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C
∗-Algebras of Irreversible

Dynamical Systems

R. Exel and A. Vershik

Abstract. We show that certain C∗-algebras which have been studied by, among others, Arzumanian,

Vershik, Deaconu, and Renault, in connection with a measure-preserving transformation of a measure

space or a covering map of a compact space, are special cases of the endomorphism crossed product

construction recently introduced by the first named author. As a consequence these algebras are given

presentations in terms of generators and relations. These results come as a consequence of a general

theorem on faithfulness of representations which are covariant with respect to certain circle actions.

For the case of topologically free covering maps we prove a stronger result on faithfulness of represen-

tations which needs no covariance. We also give a necessary and sufficient condition for simplicity.

1 Introduction

Virtually all of the rich interplay between the theory of operator algebras and dynam-
ical systems occurs by means of a construction usually referred to as the crossed prod-

uct. The basic idea, which was first employed by von Neumann [18] in 1936 in the
context of automorphisms of measure spaces, consists in attaching to a given dynam-
ical system an operator algebra (a W ∗-algebra in the case of von Neumann’s original
construction) whose algebraic structure is expected to reflect dynamical properties

of the given system. The analogue of this construction for the case of C∗-algebras is
due to I. Gelfand, with co-authors M. Naimark and S. Fomin, who used it later for
certain special dynamical systems.

By far the greatest advances in this enterprise have been achieved for reversible

systems, i.e., when the dynamics is implemented by a group of invertible transforma-
tions. This theory (sometimes called the algebraic theory of dynamical systems) now
has many important results and has become widespread and popular. Nevertheless
a lot of effort has been put into extending these advances to irreversible systems or

dynamics of semigroups and thus an important theory emerged attempting to parallel
the theory for reversible systems.

The theory of C∗-algebras for irreversible systems breaks down into two somewhat
disjoint areas, the first one consisting of the construction and study of C∗-algebras

associated to classical dynamical systems, i.e., transformations of measure or topolog-
ical spaces (see [3, 4, 8, 22]), while the second deals with the study of crossed products
of C∗-algebras by endomorphisms or semigroups thereof (see [1, 6, 16, 17, 23]).

As it turned out, these two areas have had little intersection, partly because the lat-

ter, which has perhaps received the greatest share of attention in recent times, boasts
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40 R. Exel and A. Vershik

its greatest successes when the endomorphisms involved have a hereditary range, a
hypothesis which is absent when one deals with endomorphisms arising from classi-

cal systems.

The difference between the C∗- and W ∗-algebra approach is more serious in the
case of irreversible dynamics than in the reversible one. The point is that the involu-
tion in the C∗-algebra for the irreversible case must be defined separately, while for
the group case, the involution is defined more or less uniquely. At the same time if

we consider measure-preserving dynamics and L2-theory, the involution exists auto-
matically and this also makes it possible to define C∗-algebras. This was the way of
the papers [3, 4] — to consider a measure-preserving action of the endomorphism
and the C∗-hull in L2 of the multiplicators and endomorphism. After this we can de-

fine another representation of this C∗-algebra which leads to von Neumann factors.
Actually we do not need the invariant measure itself but only the conditional expec-
tation (e.g., conditional measure on the partition into pre-images of the points). In
the purely topological situation we can first consider a very large C∗-algebra and then

factorize it using a certain conditional expectation (see below).

In this paper we consider the oldest, and perhaps not so intensively studied, rela-
tionship between classical irreversible systems and C∗-algebras. Our focus is on two
classes of C∗-algebras, the first one being defined in terms of a measure-preserving

transformation T of a measure space (X, µ), and closely related to the Arzumanian–
Vershik algebras (see [3]). These algebras, which are defined below, will be denoted

here by ÃV(X,T, µ).

The second class of C∗-algebras that we study here arises from the consideration
of self covering maps T : X → X, where X is a compact space (see [4, 8, 22]). The
algebras in this second class will be denoted by C∗(X,T).

