ, ν〉|ϕ(ν) dν ≤ 1 completes the proof.

2.1. Deterministic measurement directions

At first we assume that the series of measurement directions is deterministic. See, e.g. [5]
or [16] for an approach to choose a suitable point configuration.

Let us begin with the analysis of the bias of the estimator (3). Note that E Ỹ λin = Cϕ(ξin)

does not depend on the observation window radius �.

Theorem 1. Let the reconstruction kernel ψγ be Lipschitz continuous, and denote by LCϕ and
Lψγ the Lipschitz constants of Cϕ and ψγ , respectively. Then

sup
η∈Sd−1

|Eϕ̂λγ (η)− ϕγ (η)| ≤ ωd−1(LCϕψ̄γ + Lψγ )h
∗(ξ1, . . . , ξn)

uniformly for all � > 0, where ψ̄γ denotes the supremum of |ψγ |.
Proof. Let η ∈ Sd−1 be an arbitrary unit vector. Then, for ν ∈ c(ξi), i = 1, . . . , n,

|Cϕ(ξi)ψγ (η, ξi)− Cϕ(ν)ψγ (η, ν)|
≤ |Cϕ(ξi)ψγ (η, ξi)− Cϕ(ξi)ψγ (η, ν)| + |Cϕ(ξi)ψγ (η, ν)− Cϕ(ν)ψγ (η, ν)|
= |Cϕ(ξi)||ψγ (η, ξi)− ψγ (η, ν)| + |ψγ (η, ν)||Cϕ(ξi)− Cϕ(ν)|
≤ Lψγ h

∗(ξ1, . . . , ξn)+ ψ̄γ LCϕh
∗(ξ1, . . . , ξn),

since Cϕ is bounded by 1 (see Lemma 1). Because Cϕ and ψγ are symmetric functions, we
finally obtain

|Eϕ̂λγ (η)− ϕγ (η)| =
∣∣∣∣ n∑
i=1

Cϕ(ξi)ψγ (η, ξi)�i −
∫
Sd−1

Cϕ(ν)ψγ (η, ν) dν

∣∣∣∣
≤ 2

n∑
i=1

∫
c(ξi )

|Cϕ(ξi)ψγ (η, ξi)− Cϕ(ν)ψγ (η, ν)| dν

≤ ωd−1(LCϕψ̄γ + Lψγ )h
∗(ξ1, . . . , ξn).

To analyze the weak convergence of ϕ̂λγ , we need the following lemma.

Lemma 2. If |ψγ | is bounded by ψ̄γ < ∞ then, for ε > 0,

P

(
sup

η∈Sd−1

n∑
i=1

|(Ỹ λi − Cϕ(ξi))ψγ (η, ξi)|�i > ε

)
≤ ω2

d−1ψ̄
2
γ

κd−1�d−1λε2

uniformly for all n ∈ N.
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Proof. Using the notation Y (ξ) = #{� ∩ ξ⊥ ∩ �W } and Ỹ λ(ξ) = Y (ξ)/κd−1�
d−1λ, we

obtain

Y (ξ) ∼ Poi(κd−1�
d−1λCϕ(ξ)) and var Ỹ λ(ξ) = Cϕ(ξ)

κd−1�d−1λ
.

Lemma 1 and Chebyshev’s inequality lead to

P

(
sup

η∈Sd−1

n∑
i=1

|(Ỹ λi − Cϕ(ξi))ψγ (η, ξi)|�i > ε

)
≤ P

( n∑
i=1

|Ỹ λi − Cϕ(ξi)|�i > ε

ψ̄γ

)

≤ ψ̄2
γ

ε2 var

( n∑
i=1

|Ỹ λi − Cϕ(ξi)|�i
)

≤ ω2
d−1ψ̄

2
γ

ε2 sup
ν∈Sd−1

var(|Ỹ λ(ν)− Cϕ(ν)|)

≤ ω2
d−1ψ̄

2
γ

ε2 sup
ν∈Sd−1

Cϕ(ν)

κd−1�d−1λ

≤ ω2
d−1ψ̄

2
γ

κd−1�d−1λε2 .

Lemma 3. Let ψγ be Lipschitz continuous. If h∗(ξ1, . . . , ξn) < c−1
h ε,

P
(

sup
η∈Sd−1

|ϕ̂λγ (η)− ϕγ (η)| > ε
)

≤ ω2
d−1ψ̄

2
γ

κd−1�d−1λ(ε − chh∗(ξ1, . . . , ξn))2
,

where the constant ch = ωd−1(LCϕψ̄γ + Lψγ ) does not depend on ξ1, . . . , ξn.

Proof. The main idea of the proof is to split our estimator into two parts:

ϕ̂λγ (η) =
n∑
i=1

(Ỹ λi − Cϕ(ξi))ψγ (η, ξi)�i +
n∑
i=1

Cϕ(ξi)ψγ (η, ξi)�i.

For the specified h∗, Lemma 2 and the proof of Theorem 1 lead to

P
(

sup
η∈Sd−1

|ϕ̂λγ (η)− ϕγ (η)| > ε
)

≤ P

(
sup

η∈Sd−1

( n∑
i=1

|(Ỹ λi − Cϕ(ξi))ψγ (η, ξi)|�i

+
∣∣∣∣ n∑
i=1

Cϕ(ξi)ψγ (η, ξi)�i − ϕγ (η)

∣∣∣∣) > ε

)

≤ P

(
sup

η∈Sd−1

n∑
i=1

|(Ỹ λi − Cϕ(ξi))ψγ (η, ξi)|�i > ε

− ωd−1(LCϕψ̄γ + Lψγ )h
∗(ξ1, . . . , ξn)

)
≤ ω2

d−1ψ̄
2
γ

κd−1�d−1λ(ε − chh∗(ξ1, . . . , ξn))2
.
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This immediately leads to the following result.

Theorem 2. Suppose thatψγ is Lipschitz continuous, the symmetrized mesh norm h∗(ξ1n, . . . ,

ξnn) tends to 0, and � = �(n) ≥ c1n
(1+c2)/(d−1) for some constants c1, c2 > 0. Then, almost

surely,

sup
η∈Sd−1

|ϕ̂λγ (η)− ϕγ (η)| → 0 as n → ∞.

