
STUDIES ON RIEMANNIAN HOMOGENEOUS SPACES

KATSUMI NOMIZU

The purpose of the present paper is to give the details of the results an-

nounced in the C. R. notes [7], [8] and [9].

In I which corresponds to [7], we shall develop a method for the study of

affine transformations of a Riemannian manifold and prove Lemma 5 which is

fundamental for the results in I and II. This part of our work has been moti-

vated by a result of K. Yano [12] stating that the largest connected group of

affine transformations of a compact orientable Riemannian manifold consists of

isometries. Our method will have further applications to some other problems

concerning or involving the connected group of isometries of a Riemannian mani-

fold (for example, [10]).

In II which corresponds to [8], we deal with the decomposition and irre-

ducibility of a Riemannian homogeneous space by the application of Lemma 5.

We also prove a theorem concerning forms whose covariant derivatives are zero.

In III which corresponds to [9], we study the holonomy algebra of an irre-

ducible Riemannian homogeneous space. If G/H is a homogeneous space of

a connected Lie group with compact H such that the linear isotropy group is

irreducible, then G/H admits a unique invariant Riemannian connection. The

problem to determine its holonomy algebra in terms of the Lie algebras of G

and H was raised by Chevalley as well as by Lichnerowicz. We shall solve

this problem by using the method of our previous work [6].

All the theorems in II and III can be considered as generalisations of the

well known results of E. Cartan on symmetric Riemannian homogeneous spaces.

In this sense, the present paper is a continuation of [6] in which we have studied

some other generalizations of Cartan's theory.

I would like to express my sincere thanks to Professor Lichnerowicz for

his kind interest in my work and for many valuable suggestions with which he

has encouraged me.
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I. Affine transformations of a Riemannian manifold

I. Lemmas on affine transformations. In the following, let M be a Rie-

mannian manifold, or more precisely, a connected differentiate1} manifold with

a positive definite Riemannian metric defined on it. The Riemannian metric

on M gives rise to an inner product {X, Y)p on the tangent space Tp at each

point p of M. We speak of Tp as a euclidean space with respect to this inner

product. To the given Riemannian metric on M, there is associated a unique

affine connection whose torsion tensor is zero and whose parallel displacement

is isometric, that is, the parallel displacement along any (piece-wise differenti-

able) curve between two points p and q is an isometric linear mapping of the

tangent space Tp onto TQ. This affine connection is called the Riemannian

connection, or Levi-Civita connection, associated to the given Riemannian

metric.

By an affine transformation of M, we shall mean a differentiate transfor-

mation φ of M onto itself which leaves invariant the Riemannian connection

L6]. It may be defined in the following intuitive fashion. Let τ be any curve

from p to q and let φ(τ) be the curve which is the image of r by φ. Denoting

the parallel displacement along a curve by the same letter as the curve, ψ is

called affine at p if

(*) φ τ X=φ(τ) φ X, for every X&Tp,

where ψ denotes the differential2) of the transformation ψ. ψ is an affine trans-

formation of M if it is affine at every point of M.

A differentiate transformation ψ of M is called isometric at a point p if

the differential of ψ is an isometric mapping of Tp onto Tφ{P), that is, (ψX, ψY)φ(p)

= (X, Y)p for any X and Y & Tp. φ is called an isometry of M if it is iso-

metric at every point of M. Of course, this is equivalent to the usual definition.

LEMMA 1. Let ψ be an affine transformation of M. If ψ is isometric at a

point p, then it is an isometry of M.

Proof We show that ψ is isometric at any point q of M. Let τ be any

χ) By differentiability we understand that of class C00-
2> If φ is a differentiate mapping, the differential of φ at p is the linear mapping of

Tp into Tφ(p) induced by φ. In the following, we denote the differential of a mapping by
the same letter, since there is no danger of confusion.
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curve from q to p. Denoting the parallel displacement along τ by the same

letter (which we shall do repeatedly in the sequel without further comment),

we have

, Y)Q=(τX, τY)p=(fτX, φ τY)9<P)

for any X, Y & TQ, which shows that ψ is isometric at q.

The homogeneous holonomy group Ψp of M, with reference point at p, is a

subgroup of the orthogonal group of Tp. M is called irreducible if Ψp does not

have any non-trivial invariant subspace this notion is independent of the choice

of p. Otherwise, it is called reducible and the orthogonal complement of an

invariant subspace is also invariant by Ψp.