It is the main goal of this work to give a unified treatment of these algebras by
first showing (Theorems 6.1 and 9.1 below) that they are special cases of the en-
domorphism crossed product construction recently introduced by the first named
author (incidentally that construction also includes crossed products by endomor-

phisms with hereditary range [11, §4]).

In addition we show how to use this unified perspective to prove new results about

ÃV(X,T, µ) and C∗(X,T) along the lines of [1, 6, 14, 16, 23]. First we prove a version

of what has been called the “gauge invariant uniqueness Theorem” [15, 2.3] by show-
ing (Theorem 4.2) that any representation of the crossed product which is faithful on
the core algebra and which is covariant relative to certain circle actions must be faith-
ful on all of the crossed product algebra. The application of this to either AV(X,T, µ)

or C∗(X,T) leads to theorems on faithfulness of representations which are perhaps
hitherto unknown.

As another application we show (Theorem 5.3) how the proposal outlined in the
closing paragraph of [3] to extend the definition of the Arzumanian–Vershik algebra

to a non-commutative setting can be modified to achieve a down-to-earth elemen-
tary construction of the crossed product algebra (assuming the existence of certain
faithful states).

We then specialize to the case that the range of the endomorphism considered
admits a conditional expectation of index-finite type according to Watatani [26]. We
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Irreversible Dynamical Systems 41

first show (Corollary 7.2) that the process of “dividing out by the redundancies” in
Definition (2.2) below may be achieved by introducing a single relation and hence

we obtain a straightforward presentation of the crossed product algebra in terms of
generators and relations.

The situation leading up to C∗(X,T), namely that of a covering map, is shown to
fall under the hypothesis of finiteness of the index and hence we obtain (Theorem

9.2) a very concise set of relations defining C∗(X,T).
Still in the case of a covering map we obtain another result on faithfulness of rep-

resentations, this time without regard for circle actions but under the hypothesis of
topological freeness: a continuous map T : X → X is said to be topologically free1 (see

also [25, 2.1] [2], [8], and [14, 2.1]) if for every pair of nonnegative integers (n,m)
with n 6= m, one has that the set {x ∈ X : Tn(x) = Tm(x)} has empty interior.
Precisely, we show (Theorem 10.3) that under this hypothesis any representation of
the crossed product which is faithful on C(X) must itself be faithful. We moreover

show (Theorem 11.2) that the crossed product algebra is simple if and only if T is
irreducible in the sense that there are no closed nontrivial sets F ⊆ X such that
T−1(F) = F. This result improves on Deaconu’s characterization of simplicity [8]
since the above notion of irreducibility is much weaker than Deaconu’s notion of

minimality.
The hypothesis that T is a covering map is directly related to the finiteness of

the index which in turn is responsible for the existence of a conditional expectation
from the crossed product to C(X) [12, 8.9]. Since that conditional expectation turns

out to be one of our main tools in proving the characterization of simplicity, our
methods completely break down in the infinite index case. The characterization of
simplicity in the infinite index case therefore stands out as one of the main questions
left unresolved.

Last, but not least, we should mention that among the algebras which can be
described as C(X) ⋊α,L N are the Cuntz–Krieger algebras [11, 6.2] and the Bunce–
Deddens algebras [8], which therefore provide examples of the algebras that we dis-
cuss here.

2 The Algebras

Perhaps the first attempt at constructing an operator algebra from an irreversible

dynamical system is Arzumanian and Vershik’s 1978 paper [3]. Given a (not nec-
essarily invertible) measure-preserving transformation T of a measure space (X, µ)
they consider the C∗-algebra of operators on L2(X, µ) generated by the multiplication

operators

M f : ξ ∈ L2(X, µ) 7−→ f ξ ∈ L2(X, µ),

for all f ∈ L∞(X, µ), in addition to the isometry S defined by

S(ξ)|x = ξ(T(x)), ∀ ξ ∈ L2(X, µ), ∀ x ∈ X.