Proof. The result follows from the Borel–Cantelli lemma. Since h∗(ξ1n, . . . , ξnn) tends to 0,
there exists an integer N such that h∗(ξ1n, . . . , ξnn) ≤ 1

2c
−1
h ε for n ≥ N . Thus, with Lemma 3

we obtain, for arbitrary ε > 0,

∞∑
n=1

P
(

sup
η∈Sd−1

|ϕ̂λγ (η)− ϕγ (η)| > ε
)

≤ N +
∞∑

n=N+1

4ω2
d−1ψ̄

2
γ

κd−1(c1n(1+c2)/(d−1))d−1λε2
< ∞.

2.2. Random measurement directions

In this section, instead of deterministic measurement directions, we consider the following
setting which should be a suitable model for applications in which the measurement directions
cannot be chosen but are given in a random way. We consider as measurement directions
the series of independent and identically distributed (i.i.d.) unit vectors ξ1, ξ2, . . . , which are
assumed to be independent of �. For the estimator (3), we use the same weights as in the
deterministic setting. See also Remark 2 below for a note on other point configurations.

Lemma 4. Let ξ1, ξ2, . . . be a sequence of i.i.d. random unit vectors with positive density with
respect to the spherical surface measure. Then h∗ → 0 almost surely.

Proof. To simplify the notation, we show the stronger claim that the nonsymmetrized mesh
norm h(ξ1, . . . , ξn) tends to 0 almost surely. Let ε > 0. Obviously, there exists some integer
m(ε) < ∞ and a sequence of unit vectors ν1, . . . , νm ∈ Sd−1 withh(ν1, . . . , νm) < ε/2. As the
density of ξ1 is positive, for every cell c(νi) of the tessellation induced by ν1, . . . , νm, it holds
that P(ξ1 ∈ c(νi)) > 0. Thus, there is a constant p with 0 < p ≤ P(ξ1 ∈ c(νi)), i = 1, . . . , m.
With this, the probability that there is a cell which contains none of the vectors ξ1, . . . , ξn can
be estimated from above by

P(there exists i : {ξ1, . . . , ξn} ∩ c(νi) = ∅) ≤
m∑
i=1

P({ξ1, . . . , ξn} ∩ c(νi) = ∅) ≤ m(1 − p)n.

Since
∑∞
n=1m(1 − p)n < ∞, it follows from the Borel–Cantelli lemma that every cell contains

at least one point almost surely as n tends to ∞. Thus, the mesh norm of the sequence ξ1, . . . , ξn
can at most be ε.

Theorem 3. Let ξ1, ξ2, . . . be a sequence of i.i.d. random unit vectors with nonnegative density
with respect to the spherical surface measure. Then

sup
η∈Sd−1

|Eϕ̂λγ (η)− ϕγ (η)| → 0 as n → ∞.

If ψγ is Lipschitz continuous and the radii fulfill �(n) ≥ c1n
(1+c2)/(d−1) for some c1, c2 > 0,

sup
η∈Sd−1

|ϕ̂λγ (η)− ϕγ (η)| → 0 as n → ∞

holds almost surely.
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Proof. This is a direct consequence of Lemma 4 in combination with Theorem 1 and
Theorem 2, respectively.

Remark 2. The same holds for any other sequence of random points whose symmetrized mesh
norm tends to 0, e.g. in the case of systematic sampling.

2.3. Unknown intensity

In this section we analyze the estimator ϕ̂γ , defined in (4), which can be used if λ is unknown.
We begin with the following auxiliary result.

Lemma 5. Let�be a stationary Poisson line process with directional distribution densityϕ and
intensity λ > 0. If the symmetrized mesh norm h∗(ξ1n, . . . , ξnn) of the measurement directions
tends to 0, and �(n) ≥ c1n

(1+c2)/(d−1) for some constants c1, c2 > 0, then the estimator λ̂ for
the intensity of � is strongly consistent for n → ∞.

Proof. For ε > 0, we have

P(|λ̂− λ| > ε) = P

(∣∣∣∣ 1

2κd−1

n∑
i=1

Yi

κd−1�d−1�i − λ

∣∣∣∣ > ε

)

≤ P

(∣∣∣∣ 1

2κd−1

n∑
i=1

Yi − E Yi
κd−1�d−1�i

∣∣∣∣ > ε

2

)

+ P

(∣∣∣∣ 1

2κd−1

n∑
i=1

E Yi
κd−1�d−1�i − λ

∣∣∣∣ > ε

2

)
. (5)

For the first probability in (5), repeating the steps in the proof of Lemma 2 leads to

P

(∣∣∣∣ 1

2κd−1

n∑
i=1

Yi − E Yi
κd−1�d−1�i

∣∣∣∣ > ε

2

)
≤ ω2

d−1λ

κ3
d−1�

d−1ε2
.

For the second summand in (5), it follows from [3, p. 428] that∫
Sd−1

Cϕ(ξ) dξ =
∫
Sd−1

∫
Sd−1

|〈ξ, ν〉|ϕ(ν) dν dξ =
∫
Sd−1

∫
Sd−1

|〈ξ, ν〉| dξϕ(ν) dν = 2κd−1.

The Lipschitz continuity of Cϕ leads to∣∣∣∣ n∑
i=1

Cϕ(ξi)�i −
∫
Sd−1

Cϕ(ξ) dξ

∣∣∣∣ ≤ 2
n∑
i=1

∫
c(ξi )

|Cϕ(ξi)− Cϕ(ξ)| dξ

≤ ωd−1h
∗(ξ1n, . . . , ξnn)

→ 0 as n → ∞,

since h∗(ξ1n, . . . , ξnn) tends to 0 as n tends to ∞. Thus, the second term in (5) is 0 for large
enough n.

Combined, this means that the sum
∑∞
n=1 P(|λ̂(n)− λ| > ε) is finite if

∑∞
n=1 1/�d−1 is.

This is clearly the case under the condition on �(n) above. The claim follows from the Borel–
Cantelli lemma.

