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A novel autonomous positioning approach based on X-ray pulsars is proposed in this
paper. First, the principles of the pulsar–based measurement model and the inter-satellite
range model in the autonomous positioning of satellite constellations are presented.
The observability of the pulsar-based measurement model is then shown. Second, the
autonomous positioning algorithms, including measurement models and orbital dynamics
models, are formulated using an unscented Kalman filter to estimate the position vectors of
satellites. Finally, the feasibility of the proposed measurement scheme compared with an
inter-satellite range scheme is illustrated by numerical simulation. The results show that the
proposed approach can keep the satellite state convergent, and achieve position accuracies of
2 m. The proposed scheme provides a promising approach for autonomous absolute
positioning of constellation systems by using X-ray pulsars.
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1. INTRODUCTION. Traditional methods of orbit determination in the
three Global Navigation Satellite Systems (GNSS) rely extensively on ground-based
operations (Kintner and Ledvina, 2005; Beutler and Moore, 2009). This working
mode not only increases ground stations’ burden and maintenance expenses, but also
lacks long-term autonomous positioning capacity. Thus, autonomous positioning is a
direction for the development of satellite constellations. Autonomous positioning
mode implies that satellites confirm their own positions and maintain their time
reference by using their own measurements without any support from ground stations
for a long period.
To develop autonomous positioning technology for satellite constellations, a

number of methods have been proposed. The inter-satellite range (Ananda et al., 1990;
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Zhao et al., 2011) method, which is used in the Global Positioning System (GPS)
autonomous positioning mode, is a common method for the automatic positioning of
satellite constellations. However given the lack of an absolute reference, this method
can only guarantee the accuracy of the relative position but cannot ensure the
correctness of constellation rotation (Menn and Bernstein, 1994) in the inertial frame.
Inter-satellite range is unobservable for two error types, namely, orbital initial error
and normal forces. Based on inter-satellite range measurement, the constellation’s
orientation measurement (Cai et al., 2006) is considered by using star sensors to
resolve the problem of constellation rotation. However, this method requires star
sensors with a high accuracy, far beyond current hardware capabilities. An anchor
station (Wen and Zhu, 2009) on the Earth is also applied to estimate the position of
satellites. However, a system that obtains support from the Earth cannot truly be
considered an autonomous positioning system.
To achieve high-accuracy autonomous positioning, we propose a novel positioning

method based on X-ray pulsar and inter-satellite range measurements for constella-
tions. Pulsars are rapidly rotating, highly magnetized neutron stars that produce stable
and predictable signatures (Sheikh and Pines, 2006; Bernhardt et al., 2011). Pulsars
can provide an external spatial reference that differs from the inter-satellite range
measurement. Moreover, based on X-ray pulsars, the position estimation accuracy
of relative navigation is higher than estimation accuracy of absolute navigation
(Emadzadeh et al., 2007). Given these special characteristics, X-ray pulsars are
potential candidates for use in autonomous positioning systems. Therefore, we adopt
a relative measurement based on X-ray pulsars to acquire the orientation information
of satellite constellations. This measurement is then combined with inter-satellite
range measurement that ascertains the relative position, to estimate the absolute
position of the satellites in the constellation.
The outline of this paper is as follows: Section 2 presents the autonomous

positioning measurement models as well as their mathematical formulations. Section 3
discusses the total autonomous positioning algorithms; the Unscented Kalman Filter
(UKF) is utilized for its efficient performance in nonlinear estimation. Section 4
outlines the numerical simulations of these algorithms and presents an analysis of
error factor.

2. AUTONOMOUS POSITIONING MEASUREMENT MODELS
2.1. Inter-satellite Range Measurement Model. The inter-satellite range method

cannot resolve the absolute position of constellation satellites. However, this method
can resolve the relative position with high accuracy.
The dual-directional pseudoranges between two inter-visible satellites A and B are

denoted by ρAB and ρBA as:

ρAB(t) = ρAB0 (t) + IAB(t) + c(δtA(t) − δtB(t)) + ε(t) (1)
ρBA(t) = ρAB0 (t) + IBA(t) + c(δtB(t) − δtA(t)) + ε(t) (2)

where:

ρ0
AB(t) refers to the geometric distance between two satellites;
c is the velocity of light;
δtA(t) and δtB(t) denote the clock errors of satellites A and B, respectively;
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IAB(t) and IBA(t) refer to the ionosphere delay at reception time of satellites A and B,
respectively;

ε (t) is the one-way observable error or noise, which can be modelled as biased, first-
order Gauss–Markov processes.