LEMMA 2. Let M be irreducible. If ψ is an affine transformation of M,

then there exists a positive constant c such that I ψX\ = c | X\ for every tangent

vector X, where \X\ denotes the length of X, i.e., X=(X, X)xl\

Proof. Let p be an arbitrary but fixed point of M. We introduce (X, Y)*

= (φX, ψY)φ(P) for I , 7 G Tp, which is easily seen to be an inner product on

Tp. Using the invariance of the inner product (, )?(/>> by the homogeneous

holonomy group ΨΨ(P), we have, for any element a of Ψp represented by a closed

curve a at p,

(σX, aY)* = (fσX, f σY)9(P) = (ψ(σ) φX, φ(σ) φY)9(P)

= {φX, φY)φ(P) = (X, Y)*,

which shows that the new inner product (, )* on Tp is invariant by Ψp. Ψp

being irreducible, we see that there is a positive constant c such that (X, F)*

= c\X, X)p for every X, Ye Tp. Hence \φX\ = c\X\ for X&TP. For any

other point q, let r be an arbi trary curve from q to p. If Y e Tq then \<p Y\

= \φ{τ) φY\ = \φ-τY\ = c\τY\ = c\Y\.

If M is reducible, we denote by Σ the set of F}rinvarant subspaces of Tp,

where p is an arbitrary but fixed point of M. We shall show that an affine

transformation ψ of M gives rise to a substitution of Σ in the natural fashion.

We take any arbitrary curve τ from p to ψip) and consider the linear trans-

formation p = r""1- ψ of Tp onto itself (the succession of the differential of ψ and

the parallel displacement r"1). If V is a subspace of Tp invariant by Ψp, then
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the subspace p Γ is invariant by Ψp. Indeed, if o is any element of Ψp re-

presented by a closed curve a at p, we have, for any X G V,

^ψ ψ^iτ'^ ψ ιiτ)*ψ~1iσ) φ~1(τ'~ι)X

where ψ~1i τ) ψ"1ia) ψ~1iτ~1) is again an element of Ψp represented by the cor-

responding closed curve at p. V being invariant by Ψp9 this element maps X

into some element Yoi V and we have a p X^p YG pT\ which shows that

pV is invariant by Ψp.

The subspace pT1 does not depend on the choice of a curve τ from p to

ψip) and is completely determined by ψ. In fact, if τ' is any other curve from

p to ψip), then we have

•j W •==, ^ <£•' j " <Z> — T ' * x^ * (D * Φ~ iz )

-— r' (p * (p ( f ' ) cp" (τ~ )

where ί>"1(r0 ^""Hr"1) = φ~1iτf r"1) is an element of 3P}, and leaves T' invari-

ant. This shows that r"1 ψ P = τ'""1 f> Γ'.

We have thus seen that ψ gives rise to a substitution of 21, which we de-

note by siψ). If V e 21, then T' and siψ)T are equivalent in the following

sense: there is a linear transformation p of T' onto siψ)T and an automor-

phism α: of ψp such that pUX) = aiσ) pZ for any l e T ' and <; G Ψp. Indeed,

we can take p = τ"1 ψ for any curve from p to ψip) and α:( <?) = ψ~ (r <? r" )

as we have already seen.

Now consider the group AiM) of all affine transformations of M and its

identity component A°(M). AiM) is a Lie group [4]

LEMMA 3. The substitution siψ) of Σ gives a representation of AiM):

siψ ψ) = siψ) siψ) for any ψ, ψ G A( V).

Proof. Take a curve τ from p to ψip) and a curve τf from p to </>(.£).

Then f (rθ r is a curve from ^ to ψψip). We have

(^ )(τ') τ)~1 γ? 0 = τ"1 ^ (τ ' " 1 ) <p 0 = τ"1 * ̂  τ'"1 ψ.

LEMMA 4. Let ψt be a one-parameter group of AiV): ψt+s = ψfψs. Then

there is a one-paramter group pt of linear transformations of Tp such that
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(ptX, Y) is όontinuous in t and X , Y E L T P and such that s(ψt) T = pt T for

every T e Σ.

Proof. For each t, we take a curve τt defined by r*( s) = ψs(p), 0 ^ s *= t,

and set pt = τΓ1 ψt.

Remark. In the case where ψ leaves p invariant, we see that the substi-

tution s(φ) is induced by the linear isotropy induced by ψ, that is, the linear

transformation of Tp induced by ψ.