Now, we are in a position to formulate the main result for this section.
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Theorem 4. In the case of deterministic measurement directions, under the assumptions of
Theorem 2, almost surely,

sup
η∈Sd−1

|ϕ̂γ (η)− ϕγ (η)| → 0 as n → ∞.

Furthermore, in the case of random measurement directions, if the conditions of the second
claim in Theorem 3 hold, almost surely,

sup
η∈Sd−1

|ϕ̂γ (η)− ϕγ (η)| → 0 as n → ∞.

Proof. This is an immediate consequence of the respective theorems, Lemma 5, and the fact
that ϕ̂γ (η) = (λ/λ̂)ϕ̂λγ (η).

Remark 3. Again, Theorem 4 also holds for any other sequence of random points whose
symmetrized mesh norm tends to 0.

3. Berry–Esseen bounds

In this section we show how, for some fixed η ∈ Sd−1, the estimator ϕ̂λγ (η) can be written
as a compound Poisson process and we use some well-known results to derive Berry–Esseen
bounds; see [8]. Since we are interested in the distribution of ϕ̂λγ , we can simplify the notation
in the following way. The line process is stationary, so instead of increasing the radius of the
observation window, we can also increase the intensity, which will have the same effect on the
estimator. Thus, it suffices to let λ tend to ∞ and restrict to � = 1, i.e. �W = W . We begin
with some notation. Denote by N the number of observed lines, i.e. lines which hit W . Then
N ∼ Poi(κd−1λ). Introducing the symbol Q for the distribution of a typical line of � hitting
W , we find that � is distributed as the set of the i.i.d. lines L1, . . . , LN with distribution Q,
which are independent of N .

The definition of the estimator

ϕ̂λγ (η) =
n∑
i=1

Ỹ λi ψγ (η, ξi)�i

can be rewritten as follows. For a line l, let ϕ̂λγ (l, η) be the estimator for the process when
� = {l}. Analogously, define

Ỹ λi (l) = 1

κd−1λ
1{l ∩ ξi ∩W �= ∅}.

This leads to

ϕ̂λγ (η) =
∑
l∈�

ϕ̂λγ (l, η) =
∑
l∈�

n∑
i=1

Ỹ λi (l)ψγ (η, ξi)�i
d=

N∑
j=1

n∑
i=1

Ỹ λi (Lj )ψγ (η, ξi)�i.

As the terms
∑n
i=1 Ỹ

λ
i (Lj )ψγ (η, ξi)�i, j = 1, 2, . . . , are i.i.d. random variables, this means

that ϕ̂λγ (η) has a compound Poisson distribution with size N and summands
∑n
i=1 Ỹ

λ
i (L0)×

ψγ (η, ξi)�i , where L0 ∼ Q is a typical line of� hittingW . Thus, we can apply the following
well-known result, where we use the constant for the upper bound from [8].
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Lemma 6. Let SN = X1 + · · · +XN be a compound Poisson process, where X1, X2, . . . are
uniformly distributed with E |X1|3 < ∞, N ∼ Poi(µ), and N,X1, X2, . . . are independent.
Then

sup
x

∣∣∣∣P(
SN − µEX1√
µE |X1|2

≤ x

)
−�(x)

∣∣∣∣ ≤ 0.3041
E |X1|3

(E |X1|2)3/2√µ
.

Together with the considerations above, this can be used to arrive at the main result of this
section.

Theorem 5. Let η ∈ Sd−1, let L0 be a typical line of � hitting W , and let ϕ̂λγ (L0, η) be as
above. If |ψγ | is bounded then

sup
x

|Fλ(x)−�(x)| ≤ 0.3041
E(κd−1λ|ϕ̂λγ (L0, η)|)3

(E(κd−1λϕ̂λγ (L0, η))2)3/2
√
κd−1λ

, (6)

where

Fλ(x) = P

(
ϕ̂λγ (η)− κd−1λE ϕ̂λγ (L0, η)√

κd−1λE ϕ̂λγ (L0, η)
2

≤ x

)
.

Proof. Since the reconstruction kernel ψγ is bounded, for the third moment, we have
E(κd−1λ|ϕ̂λγ (L0, η)|)3 ≤ ω3

d−1ψ̄
3
γ < ∞; see Theorem 6 below. Thus, Lemma 6 can be applied

with µ = λκd−1.

One should remark that on the right-hand side of (6) we have expanded the fraction by κ3
d−1λ

3

because then the expectation values do not depend on λ (and κd−1). With Theorem 5, it remains
to derive (bounds for) the second and third absolute moments of

∑n
i=1 Ỹ

λ
i (L0)ψγ (η, ξi)�i .

This in particular makes it necessary to determine the mixed moments of Y1, . . . , Yn, i.e. the
probability that the typical line hits a set of test hyperplanes within the observation window.
For notational ease, we assume that these are the firstm of our test hyperplanes, i.e. ξ⊥

1 , . . . , ξ
⊥
m

for m = 1, 2, 3. Yet, to avoid cumbersome formulae, we restrict to m = 1, 2 and use an upper
bound for the third moment. For this calculation, we introduce the notation

H1,...,m = Hξ1,...,ξm = {l ∈ �d : l ∩ ξ⊥
1 ∩W �= ∅, . . . , l ∩ ξ⊥

m ∩W �= ∅},
where�d is the set of all lines in R

d . HereH1,...,m is the set of all lines which hit the hyperplanes
ξ⊥

1 , . . . , ξ
⊥
m within W , which means that

Q(H1,...,m) = P(L0 ∩ ξ⊥
1 ∩W �= ∅, . . . , L0 ∩ ξ⊥

m ∩W �= ∅) = E Y1(L0) · · ·Ym(L0).