By summing up the two given equations, we obtain the pseudorange measurement:

Zρ(t) = (ρAB(t) + ρBA(t))/2 = ρAB0 (t) + (IAB(t) + IBA(t))/2+ ε(t) (3)
2.2. Pulsar-based Measurement Model. Pulsars can provide an external spatial

reference to satellite constellations, potentially avoiding non-convergence resulting
from the orbit determination on the basis of inter-satellite range measurements. As
Figure 1 shows, two satellites in the constellation lock on the same X-ray pulsar source
and simultaneously detect the same signal emitted from this source. Thus, the Relative
Time of Arrival (RTOA) of the pulse to the two satellites can be acquired, the value of
which is the difference between the two satellites’ Time Of Arrival (TOA).
The first order of the simplified RTOA equation is expressed as (Sheikh et al., 2006):

cΔt = n · (rA − rB) = n · rAB = rAB cos θ (4)
Thus:

cos θ = (cΔt)/rAB (5)
where:

c is the speed of light;
Δt denotes the RTOA, which can be obtained from correlation algorithms (Sheikh

et al., 2006); rAB is the relative position vector;
rAB is the range between the space vehicles A and B, which can be calculated from

Equation (3);
n is the normalized pulsar position vector, which can be acquired by astronomical

observation (Sheikh et al., 2006);
θ is the angle contained by n and rAB. As shown in Figure 2, it is between the

direction of the pulsar source and direction of base line which is the line between
two satellites detecting the same pulsar signal.

Figure 1. Relative TOA between two spacecraft that are observing the same pulsar.
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To determine the direction of the baseline rAB in the inertial space, that is, θ,
measurements from two or more pulsars are needed.

2.3. Observability Analysis for the Pulsar-based Measurement Model. The
observability of a system indicates whether the system states (here the system states
are the Keplerian orbital elements) can be determined by the measurements. If the
system is not observable, the system states cannot be determined, even if the noise level
is negligible.
The three Keplerian orbital elements of a satellite in constellation, that is, semi-

major axis (a), eccentricity (e), and mean anomaly (M ), can be determined by inter-
satellite range measurements. These are the Keplerian orbital elements related to the
size and shape of the orbits, and the position of the spacecraft along the orbits.
However, difficulties arise when attempting to estimate the other three Keplerian
orbital elements that are related to orientation, namely, the right ascension of
ascending node (Ω), the argument of perigee (ω), and the orbital inclination (i). (Keric,
2007; Zhang, 2005; Liu, 2001).
In order to illustrate whether the pulsar-based measurement model can determine

the three orbital elements (Ω, ω, i), we need to analyse the partial differential
equations of the pulsar-based measurement model with respect to the three orbital
elements (Ω, ω, i). If the partial differential equations are different from zero, the three
orbital elements can be determined.
These equations are analysed in detail below
2.3.1. Right Ascension of Ascending Node Ω. The partial differential equations

of the pulsar-based measurement model with respect to the orbital element Ω can be
expressed as:

∂(n · Δr)
∂Ω

= ∂(nx · Δx)
∂Ω

+ ∂(ny · Δy)
∂Ω

+ ∂(nz · Δz)
∂Ω

= nx
∂xi
∂Ω

+ ny
∂yi
∂Ω

+ nz
∂zi
∂Ω

− nx
∂xj
∂Ω

+ ny
∂yj
∂Ω

+ nz
∂zj
∂Ω

( ) (6)

∂r
∂Ω

= Jz × r = (−y x 0 ) (LiuandLiu, 2001). (7)

Substituting Equation (7) into Equation (6):

∂(n · Δr)
∂Ω

= −nxyi + nyxi − (−nxyj + nyxj) = ny(xi − xj) − nx(yi − yj) (8)

Figure 2. Angle between the pulsar direction and the baseline in the constellation.
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where:

n is the normalized pulsar position vector, which can be obtained from astronomical
observations; nx,ny and nz are the components of the pulsar position vector n in
the inertial coordinate system;

r is the satellite position vector, Δr is the relative position vector between two
satellites; Δx, Δy, Δz are the three components of the relative position vector in
the inertial coordinate system; xi, yi, zi, xj, yj, zj are the three components of
satellites i and j in the inertial coordinate system.