2. Canonical decomposition. If T is a subspace of dimension k invariant

by Ψp, we get a distribution ( = field of subspaces) of dimension k by the paral-

lel displacement of T'. This distribution is completely integrable. If M1 is the

maximal integral manifold through p of this distribution, then Mf has a Rie-

mannian metric naturally induced by that of M.

G. de Rham has proved the following important results for a simply con-

nected complete Riemannian manifold [11]:

A. If Tp = Ti + T2 + . - . + Tr is a decomposition of Tp by Ψp into mutu-

ally orthogonal invariant subspaces, then M is the topological and Riemannian

direct product Mi x M2 x . . . x Mr, where Mi is the maximal integral manifold

through p of the distribution defined by Tz . ψp is the direct product Ψι x ¥2

x . . . x Ψr where each Ψi is isomorphic with the homogeneous holonomy group

of Mi and acts trivially on Tj if j ^ i.

B. Let To be the subspace of all elements XELTP which are invariant by

every element of Ψp. Let T' be the orthogonal complement of To and decompose

Tf into the sum of mutually orthogonal irreducible invariant subspaces Ti, i = 1,

2, . . . , r. In this way, we get a decomposition T= To -f 7\ 4- . . . + Tr, where

To is the largest subspace of Tp on which Ψp acts trivially, each Ti (i = 1, 2, . . . ,

r) is irreducible and all Ti (i = 0, 1, . . . , r) are mutually orthogonal. This de-

composition is unique. Or, more precisely, if T is any invariant subspace, then

either T is orthogonal to Γ, or T contains T, ( / = ! , 2, . . . , r).

We shall call the decomposition of Tp (unique up to the order) indicated

in B the canonical decomposition of TpZ). The corresponding decomposition of

3> In [7], we stated that the decomposition of Tv of this kind is unique without the
assumption that M is simply connected. But this is not exact. In Theorem 2, therefore, we
have added the assumption of simply-connectedness which was not made in [7].
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M which is assured by A is called the canonical decomposition of the Riemannian

manifold M. To (or Mo) is called the Euclidean part of Tp (or M).

We now prove the following main lemma.

LEMMA 5. Let M be simply connected and complete, and let T- To -f Ti

-h . . . -f Tr be the canonical decomposition of Tp. If ψ G A°(F), then s(φ)

Ti = Ti for every i - 0, 1, . . . , r.

Proof. Since A°(V) is a connected Lie group, it is sufficient, by virtue of

Lemma 3, to prove Lemma 5 for ψ sufficiently near to the identity element. We

may assume ψ to lie on a one-parameter group ψt. By using pt in Lemma 4, we

shall show that pt TV = T, for every i. First of all, Ψp acts trivially on pt To

as is clear from the equivalence of To and pt To which we explained before.

Therefore, pt T0C To and, indeed, pt T0 = T0. For each i = 1, 2, . . . , r, pt Ti

is an invariant subspace and, by the result B of de Rham, it is either orthogo-

nal to Tj or contains Tj (j = 1, 2, . . . , r). If pt Ti is orthogonal to every Ty,

j = 1, 2, . . . , r, then pt T« must be contained in To, which is a contradiction.

Therefore, pt * Ti contains some Tj {j = 1, 2, . . . , r ) . Again by the equivalence

of Ti and pt*Ti, ptTi is irreducible and hence coincides with Tj.

By this argument, we have seen that each pt maps To into itself and Ti

into some Tj (i9j-l,2,...,r). We now show that pt T, = T* for sufficiently

small t then this is true for every t. Let X be any element ^ 0 of Ti. pt*X

must belong to some Tj as we have already shown. Since {ptX, X) is conti-

nuous in t and is not 0 for t = 0, it is not zero for sufficiently small t. For

such t, pt* X cannot belong to Tj (j # i) which is orthogonal to Ti. This means

that there is δ > 0 such that if \t\<δ, then pt*XE:Ti. Now by taking a

base of Ti, we see that there is δf > 0 such that if \t I < 5' then pt maps every

element of the base into T, . By linearity, p* maps T, into Ti. This concludes

the proof of Lemma 5.