Theorem 6. Let the conditions of Theorem 5 hold. If the measurement directions ξ1, . . . , ξn
are deterministic then

E(κd−1λϕ̂
λ
γ (L0, η)) =

n∑
i=1

Cϕ(ξi)ψγ (η, ξi)�i,

E(κd−1λϕ̂
λ
γ (L0, η))

2 =
n∑
i=1

n∑
j=1

ψγ (η, ξi)ψγ (η, ξj )�i�jQ(Hi,j )

do not depend on λ.
For any (possibly random) sequence of measurement directions,

E(κd−1λ|ϕ̂λγ (L0, η)|)3 ≤ ω3
d−1ψ̄

3
γ .
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Proof. Since EN = κd−1λ, we obtain, using Wald’s identity,

E κd−1λϕ̂
λ
γ (L0, η) = E

N∑
j=1

ϕ̂λγ (L0, η) = E ϕ̂λγ (η) =
n∑
i=1

Cϕ(ξi)ψγ (η, ξi)�i,

which yields the first claim. With

E Yi(L0)Yj (L0) = P(L0 ∩ ξ⊥
i ∩W �= ∅ and L0 ∩ ξ⊥

j ∩W �= ∅) = Q(Hi,j ),

we obtain

E(ϕ̂λγ (L0, η))
2 = E

( n∑
i=1

Ỹ λi (L0)ψγ (η, ξi)�i

)2

= 1

κ2
d−1λ

2

n∑
i=1

n∑
j=1

ψγ (η, ξi)ψγ (η, ξj )�i�jQ(Hi,j ).

For the third moment,

E |κd−1λϕ̂
λ
γ (L0, η)|3 = E

∣∣∣∣ n∑
i=1

Yi(L0)ψγ (η, ξi)�i

∣∣∣∣3

≤ ψ̄3
γ

n∑
i=1

n∑
j=1

n∑
k=1

�i�j�k = ω3
d−1ψ̄

3
γ .

Remark. Equation (1) is equivalent toQ(H1) = Cϕ(ξ1), so we can replaceQ(H1) accordingly
in the theorem above.

Corollary 1. Let the conditions of Theorem 5 hold. If the measurement directions ξ1, . . . , ξn
are i.i.d. with common density ζ and independent of �, then

E(κd−1λϕ̂
λ
γ (L0, η)) = 2n

∫
(Sd−1)n

ψγ (η, ν1)|c(ν1|ν1, . . . , νn)|d−1Q(Hν1)

× ζ(ν1) · · · ζ(νn) d(ν1, . . . , νn),

E(κd−1λϕ̂
λ
γ (L0, η))

2 = nE[ψ2
γ (η, ξ1)�

2
1Y1(L0)]

+ n(n− 1)E[ψγ (η, ξ1)ψγ (η, ξ2)�1�2Y1(L0)Y2(L0)],
with

E[ψ2
γ (η, ξ1)�

2
1Y1(L0)] = 4

∫
(Sd−1)n

ψγ (η, ν1)
2|c(ν1|ν1, . . . , νn)|2d−1Q(Hν1)

× ζ(ν1) · · · ζ(νn) d(ν1, . . . , νn),

E[ψγ (η, ξ1)ψγ (η, ξ2)�1�2Y1(L0)Y2(L0)]
= 4

∫
(Sd−1)n

ψγ (η, ν1)ψγ (η, ν2)|c(ν1|ν1, . . . , νn)|d−1|c(ν2|ν1, . . . , νn)|d−1

×Q(Hν1,ν2)ζ(ν1) · · · ζ(νn) d(ν1, . . . , νn).

Here, | · |d−1 denotes the (d − 1)-dimensional Hausdorff measure, and c(ν1|ν1, . . . , νn) is the
Voronoi cell at ν1 induced by the points ν1, . . . , νn,−ν1, . . . ,−νn.

https://doi.org/10.1239/aap/1354716585 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1354716585


Properties of the approximate inverse estimator SGSA • 965

Proof. We calculate

E(κd−1λϕ̂
λ
γ (L0, η)) = κd−1λE

n∑
i=1

Ỹ λi (L0)ψγ (η, ξi)�i

= nE Y1(L0)ψγ (η, ξ1)�1

= n

∫
(Sd−1)n

E[ψγ (η, ξ1)�1Y1(L0) | ξ1 = ν1, . . . , ξn = νn]
× ζ(ν1) · · · ζ(νn) d(ν1, . . . , νn)

= 2n
∫
(Sd−1)n

ψγ (η, ν1)|c(ν1|ν1, . . . , νn)|d−1Q(Hν1)

× ζ(ν1) · · · ζ(νn) d(ν1, . . . , νn),

and, for the second moment,

E(κd−1λϕ̂
λ
γ (L0, η))

2 = n

n∑
j=1

E[ψγ (η, ξ1)ψγ (η, ξj )�1�jY1(L0)Yj (L0)]

= nE[ψ2
γ (η, ξ1)�

2
1Y1(L0)]

+ n(n− 1)E[ψγ (η, ξ1)ψγ (η, ξ2)�1�2Y1(L0)Y2(L0)].
With

E[ψγ (η, ξ1)ψγ (η, ξ2)�1�2Y1(L0)Y2(L0)]
=

∫
(Sd−1)n

E[ψγ (η, ξ1)ψγ (η, ξ2)�1�2Y1(L0)Y2(L0) | ξ1 = ν1, . . . , ξn = νn]
× ζ(ν1) · · · ζ(νn) d(ν1, . . . , νn)

= 4
∫
(Sd−1)n

ψγ (η, ν1)ψγ (η, ν2)|c(ν1|ν1, . . . , νn)|d−1|c(ν2|ν1, . . . , νn)|d−1

×Q(Hν1,ν2)ζ(ν1) · · · ζ(νn) d(ν1, . . . , νn),

the second expression is shown. The calculation for E[ψ2
γ (η, ξ1)�

2
1Y1(L0)] can be done

analogously.

In the next corollary, we consider the following systematic sampling approach. Suppose
that we have a (deterministic) sequence of points ξ̃1, . . . , ξ̃n on the sphere. Furthermore, let
the rotation � be uniformly distributed in the group SOd of orientation-preserving rotations
on R

d and independent of �. Then we consider the measurement points (ξ1, . . . , ξn) =
(�ξ̃1, . . . , �ξ̃n).