From Equation (8), when (xi−xj)
(yi−yj) =

nx
ny
, the partial differential equation of the pulsar-

based measurement model with respect to the orbital element (Ω) is different from
zero, and hence solvable with respect to Ω.

2.3.2. Orbital Inclination i. The partial differential equation of the pulsar-based
measurement model with respect to the orbital element i is given by:

∂(n · Δr)
∂i

= ∂(nx · Δ�x)
∂i

+ ∂(ny · Δ�y)
∂i

+ ∂(nz · Δ�z)
∂i

= n · ∂�ri
∂i

− n · ∂�rj
∂i

(9)

∂r
∂i

= �JN × r =
cosΩ
sinΩ
0





× �r (Liuand Liu, 2001) (10)

Substituting Equation (10) into Equation (9), we obtain:

∂(n · Δr)
∂i

= n · (JNi × ri) − n · (JNj × rj) = (n× ri) · JNi − (n× rj) · JNj (11)

Assuming Ωi=Ωj, then JNi=JNj=JN, and:

∂(n · Δr)
∂i

=(n× ri) · JN − (n× rj) · JN = JN · ((n× ri) − (n× rj)) = JN · (n× (ri − rj))
= (nyΔrz − nzΔry) cosΩ+ (nzΔrx − nxΔrz) sinΩ

(12)

From Equation (12), when(nyΔrz−nzΔry)
(nzΔrx−nxΔrz) =

sinΩ
cosΩ, the partial differential equation of

pulsar-based measurement model with respect to the orbital element i is different from
zero, and hence solvable with respect to i.

2.3.3. Argument of Perigee ω. The partial differential equation of the pulsar-
based measurement model with respect to the orbital element ω is given by:

∂(n · Δr)
∂ω

= n · (Ri × ri) − n · (Rj × rj) = (n× ri) · Ri − (n× rj) · Rj (13)

where:

R is the orbital normal vector given by: R = 1��
μp

√ (r× ṙ), (Liu and Liu, 2001).
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When two satellites are in the same orbital plane, Ri=Rj, yielding:

∂(n · Δ�r )
∂ω

= (n× ri) · Ri − (n× rj) · Rj = ri · (n× Ri) − rj · (n× Ri)
= Δrij · (n× Ri) (14)

From Equation (14), if Δrij·(n×Ri)≠0, the partial differential equation of the
pulsar-based measurement model with respect to the orbital element ω is different
from zero, and hence solvable with respect to ω.

3. AUTONOMOUS POSITIONING ALGORITHMS
3.1. Dynamic Models. For a constellation comprising of n satellites, the state

vector is:

X(t) = [X1(t),X2(t),X3(t),X4(t), · · ·Xn(t)]
The common state model of the spacecraft navigation system is given as:

Ẋ i(t) = f̄ (X i(t) + η(t) = [ṙ, v̇]T = [vx, vy, vz, ax, ay, az]T + η(t) (15)
where:

Xi(t) is the state vector, X i(t) = [ṙ, v̇]T = [vx, vy, vz, ax, ay, az]T ;
r=[rx, ry, rz]

T, and v=[vx, vy, vz]
T are the position and the velocity vectors of the

spacecraft with respect to the geocentric inertial frame (J2000);
η(t) is the noise.

The total acceleration for the satellite is defined as:

a = r̈ = a1+a2+a3+aH (16)
where:

a1 is the gravitational acceleration of the Earth;
a2 is the non-spherical perturbation acceleration of the Earth’s gravitational

acceleration;
a3 is the gravitational acceleration of the third body;
aH is the tide perturbation acceleration and solar radiation pressure perturbation

acceleration, corresponding to higher orders in the total acceleration;
η(t) is the state process noise, assumed to be white noise with a zero-mean and

covariance Q(t) (Sebastian, 2011).