3. Affine transformations and isometries. If M is irreducible, then there is

a homomorphism c(ψ) of A(M) into the multiplicative group of positive numbers

such that \ψX\ =c(φ)\X\, for every tangent vector X, as we have seen in

Lemma 2. If c{ψ) = 1, then y> is an isometry. We have therefore

THEOREM 1. Let M be an irreducible Riemannian manifold. Then the follow-

ing subgroups of A{M) are all contained in the group of isometries KM):
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1) every compact subgroup of A(M)

2) every connected semi-simple Lie subgroup of A(M)

3) the commutator subgroup CA(Af), A(Λf)l

COROLLARY. If M is a compact irreducible Riemannian manifold, then KM)

is the largest compact subgroup of A(M).A)

In order to deal with reducible M, we assume M to be simply connected and

complete. We take the canonical decomposition Tp = To + Tί -f . . . -f Tr and

the corresponding distributions (Ti) obtained from T, by parallel displacement.

Lemma 5 implies that φ Ti~ (Ti)φ{P) for every ψ G A°(M). We now show that,

for each i = 1, . . . , r, there is a homomorphism ψ -> a( ψ) of A°(M) into the

multiplicative group of positive numbers such that \ψX\ = Ci(ψ)\X\ for any

tangent vector X belonging to the distribution (Ti). Let us fix /. Since Ψp is

irreducible on Ti, we see by the same argument as in Lemma 2 that there is

a positive constant a such that | ψX\Ψφ) = c, | X\p for every Z G T, . Now if Y

is a tangent vector belonging to (Ti)Q, then we take a curve from q to p and

we have I ψ Y" I = I <ρ( r ) ψY\ = | y r Y | = a(ψ)! r Γ | =Ci(^) | Y|, because τ Γ

e Ti. We show that y> e A°(M) -> ̂ ( ^ ) is a homomorphism. If f, ψ e i40(M)

and if X is a tangent vector belonging to the distribution (Ti), then ψX belongs

to (Ti) and we have \<ρ ψX\= a(ψ) \ψX\ = Ci(ψ)a(φ) I X I.

We have thereby proved

THEOREM 2. i/ M is a simply connected complete Riemannian manifold

whose Euclidean part is of dimension ^ 1, ίfrtfw the following subgroups of A°(M)

are all contained in KM):

1) every compact subgroup of A°(M)

2) every connected semi-simple Lie subgroup of A°(M)

3) the commutator subgroup L~A°(M), A°(M)1.

II. Riemannian homogeneous spaces

4. Riemannian homogeneous space. Universal covering. A Riemannian

manifold M is called Riemannian homogeneous if the largest connected group

of isometries I°(M) is transitive on M. In this case, we can represent M as a

homogeneous space G/H with a G-invariant Riemannian metric on it, where G

4> It might be remarked that A(M) and I(M) have the same identity component by a
result of Yano rt2].
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is a connected Lie group and the isotropy subgroup H is compact. A Rie-

mannian homogeneous space is always complete.

The universal covering manifold of M— G/H is Riemannian homogeneous

with respect to a natural Riemannian metric. Let G be the universal covering

group of G and let H be the identity component of the complete inverse image

of H by the canonical projection π of G onto G. H is closed and G/H is nothing

but the universal covering manifold fit of M. π induces the canonical projec-

tion of fit onto M, denoted by the same letter, such that rΛa p) -π(a) π(p)

for aξ=.G and p 6Ξ fit. Now π being a covering mapping, we can transfer the

Riemannian metric on M to fit in such a way that π is a local isometry, that

is, every p& fit has a neighborhood on which π is an isometry. Then it is

easy to see that every β £ 6 i s an isometry of fit. This proves that M = G/H

is Riemannian homogeneous.

In general, the universal covering manifold fit of a Riemannian manifold

M has a (unique) Riemannian metric such that the canonical projection π of

fit onto M is a local isometry. If M is complete, so is fit. The restricted

homogeneous holonomy group Ψ°(M) of M is isomorphic with the homogeneous

holonomy group Ψ(fit) of A? [11 More precisely, if τ is an element of Ψ(fit)

represented by a closed curve at p of M, then π r = r π, where τ is the ele-

ment of Ψ°(M) represented by the closed curve τ = 7r(r) at p = π(p) of M.

Conversely, for every τ e Ψ°(M) there is τ G Ψ(fit) satisfying the above relation

and this correspondence is one-to-one.

LEMMA 6. Let p& fit and π(p) =p e M. For any ψ e KM) such that φ(p)

•=p9 there is a ψ G /(M) swc/2 that <f(p) = ί> β7ίJ π ψ -ψ *π.