Corollary 2. Let the conditions of Theorem 5 hold. Suppose that measurement directions
ξ1, . . . , ξn are chosen by systematic sampling as described above. Then

E(κd−1λϕ̂
λ
γ (L0, η)) = ϕγ (η),

E(κd−1λϕ̂
λ
γ (L0, η))

2 =
n∑
i=1

n∑
j=1

∫
SOd

ψγ (η, θ ξ̃i)ψγ (η, θ ξ̃j )Q(Hθξ̃i ,θ ξ̃j
) dθ�i�j ,

where dθ denotes the Haar probability measure on SOd .
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Proof. With the rotation � introduced above and Theorem 6, we calculate

E(κd−1λϕ̂
λ
γ (L0, η)) =

∫
SOd

E[(κd−1λϕ̂
λ
γ (L0, η)) | � = θ ] dθ

=
∫

SOd

n∑
i=1

Cϕ(θξ̃i)ψγ (η, θ ξ̃i)�i dθ

=
n∑
i=1

∫
SOd

Cϕ(θ ξ̃i)ψγ (η, θ ξ̃i) dθ�i

=
n∑
i=1

1

ωd−1
ϕγ (η)�i

= ϕγ (η),

using (2). Repeating these arguments and using the corresponding formula from Theorem 6
lead to the claim for the second moment.

In the following we derive specific formulae for the term Q(H1,2), which appears in
Theorem 6, for the most interesting dimensions d = 2, 3. It is convenient to define the set
H1,2(ν) = H1,2(−ν) as the subset of H1,2 containing the lines with direction ν ∈ Sd−1. This
can be regarded as a subset of ν⊥, and, thus, we obtain

Q(H1,2) =
∫
Sd−1

P(L0 ∩ ξ1 ∩W �= ∅, L0 ∩ ξ2 ∩W �= ∅ | L0 ∈ �d(ν))ϕ(ν) dν

=
∫
Sd−1

|H1,2(ν)|d−1

κd−1
ϕ(ν) dν, (7)

where �d(ν) is the set of all lines in R
d with direction ν.

3.1. Two-dimensional case

For the two-dimensional case, we introduce some special notation which seems to be more
common. Instead of even functions on the sphere, we consider densities on the interval [0, π ],
where each value corresponds to an angle between a vector and the x-axis. For simplicity, all
functions, in particular the density ϕ, are defined to be π -periodic. For unit vectors, we use the
notation �ν := (cos ν, sin ν)�, where ν ∈ [0, 2π ], and, for the line through �ν (and o), we write ν̄.

Furthermore, in this section, ξij denotes the angle between the x-axis and the test lines instead
of the vectors orthogonal to the test hyperplanes, i.e. instead of counting the intersections of �
and �ν⊥, we define Yin := #(� ∩ ξ̄in ∩W). Thus, the rose of intersections is the sine transform
of ϕ:

g(x) = λSϕ(x) = λ

∫ π

0
| sin(x − t)|ϕ(t) dt.

Because of (7), we need to calculate |H1,2(ν)|1. As can be seen in Figure 2, for one line, the
measure of this set is |H1(ν)|1 = 2 sin |ν − ξ1|. Similarly, if we have two lines ξ̄1 and ξ̄2, we
obtain

|H1,2(ν)|1 = |H1(ν) ∩H2(ν)|1 = 2 sin(min{|ν − ξ1|, |ν − ξ2|}).
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ν

1

1ν−2sin

Figure 2: Example of lines with direction �ν hitting one line ξ̄1.

Assuming that ξ1 ≤ ξ2, this leads to the formula

Q(H1,2) = 1

2

∫ π

0
|H1,2(ν)|1ϕ(ν) dν

=
∫ π

0
sin(min{|ν − ξ1|, |ν − ξ2|})ϕ(ν) dν

=
∫ (ξ2−ξ1)/2

0
sin ν(ϕ(ξ1 + ν)+ ϕ(ξ2 − ν)) dν

+
∫ π/2−(ξ2−ξ1)/2

0
sin ν(ϕ(ξ2 + ν)+ ϕ(ξ1 − ν)) dν.

Example. For uniformly distributed directions (ϕ(x) = 1/π ), the formulae forQ(H1,...,m) can
be simplified to

Q(H1) = Sϕ(ξ1) = 2

π

∫ π/2

0
sin ν dν = 2

π

and

Q(H1,2) = 2

π

(∫ (ξ2−ξ1)/2

0
sin ν dν +

∫ π/2−(ξ2−ξ1)/2

0
sin ν dν

)
= 2

π

[
2 − √

2 cos

(
π

4
− ξ2 − ξ1

2

)]
, (8)

where we used an addition rule for the cosine.

3.2. Three-dimensional case

Here, H1,2(ν) is ξ⊥
1 ∩ b1(o) projected onto ν⊥ intersected with ξ⊥

2 ∩ b1(o) projected onto
ν⊥, i.e.

H1,2(ν) = πν⊥(ξ⊥
1 ∩ b1(o)) ∩ πν⊥(ξ⊥

2 ∩ b1(o)),

where πν⊥ denotes the projection onto the plane ν⊥; see Figure 3 for an example. This means
that H1,2(ν) is the intersection of two ellipses with major axis length 1 and minor axis lengths
|〈ν, ξ1〉| and |〈ν, ξ2〉|, respectively. The angle between the major axes is the same as the angle
between πν⊥ξ1 and πν⊥ξ2 and can be determined easily. For the calculation of the intersection
area, see Appendix A. Then

Q(H1,2) =
∫
S2

|H1,2(ν)|2
π

ϕ(ν) dν. (9)
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x y

z

Figure 3: Sketch of the projection of ξ⊥
1 ∩ b1(o) onto ν⊥. Here we have ν = (0, 0, 1)� and

ξ1 = (0, 1/
√

5, 2/
√

5)�.

3.3. Application: testing the directional distribution

In this section we present some tests of the directional distribution of a Poisson line process
�, i.e. we want to test the hypothesis H0 : ϕ = ϕ0 versus H1 : ϕ �= ϕ0 for some density ϕ0 on
the unit sphere, where the uniform distribution (i.e. isotropy) is of course the most interesting.
We denote by P0 the probability measure under the null hypothesis, and analogously we write
E0, cov0, and Q0.

For simplicity, we restrict to the case when the measurement directions ξ1, . . . , ξn are
deterministic.