3.2. Measurement Models. Two types of measurement models, inter-satellite
range models and pulsar-based measurement models, provide information on the
satellites’ relative positions in the constellation and the direction of the constellation
baseline in the inertial system.
For a constellation comprising of n satellites, the measurement equations for inter-

satellite range models can be expressed as:

YR(t) = HR(X, t) + ε(t) (17)
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In Equation (17) the range measurement YR(t) can be expressed as:

YR(t) =
yi,1 = ρi10 + (I i1 + I1i)/2+ ε1(t)

..

.

yi,n = ρin0 + (I in + Ini)/2+ εn(t)


 (18)

where:

ρ0
in is the geometric distance between the ith and nth satellites;
Iin is the ionosphere-induced delay between the ith and nth satellites; and
εn(t) is the random measurement noise.

In Equation (17) the measurement matrix HR(X, t) is given by:

Hi,j
R = ∂ρ

∂xi

∂ρ

∂yi

∂ρ

∂zi
0 0 0 − ∂ρ

∂xi
− ∂ρ

∂yi
− ∂ρ

∂zi
0 0 0

( )

(xi yi zi vxi vyi vzi xj yj zj vxj vxj vxj)T
(19)

The pulsar-based measurement is given as:

YP(t) = HP(X, t) + ε(t) (20)
In Equation (20) YP(t) can be determined from Equation (5) as:

YP(t) = yn+k = cos θk = cΔtk( )/rij (21)
From Equation (4), the measurement matrix HP is computed as:

HP = (nx ny nz 0 0 0 − nx − ny − nz 0 0 0)
× (xi yi zi vxi vyi vzi xj yj zj vxj vxj vxj)T (22)

and ε(t) is the zero-mean noise with covariance R(t).
3.3. UKF Algorithm. The UKF (Julier and Uhlmann, 1997) is an extension of

the Kalman filter. The most important feature of the UKF is its capacity to compute
the mean and the covariance of nonlinearly transformed variables from selected
variables of so-called sigma points without the need for a linear approximation of the
nonlinear function, as required by the extended Kalman filter. Thus, the UKF does
not yield a linearization error. In this paper, the orbit dynamic model and the
measurement models are nonlinear. Thus, the UKF is suitable for the pulsar
positioning system. The UKF steps are shown in Figure 3.
The first step is to initialize the state covariance matrix P0. In the second step, 2 l+1

sample sigma points are calculated based on the square-root of the augmented state
covariance matrix, where χ is a matrix of state sigma points, and λ is the sigma point
spread parameter. Weight vectors (ωm, ωc) for the mean and covariance are computed
in the third step. In the following time step, the state prediction X̂

−
and state

covariance prediction P̂
−
are computed using state dynamic equations and a weighted

average of the transformed sigma points. Next, the output prediction Ẑ
−
is calculated

using the current state sigma points in the observation equations and weighting vector.
In the measurement update step, the Kalman gain matrix Kk is calculated using the
output covariance matrix PZ̃Z̃ and the covariance matrix PX̃Z̃ between the state
prediction and output estimate. Finally, the state and state covariance estimations are
updated by the measurement vector Z and the Kalman gain matrix Kk.
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4. SIMULATION RESULTS AND ANALYSIS
4.1. Initial Condition. The simulation conditions are as follows. Assume that a

constellation consists of four satellites, and the orbital altitude of all the satellites is
23000 km. The initial orbit elements of the satellites are shown in the Table 1, and the
true orbit ephemeris are provided by the 4×4 EGM96 model. The initial orbit
elements of the four satellites in the constellation are presented in Table 1, and the
parameters of the pulsars used are shown in Table 2.

Table 1. Initial orbit elements of the satellites.

Number
Semi-major
axis(km) Eccentricity Inclination/°

Right ascension of the
ascending node/°

True
anomaly/°

A 23000 0 30 60 0
B 23000 0 30 60 60
C 23000 0 30 60 150
D 23000 0 30 60 280

Table 2. Parameters of pulsars.