Proof. We may consider fit as the set of homotopy classes of curves of

M issuing from p and assume p to be the homotopy class of the trivial curve

consisting of p only. If q is any point of fit represented by a curve τ from p

to <z = 7r(5), then we define ^ $ to be the homotopy class of the curve ψ(τ)

from p to <p(q); this definition is legitimate, because the homotopy class of

ψ(τ) is determined by that of τ. We have clearly π ψ = ψ π and ψ(p) =p.

It is easy to verify that ψ is an isometry of fit.

Remark. If ψt is a 1-parameter group of isometries of M, then there is a

1-parameter group of isometries ψt of M such that π ψt — ψt π. (This may be
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proved by a similar method, or by considering the killing vector field induced

by ψu)

5. Canonical decomposition of G/H. We shall prove

THEOREM 3. Let G/H be a simply connected Riemannian homogeneous space.

Then each factor of the canonical decomposition of G/H is Riemannian homo-

geneous. More precisely, there exist connected closed subgroups Go, Gι, . . . , Gr

of G, all containing H, such that Go/H x GJH x . . . x Gr/H is the canonical

decomposition of G/H

Proof. Let p be the point of G/H represented by the coset H, and let Tp

= To + Ti + . . . -I- Tr be the canonical decomposition of the tangent space. G

being connected, we see from Lemma 5 that a Ti — (Ti)a.ρ for every a Ez G and

ί = 0, 1, . . . , r. It follows that each distribution (Ti) is invariant by G. Let

Mi be the maximal integral manifold of (Ti) through p. We show that Mi is

Riemannian homogeneous. Any point of Mi may be written as a p for some

aEzG. Then a*Mi is the maximal integral manifold of (Ti) through a p and

hence coincides with Mi. This means that a Mi-Mi. Therefore a is an iso-

metry of Mi which maps p into the point a p.

Let Gi be the set of c G G such that a p^Mi. Since it is the set o f β G G

such that a* Mi-Mi, it is a closed subgroup of G (remark that each M% is

closed in G/H). We show that Gi is connected. Let a be any element of Gi,

and take a curve p(t) in G/H such that p( 0) =p and p( 1) = a p. The curve

p(t) may be written as p(t) = a(t) p where a(t) is a curve in G such that

a(l) -a and a(0) is a certain element of H. Since at p belongs to Mi, at

belongs to Gi. Since G/H is simply connected, H is connected. It follows that

a(0) and hence a(l) may be joined to the identity element by a curve in G/,

which proves that G, is connected. This concludes the proof of Theorem 3.

THEOREM 4. Let G/H be a simply connected Riemannian homogeneous space.

If the linear isotropy group H is irreducible, then either G/H is euclidean or GlH

is irreducible and non-euclidean.

Proof. By Lemma 5 and by the remark at the end of 1, I, we know that

each factor of the canonical decomposition of the tangent space Tp = To + T\

-f . . . + Tr is invariant by H.
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COROLLARY. Let G/H be a Riemannian homogeneous space. If the con-

nected linear isotropy group H° is irreducible, then either G/H is locally euclidean

or the restricted homogeneous holonomy group is irreducible and non-trivial.

Proof. We take the universal covering of G/H and apply Theorem 4.5)

6. A theorem on forms whose covariant derivatives are zero. In any

compact Riemannian manifold M, a harmonic form ω is invariant by I°(M)

[12]. This may be proved topologically as follows. It is sufficient to prove

the invariance of ω by any one-parameter subgroup of isometries <pt. It is

clear that the transform ft* ω is again harmonic. For any cycle C of the

same dimension as ω, the integral I ft* ω is equal to \φtmC(o, where ψt C is

the image of C by ψt and is homologous to C. Therefore \ <Pt*ω = \ ω for

every cycle C, which implies that <ft* ω = ω by a fundamental theorem of

Hodge.

We shall prove

THEOREM 5.6> Let G/H be a Riemannian homogeneous space. If G is simple,

any form ω on G/H such that Fω = 0 is invariant by G.

Proof. Let p be the point represented by the coset H. Let A be the ex-

terior algebra over the dual of the tangent space Tp. The Euclidean metric on

Tp may be extended to a Euclidean metric on A, and the homogeneous holono-

my group Ψp may be extended to an orthogonal group of A in the natural

fashion. Let A' be the subspace of A consisting of all elements of A which

are invariant by Ψp. There is a one-to-one correspondence between Af and

the set of differential forms ω on G/H with Fω = 0. Such an ω is obtained

from some element of Af by the parallel displacement.