As shown in Theorem 5, an asymptotic test on the density in one point η can be constructed
with the asymptotically standard Gaussian distributed random variable

ϕ̂λγ (η)− κd−1λE0 ϕ̂
λ
γ (L0, η)√

κd−1λE0 ϕ̂λγ (L0, η)
2

d−→N(0, 1) as � → ∞. (10)

This test is of course only applicable for large �. One problem of this test is the choice of η. If
several independent realizations of the Poisson line process are available, an asymptotic χ2-test
can be constructed using (10) with a different η for each realization.

If only one realization can be observed, several directions (denoted by η1, . . . , ηm) can be
taken into account with the following approach. The vector of the random variables

Xi := ϕ̂λγ (ηi)− κd−1λE0 ϕ̂
λ
γ (L0, ηi)√

κd−1λE0 ϕ̂λγ (L0, ηi)
2

, i = 1, . . . , m, (11)

has an asymptotic multivariate normal distribution, which can easily be seen with Lemma 6,
since, for any linear combination, a central limit theorem holds. Furthermore, their expectation
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is 0 and the covariance is independent of λ, since

cov0(Xi,Xj ) = cov0(ϕ̂
λ
γ (ηi), ϕ̂

λ
γ (ηj ))

κd−1λ

√
E0 ϕ̂λγ (L0, ηi)

2
√

E0 ϕ̂λγ (L0, ηj )
2

=
∑n
k=1

∑n
l=1 ψγ (ηi, ξk)ψγ (ηj , ξl)�k�lQ0(Hk,l)√

E0(κd−1λϕ̂λγ (L0, ηi))2
√

E0(κd−1λϕ̂λγ (L0, ηj ))2
,

where we have used the fact that

cov(ϕ̂λγ (ηi), ϕ̂
λ
γ (ηj )) = cov

( n∑
k=1

Yk

κd−1λ
ψγ (ηi, ξk)�k,

n∑
l=1

Yl

κd−1λ
ψγ (ηj , ξl)�l

)

= 1

κ2
d−1λ

2

n∑
k=1

n∑
l=1

ψγ (ηi, ξk)ψγ (ηj , ξl)�k�l cov(Yk, Yl)

= 1

κd−1λ

n∑
k=1

n∑
l=1

ψγ (ηi, ξk)ψγ (ηj , ξl)�k�lQ(Hk,l).

Thus, it follows from the Cramér–Wold theorem that the random variable X�K−1
X X is asymp-

totically χ2
m-distributed, where X = (X1, . . . , Xm)

� and KX is the covariance matrix of X
for some λ > 0. The resulting rule for a level α test is to reject the null hypothesis if
X�K−1

X X > χ2
m,1−α .

This is most interesting when the null hypothesis is that the process is isotropic. Then, for
Q(Hk,l), we can use (8) in the two-dimensional case and (9) in the three-dimensional case with
ϕ ≡ 1/4π .

4. Large deviations

Another interesting asymptotic property of the estimator ϕ̂λγ is the large deviation behavior.
The following result is based on Cramér’s theorem; see [2, Theorem I.4].

Theorem 7. Let � = 1. It holds that, for a > E ϕ̂λγ (η),

lim
λ→∞

1

λ
log P(ϕ̂λγ (η) ≥ a) = −I (a),

and, similarly, for a < E ϕ̂λγ (η),

lim
λ→∞

1

λ
log P(ϕ̂λγ (η) ≤ a) = −I (a),

with the rate function
I (z) = sup

t∈R

[zt − κd−1(mϕ̃γ (L0)(t)− 1)]
for

ϕ̃γ (L0) = 1

κd−1

n∑
k=1

Yk(L0)ψγ (η, ξk)�k,

where L0 ∼ Q is a typical line and

mϕ̃γ (L0)(t) =
n∑
j=1

∑
1≤i1<···<ij≤n

exp

{
t

κd−1

j∑
k=1

ψγ (η, ξik )�ik

}
P(Y ∗

i1,...,ij
(L0) = 1). (12)
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Here mX(t) = E etX denotes the moment generating function of a random variable X and

Y ∗
i1,...,ij

(·) =
∏

k∈{i1,...,ij }
Yk(·)

∏
k∈{i1,...,ij }c

(1 − Yk(·))

is defined such that Y ∗
i1,...,ij

(l) = 1 if and only if l ∈ �d hits the test hyperplanes ξi1 , . . . , ξij
(and no others) within W .

Proof. We use the idea with the compound Poisson distribution from Section 3 and addition-
ally note that, for an integer λ and i.i.d. random variables N1, . . . , Nλ with N1 ∼ Poi(κd−1),

we have
∑λ
i=1Ni

d= N , as N ∼ Poi(κd−1λ). Assuming that N1, . . . , Nλ are independent of
the i.i.d. random lines Lij ∼ Q for i, j ≥ 1, we obtain

ϕ̂λγ (η)
d=

λ∑
i=1

Ni∑
j=1

ϕ̂λγ (Lij , η) = 1

λ

λ∑
i=1

Ni∑
j=1

1

κd−1

n∑
k=1

Yk(Lij )ψγ (η, ξk)�k.

Thus, ϕ̂λγ (η) can be written as the average of λ i.i.d. random variables.
To apply Cramér’s theorem, it remains to calculate the moment generating function of∑N1
j=1Xj , where

Xj = 1

κd−1

n∑
k=1

Yk(L1j )ψγ (η, ξk)�k = ϕ̃γ (L1j ),

which can be done with [11, Lemma 3.1]:

m∑N1
j=1 Xj

(t) = mN1 [logmX1(t)]
= exp{κd−1(exp{logmX1(t)} − 1)}
= exp{κd−1(mX1(t)− 1)}.

Thus, we arrive at (12) by calculating

mX1(t) = E etX1

= E exp

{
t

κd−1

n∑
i=1

Yi(L0)ψγ (η, ξi)�i

}

= E
n∑
j=1

∑
1≤i1<···<ij≤n

exp

{
t

κd−1

j∑
k=1

ψγ (η, ξik )�ik

}
1{Y ∗

i1,...,ij
(L0) = 1}

=
n∑
j=1

∑
1≤i1<···<ij≤n

exp

{
t

κd−1

j∑
k=1

ψγ (η, ξik )�ik

}
P(Y ∗

i1,...,ij
(L0) = 1).