Name Right ascension angle/° Declination angle/° D0/kpc P/s

PSR B1937+21 294·92 21·58 3·60 0·00156
PSR B0531+21 83·63 22·01 2·0 0·00334

Figure 3. UKF filter flowchart.
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The absolute position estimation errors versus time of satellite A are plotted in
Figure 4, using pulsar measurements and inter-satellite range measurements. The
position errors in the tangential T, and radial R directions converge to approximately
1·5 m and 0·7 m respectively. The position error in the normal direction N converges
to a mean of approximately zero, with slow oscillations.
As a comparison to the aforementioned method, only the inter-satellite range

measurement is utilized as the input to the UKF for the satellite state estimation, using
the same initial condition. The position estimation errors for satellite A are shown in
Figure 5. As the inter-satellite range measurement just provides radial direction
measurements to the positioning system, only the position error in the radial direction
is convergent.
From Figures 4 and 5, we can conclude that inter-satellite range measurement only

restricts errors in the radial direction. The range measurement is unobservable to
tangential and normal perturbation force. When the relative measurement based on
X-ray pulsars is added to the measurement system, the relative measurement via
pulsars is observable to the tangential and normal perturbation force, as discussed in
Section 2.3. The abovementioned simulation results demonstrate that the combined
measurement models accomplish the autonomous navigation of satellite constellation
with high accuracy.

Figure 4. Position estimation errors when using pulsars and inter-satellite range measurement.

Figure 5. Position estimation errors when using only inter-satellite range measurement.
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4.2. Effect of Pulsar Direction Error on the Measurement Model. Pulsar
direction error is an important error source for pulsar positioning. The effect of the
pulsar direction error on the relative pulsar-based measurement is analysed.

n =
cos δ cos α
cos δ sin α

sin δ





 (23)

where:

α is the pulsar right ascension;
δ is pulsar declination angle;
n is the pulsar direction vector.

Assuming that the measured pulsar position with error is (α̃, δ̃), and the error is
(Δα, Δδ), the pulsar real position is given as:

α = α̃+ Δα
δ = δ̃+ Δδ

{
(24)

Substituting Equation (24) into Equation (23), the direction vector of the pulsar is
given as:

n =
cos(δ̃+ Δδ) cos(α̃+ Δα)
cos(δ̃+ Δδ) sin(α̃+ Δα)

sin(δ̃+ Δδ)





 (25)

Using a first order Taylor expansion (Jiang 2007) in Equation (25), n can be
simplified as:

n =
cos δ̃ cos α̃
cos δ̃ sin α̃

sin δ̃





+

− cos δ̃ sin α̃ · Δα− sin δ̃ cos α̃ · Δδ
cos δ̃ cos α̃ · Δα− sin δ̃ sin α̃ · Δδ

cos δ̃ · Δδ





 (26)

and defined as:

Δn =
− cos δ̃ sin α̃ · Δα− sin δ̃ cos α̃ · Δδ
cos δ̃ cos α̃ · Δα− sin δ̃ sin α̃ · Δδ

cos δ̃ · Δδ





 (27)

Therefore:

n = ñ+ Δn (28)
Substituting Equation (27) into Equation (4), the measurement equation with
direction error is given as:

cΔtijsc = (n+ Δn) · Δrijsc = n · Δrijsc + Δn · Δrijsc (29)
where Δn · Δrijsc represents the effect of pulsar direction error. Given that the baseline
length is short, the measurement error is expected to be small. Assuming that the
pulsar direction error is 1 milli-arcsecond (mas), corresponding to the current level of
pulsar position observation accuracy (Hanson, 1996) and the baseline length is
60000 km, the measurement error attributable to the pulsar direction error is only
0·3 m, compared to the measurement error of a hundred meters using absolute
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pulsar-based measurement (Sheikh, 2006). The relative pulsar-based measurement
largely weakens the pulsar direction error for the measurement error.

4. CONCLUSIONS. An autonomous positioning approach for satellite con-
stellations based on X-ray pulsars is proposed. This approach, using baselines between
two satellites in the constellation, builds the system measurement model by combining
relative pulsar-based and inter-satellite range measurements. It is shown that the
satellites’ three orbit elements, Ω, i, ω, which cannot be determined from inter-satellite
range measurement, can be observed by using relative pulsar-based measurement. The
absolute position of all satellites in the constellation can be determined efficiently by
the above measurement models. Compared to the conventional method using absolute
pulsar-based measurements, the proposed method significantly reduces the effect of
pulsar direction errors on the satellite positioning performance.
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