This being said, let a be any element of G and let τ be any curve from

p to a*p. We consider the linear transformation r"1 a of Tp as we did in 1,

I. By a similar argument, we can easily show that the induced linear trans-

formation τ""1 a of A leaves A' invariant and that the induced linear trans-

formation of A! does not depend on the choice of τ. We shall denote by u(a)

the linear transformation of A! which is so defined. Since a is an isometry of

5> This poof was suggested by J. Hano.
6) The assumption that the center of G consists of the identity only [8] has been re-

moved by a suggestion of J. Hano.
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G/H, r - 1 a is an isometry of Tp. Hence u(a) is an isometry of Af. Finally,

it is easy to prove that a -> u(a) is a homomorphism.

In this way, we have a representation of G into the orthogonal group of

A1. It is not difficult to show that this representation is continuous. Since G

is simple, the kernel K of this representation coincides with G or is a discrete

invariant subgroup. In the first case, u{a) is the identity on A' for every aE:G.

This means that a f - τ fίoτ every fE:Af, where τ is the parallel displace-

ment along any curve from p to a p. If ω is a differential form obtained by

the parallel displacement of /, then ω is invariant by a. In the second case,

GlK admits a faithful representation into the orthogonal group of A\ It follows

that GlK is maximally almost periodic and hence compact.7) This is the same

for G. If GlH is compact, Theorem 5 is a trivial consequence of the propo-

sition on harmonic forms.

III. Holonomy algebra of G/H

7. The general case. Let G/H be a reductive homogeneous space with a

decomposition of the Lie algebra 9> = m -+- f), ad(H)va = m. We have shown previ-

ously [6] that there is a one-to-one correspondence between the set of invariant

affine connections on GlH and the set of bilinear functions a(X, Y) on m x tn

with values in m which are compatible with ad{H): ad(h) a(X, Y) = oc{ad(h)X,

ad(h)Y), We shall determine the holonomy algebra, that is, the Lie algebra

of the restricted homogeneous holonomy group of an invariant affine connection.

We first recall the formulas for the curvature tensor and its successive

covariant derivatives [6]. For each l E m we define a linear endomorphism

p(X) of m by p(X) Y = a(X, Y). Then the curvature tensor is given by

R{X, Y) = ίp(X), p(Y)l - p(K Ylm)-ad(ίX,

where [Z, F]m (resp. ZX, Y\) denotes the ni-component (resp. ^-component) of

[_X, F] G α. The covariant derivative of R is given by

{VR)(X, Y:Z) = (VZR){X, Y) = ZpiZ), R{X,Y)] - R(p(Z)X, Y) - R(X, p(Z)Y),

and similarly for the successive covariant derivatives.

7> Any maximally almost periodic Lie group is the direct product of a compact group
and an abelian group isomorphic with the additive group Rn. Here G is simple and hence
compact.
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Since G/H is homogeneous, the holonomy algebra, denoted by ί)*, is

generated by the endomorphisms of m of the form R(X, Y), (FR)(X, Y; Z),

(F2R)(X, Y; Z; W), . . . (all successive covariant derivatives), where X, Y, Z,

W, . . . run through m (Theorem 7, [5]).8)

LEMMA 7 (Chevalley). The holonomy algebra is equal to the smallest Lie

algebra of endomorphisms of m such that 1) R(X,Y) e ψ for all ί j e m and

2) Zp(X), ψl C ψ for all Z e m.

Proof. Let ϊj** be the smallest algebra satisfying 1) and 2). First we show

that the holonomy algebra ψ satisfies 1) and 2) then ψ D ψ*. The condition

1) is obvious. In order to prove 2), it is sufficient to prove that Zp(X)9 A] G ψ for

every generator A (one of the successive covariant derivatives of R) of ψ and

for every I G E In fact, the set of elements S of ψ such that Zp(X), S] e ψ

for every ZGiίi forms a subalgebra ϊ of ψ. If every generator A of ψ belongs

to ί, then ψ is contained in !, that is, Zρ(X), $*1 C §*. Now if A = R( Y, Z), then

ZQ(X), R( Y, ZYI = (Γz/?)ί y, z) + i?(p(z) r, z) + «(r, P(Z) z)

belongs to §*. The similar reasoning applies to any other generator A. We

have thus proved that ϊ)** C ψ.