Note that some summands in (12) are 0 because it is not possible that one line hits an
arbitrary set of test hyperplanes within the observation window, only sequences of neighboring
hyperplanes can be intersected.

5. Numerical simulation results

For applications, it is important to know how good the normal approximation of the test
statistics in Section 3.3 is at a certain radius and intensity. Here, we analyze simulation data
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Table 1: Rejection rates for level 0.05 Kolmogorov–Smirnoff (KS) and Shapiro–Wilk (SK) tests at
different radii and measurement point sets. The hypothesis of isotropy is being tested for an isotropic

sample. For all reconstructions, γ = 0.2.

49 points 100 points 225 points
Radius

KS test SW test KS test SW test KS test SW test

5 0.19 0.05 0.46 0.15 0.28 0.02
10 0.13 0.1 0.13 0.07 0.11 0.08
15 0.08 0.07 0.09 0.04 0.08 0.05
20 0.07 0.07 0.06 0.08 0.08 0.06

with different observation window radii for the most important case, the uniform distribution
(i.e. isotropy). For this, we have simulated 100 000 independent copies of a stationary isotropic
Poisson line process with intensity 1. For different observation window radii, we have analyzed
the deviation of the distribution of the Xi as defined in (11) from the standard Gaussian
distribution, where the expectation values in the definition have been computed numerically
using Theorem 6 and the results from Section 3.2. To evaluate the results, we have split our
simulation data into 100 groups of size 1000. For each group, we have conducted a level
0.05 Kolmogorov–Smirnoff and Shapiro–Wilk test. In Table 1, the rejection rates are listed
for different radii at the exemplary point (−0.403 82,−0.239 72, 0.882 87)�, which we have
selected from 20 random points because the values seem representative. We consider three of
the point sets in [16] as measurement points. At a radius between 15 and 20, the approximation
seems to be reasonably good with γ = 0.2. For differing values of γ , the convergence gets
slower.

Appendix A. Intersection area of two ellipses

Here we calculate the area of the intersection of two ellipses within the unit disk in R
2 needed

in Sections 3.2 and 3.3. Our results allow the numerical calculation of Q(H1,2). It suffices
to consider centered ellipses with length 1 and arbitrary widths not exceeding 1. We denote
the angle between their major axes by θ . For the first ellipse E1, we assume without loss of
generality that its major axis is the first coordinate axis and it has a width a1 with 0 < a1 ≤ 1,
i.e.

E1 =
{
(x, y)� : x2 + y2

a2
1

≤ 1

}
.

The other ellipse E2 also has length 1 and the width is denoted by a2, assuming again that
0 < a2 ≤ 1. Its major axis has an angle θ with respect to the first coordinate axis. Formally,

E2 =
{
(x, y)� : (x cos θ + y sin θ)2 + (x sin θ − y cos θ)2

a2
2

≤ 1

}
; (13)

see also Figure 4 .
For the calculation of |E1 ∩ E2|2, we consider the ellipses stretched by the factor 1/a1 in

the y-direction. We denote this linear map by Y1/a1 . This operation depicts E1 onto the unit
circle, and E2 onto the ellipse Ẽ2 = Y1/a1E2. Our calculation consists of two parts, namely
the determination of the lengths of the axes of Ẽ2 (Lemma 7 below), and the calculation of the
intersection area of a centered ellipse and the unit disk (Lemma 8 below).
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θ

a2

a1

Figure 4: Draft of the two ellipses under consideration, E1 (dotted ellipse) and E2 (dashed ellipse).

Lemma 7. The square lengths of the axes of the ellipse Ẽ2 = Y1/a1E2, where E2 is defined in
(13), are

λ1,2 = 1

2

[(
1 + a2

2

a2
1

)
cos2 θ +

(
1

a2
1

+ a2
2

)
sin2 θ

]

±
√

1

4

[(
1 + a2

2

a2
1

)
cos2 θ +

(
1

a2
1

+ a2
2

)
sin2 θ

]2

− a2
2

a2
1

.

Proof. The ellipse Ẽ2 can be written as the result of a linear map applied to the unit disk:

Ẽ2 = Y1/a1RθYa2b1(o)

=
(

1 0
0 1/a1

) (
cos θ − sin θ
sin θ cos θ

) (
1 0
0 a2

)
b1(o)

=
⎛⎝ cos θ −a2 sin θ

1

a1
sin θ

a2

a1
cos θ

⎞⎠ b1(o),

where Rθ denotes the rotation about the angle θ . With a singular value decomposition of the
latter matrix we can find the desired lengths of the axes.

A few remarks are in order.

• It can be shown that the constants λ1 and λ2 in Lemma 7 are always positive.

• λ1 = λ2 holds if and only if a1 = a2 = 1 or we have θ = 0 and a1 = a2. In both cases,
the ellipse Ẽ2 is a circle of radius 1, which leads to λ1 = λ2 = 1.

For the main result of this section, we need one more lemma.

Lemma 8. For a centered ellipse E with axis lengths a and b, where 1 ≤ a and 0 < b ≤ 1, it
holds that

|E ∩ b1(o)|2 = 2 arccos

√
a2(1 − b2)

a2 − b2 + 2ab arcsin

√
1 − b2

a2 − b2 .

Proof. The claim follows by calculating the intersection points of the boundary of E and
the unit sphere and respective areas.
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Combining these two lemmas leads to the main result of this section.

Proposition 1. Let E1 and E2 be two centered ellipses with major axis lengths 1 and minor
axis lengths a1 and a2, respectively (0 < a1, a2 ≤ 1), where the angle between the two major
axes is denoted by θ (see Figure 4).

Then, for a1 = a2 = 1 and for a1 = a2 and θ = 0, we have |E1 ∩ E2|2 = a1π . Otherwise,

|E1 ∩ E2|2 = 2a1

(
arccos

√
λ1(1 − λ2)

λ1 − λ2
+ √

λ1λ2 arcsin

√
1 − λ2

λ1 − λ2

)
,

where

λ1,2 = 1

2

[(
1 + a2

2

a2
1

)
cos2 θ +

(
1

a2
1

+ a2
2

)
sin2 θ

]

±
√

1

4

[(
1 + a2

2

a2
1

)
cos2 θ +

(
1

a2
1

+ a2
2

)
sin2 θ

]2

− a2
2

a2
1

.

Appendix B. Reconstruction kernels for the cosine (and spherical Radon) transform in
arbitrary dimensions

In this section we derive reconstruction kernels for the cosine transform in arbitrary dimen-
sions d ≥ 3. For d = 2, 3, closed expressions can be found in [10]. At first, we construct a
reconstruction kernel for the so-called spherical Radon transform, which is defined for even
functions f as

Rf (η) = 1

ωd−2

∫
Sd−1∩η⊥

f (ξ) dξ, η ∈ Sd−1,

and use its relatedness to the cosine transform to arrive at the desired reconstruction kernel.
Basically, we generalize the procedure from [10] to arbitrary dimensions d ≥ 3, concentrating
on the Gaussian mollifier.

We begin with some facts about the spherical Radon transform. It commutes with rotations
(see [3, Lemma C.2.7]), i.e.

R(TAf (η)) = TARf (η), A ∈ SOd ,

with TAf (ξ) := f (A−1ξ). Therefore, it is sufficient to construct a kernel for only one fixed
point ξ0 ∈ Sd−1. We demand that the mollifier depends only on the geodesic distance d(ξ, η)
between ξ, η ∈ Sd−1, and not on ξ and η themselves. Thus, the choice of ξ0 to be ed , the dth
vector of the standard basis of R

d , has the result that eγ (ξ0, η) depends only on the polar angle
of η, denoted by θ . For this, we will use the notation eγ (θ) := eγ (ξ0, η).

For the construction of the reconstruction kernel, we will use the following result.

Theorem 8. (Cf. [3, pp. 432–434].) Let f, g ∈ C1(Sd−1) be rotationally symmetric functions
with Rf = g. Then

f (arccos t) = 1

(d − 3)! t
(

1

t

d

dt

)d−2 ∫ t

0
g(arcsin x)xd−2(t2 − x2)(d−4)/2 dx. (14)
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To calculate the normalizing constant, we recall that we require
∫
Sd−1 eγ (ξ) dξ = 1 for all

γ > 0, which can be rewritten for rotationally symmetric mollifiers eγ (θ) as

2ωd−1

∫ π/2

0
eγ (θ)(sin θ)d−2 dθ = 1. (15)

To calculate the reconstruction kernel for the Gaussian mollifier

eγ (θ) = 1

c(γ )
exp

{
− sin2 θ

γ 2

}
, θ ∈ [0, π/2],

we need the following lemma, which is proved by a straightforward calculation.

Lemma 9. For integer k, nonnegative integer n, and t > 0, it holds that(
1

t

d

dt

)n
tk = ck,nt

k−2n,

where ck,n = ∏n−1
j=0(k − 2j).

Theorem 9. For the Gaussian mollifier in dimensions d ≥ 3, the reconstruction kernel for the
spherical Radon transform is given by

ψRγ (θ) = B((d − 1)/2, (d − 2)/2)

2(d − 3)! c(γ )
∞∑
k=0

(k−1∏
r=0

(d − 1)/2 + r

d − 3/2 + r

)
(−1)kc2d+2k−5,d−2

k! γ 2k (cos θ)2k,

where the ck,n are as in Lemma 9 and B(·, ·) denotes the beta function. The normalizing
constant c(γ ) can be calculated using (15).

Proof. According to (14) we have

ψRγ (arccos t) = 1

(d − 3)! c(γ ) t
(

1

t

d

dt

)d−2 ∫ t

0
e−x2/γ 2

xd−2(t2 − x2)(d−4)/2 dx.

We begin with∫ t

0
e−x2/γ 2

xd−2(t2 − x2)(d−4)/2 dx
x=st= t

∫ 1

0
e−(st)2/γ 2

(st)d−2(t2 − (st)2)(d−4)/2 ds

u=s2= 1

2
t2d−5

∫ 1

0
e−ut2/γ 2

u(d−3)/2(1 − u)(d−4)/2 du,

where the integral is B((d − 1)/2, (d − 2)/2) times the moment generating function of a
Beta((d − 1)/2, (d − 2)/2)-distributed random variable evaluated at −t2/2γ 2. Thus, we
obtain (see [6, p. 218]), for X ∼ Beta((d − 1)/2, (d − 2)/2),

1

2
t2d−5B

(
d − 1

2
,
d − 2

2

)
mX

(−t2
γ 2

)

= 1

2
B

(
d − 1

2
,
d − 2

2

) ∞∑
k=0

(k−1∏
r=0

(d − 1)/2 + r

d − 3/2 + r

)
(−1)kt2d+2k−5

k! γ 2k .
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With Lemma 9, this leads to

ψRγ (arccos t) = B((d − 1)/2, (d − 2)/2)

2(d − 3)! c(γ ) t

∞∑
k=0

(k−1∏
r=0

(d − 1)/2 + r

d − 3/2 + r

)

× (−1)k((1/t) d/dt)d−2t2d+2k−5

k! γ 2k

= B((d − 1)/2, (d − 2)/2)

2(d − 3)! c(γ )
∞∑
k=0

(k−1∏
r=0

(d − 1)/2 + r

d − 3/2 + r

)
(−1)kc2d+2k−5,d−2t

2k

k! γ 2k .

Corollary 3. For the Gaussian mollifier, the reconstruction kernel for the cosine transform is
given by

ψγ (θ) = 1

2ωd−1

(
1

sind−2 θ

∂

∂θ

(
sind−2 θ

∂ψRγ (θ)

∂θ

)
+ (d − 1)ψRγ (θ)

)
,

where ψRγ (θ) is the reconstruction kernel for the Radon transform from Theorem 9.

Proof. For the block operator, defined by

� = �d−1 + d − 1

2ωd−1
,

where �d−1 is the Beltrami–Laplace operator on Sd−1, it holds that C−1 = �R−1 (see [18]).
Since the Beltrami–Laplace operator on the sphere can be written using spherical coordinates,
i.e.

�d−1 = 1

sind−2 θ

∂

∂θ

(
sind−2 θ

∂

∂θ

)
for rotationally symmetric functions, this yields the result.
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