In order to show that ψ* D ψ9 it is sufficient to verify that R(X, Y),

(VR)(X, Y; Z), . . . , belong to ψ*. R(X, Y) belong to ί)** by the condition l).

As for <JR)(X9 Y; Z), we have

(FR)(X, Y; Z)=lp(Z),R(X, Y)l-R(p{Z)X, Y) - R{X, p(Z)Y),

where [p(Z), i?(X, F)3 e ^** by the condition 2) and R(p{Z)X, Y), R(X, p(Z)Y)

e ^** by 1). Hence (VR){X, Y\Z)EL ^**. Similarly, all the successive covariant

derivatives of R belong to ϊj**. This concludes the proof of Lemma 7.

Let ϊji be the linear subspace of ί) spanned by all elements of the form

ZX, Yin, where I J ε m . Iji is an ideal of !j.

LEMMA 8. If the normalisor of ψ coincides with ψ, then ψ is generated

by p(X), I G m, and ad(%).

Proof. In this case, the condition 2) implies that ρ(X) e §* for every X

€ m. We denote by I)** the subalgebra generated by ad(ί)ι) and p(X)9 l ε t n .

It is easy to prove that any invariant affine connction on G/H is analytic.
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Then R(X, Y) belongs to §** as is clear from the formula. Of course, Zp(X), ί)**l

C h** for every J e m . Hence ψ* satisfies the conditions 1) and 2) of Lemma

7 and hence ψ* D B*. On the other hand, we see that ψ contains adiίX, YV

for all I J ε m , and hence ad{%). Therefore ϊj** C ψ. We have proved that

f>** = ψ.

8. The irreducible case. Let G/H be a homogeneous space of a connected

Lie group G with compact H. If the connected linear isotropy group H° is

irreducible, then there is an invariant Riemannian metric on G/H which is

uniquely determined up to a constant factor. The associated Riemannian

connection is then unique. We shall determine the holonomy algebra of G/H

in the essential cases.

If G/H is not locally Euclidean, we see from the corollary to Theorem 4

that the restricted homogeneous holonomy group is irreducible. By a result of

Borel-Lichnerowicz C3], the normalizor of the holonomy algebra ψ coincides

with ψ if G/H is not Kahleran. If G/H is a Kahlerian space whose Ricci cur-

vature tensor is not zero, then it is hermitian symmetric, again by a result of

Lichnerowicz [2].

From these considerations and from Lemma 8, we have the algebraic

determination of the holonomy algebra of G/H except the case where G/H is

Kahlerian with zero Ricci curvature.

THOREM 6. Let G/H be a Riemannian homogeneous space which is not locally

Euclidean and whose connected linear isotropy group is irreducible. If G/H is

not Kahlerian, the holonomy algebra is generated by ρ(X),X&m, and ad($i).

If it is Kahlerian and if the Ricci curvature tensor is not zero, it is hermitian

symmetric and the holonomy algebra is isomorphic with ad(ί)i).

In the case where G is compact, there is a suitable decomposition of the

Lie algebra 0 = m -f \ ad(H)m = m, with respect to which the invariant Rieman-

nian connection is given by cc(X Y) = (1/2)ίX, Πm. Indeed, we can take a

positive definite quadratic form on Q which is invariant by ad(G) and take the

orthogonal complement m to §. Then the induced metric on tti gives rise to

an invariant Riemannian metric on G/ίϊ, which induces the unique invariant

Riemannian connection on G/H since H is irreducible. For this invariant Rie-

mannian metric, the corresponding connection is given by a{X, Y) = (1/2)[Z, Y]m

(Theorem 13.2., [6]).
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Furthermore, if the Ricci curvature is zero, then G/H is locally Euclidean

C31 We have hence

THEOREM 7. Let G/H be a Riemannian homogeneous space with compact

G and with irreducible H°. If G/H is not locally Euclidean, the holonomy algebra

is generated by p(X), l £ m , and ad(ί)i), where, in a suitable decomposition of the

Lie algebra β = m -f 5, ad(H)m = m, ρ(X) is the linear transformation of m defined

by p(X) Y = (1/2)[X, F]m and ίji is the subspace (indeed, an ideal) of ί) spanned

by all elements of the form [X, Y\.
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Added in proof. For the group of affine transformations, see the papers

of J. Hano and S. Kobayashi (in this journal) which give more complete results

than I of this paper.
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