We will refer to this algebra as the Arzumanian–Vershik algebra and we will denote it
by AV(X,T, µ).

1Also called essentially free in [8].
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While it would be desirable that the algebraic structure of AV(X,T, µ) depend
more on the dynamical properties of T than on the invariant measure µ chosen, it

is evident that it does depend heavily on µ. In fact there is a specific way in which
µ influences the algebraic structure of AV(X,T, µ) which we would like to describe.
To this end, assume that we are under the hypothesis of [5, §3, No. 1, Théorème 1]
so that µ may be disintegrated along the fibers of T. This means that there exists a

collection {µx}x∈X , where each µx is a probability measure on T−1(x), and for every
µ-integrable function f on X one has that

(2.1)

∫

X

f (x) dµ(x) =

∫

X

(∫

T−1(x)

f (y) dµx(y)

)
dν(x),

where ν = T∗(µ) (observe that ν = µ since µ is invariant under T). For every
f ∈ L∞(X, µ) define the function L( f ) on X by

(2.2) L( f )|x =

∫

T−1(x)

f (y) dµx(y).

One may then verify that

(2.3) S∗M f S = ML( f ),

for every f ∈ L∞(X, µ). One therefore sees that the measure µ, or at least the collec-
tion formed by the µx, does indeed influence the algebraic structure of AV(X,T, µ).

Observe that in case T is the identity map on X, one has that S is the identity op-

erator on L2(X, µ). Because this is not in accordance with the classical case of crossed
products by automorphisms (where the unitary element implementing the given au-
tomorphism has full spectrum), it is sometimes useful to change the definition of
AV(X,T, µ) as follows: letting U be the bilateral shift on ℓ2(Z), define the operators

S̃ and M̃ f on the Hilbert space L2(X, µ) ⊗ ℓ2(Z) by

S̃ = S ⊗U , and M̃ f = M f ⊗ 1,

for all f ∈ L∞(X, µ). We then let ÃV(X,T, µ) be the C∗-algebra of operators on
L2(X, µ) ⊗ ℓ2(Z) generated by S̃ and all the M̃ f . The advantage of this alternative

construction is that when T is an automorphism of X one has that

ÃV(X,T, µ) ≃ L∞(X, µ) ⋊T Z,

where the right-hand side is the classical crossed product [19] of L∞(X, µ) under the
automorphism induced by T.

There is another important construction which has been proposed as a replace-

ment to classical crossed products in the case that X is a compact space and T : X → X

is a covering map. Building on [4], Deaconu [8] has shown how to construct an r-dis-
crete groupoid from the pair (X,T) to which one may apply Renault’s well-known
construction [21] leading up to a C∗-algebra which we will denote by C∗(X,T).
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Still under the assumption that T is a covering map each inverse image T−1(x)
is a finite set which in turn admits a canonical probability measure µx, namely the

normalized counting measure. Equation (2.2) may then be employed and this time
it defines a bounded positive operator

L : C(X) → C(X).

On considering C(X) as a subalgebra of C∗(X,T) and letting S denote the isometry

in C∗(X,T) described shortly before the statement of Theorem 2 in [8], it is easy to
see that

S∗ f S = L( f ), ∀ f ∈ C(X),

which is seen to be another manifestation of 2.3.

In a recent article [11], the first named author has proposed yet another construc-
tion of crossed product in the irreversible setting (see also [12, 13]), the ingredients
of which are a unital C∗-algebra A, an injective ∗-endomorphism

α : A → A

such that α(1) = 1, and a transfer operator, namely a continuous positive linear map

L : A → A

such that

(2.4) L (aα(b)) = L(a)b, ∀ a, b ∈ A,

which we will moreover suppose satisfies L(1) = 1.

The main examples we have in mind are of course related to the above situations,
where A is either L∞(X, µ) or C(X) and α is given in both cases by the expression

(2.5) α : f ∈ A 7→ f ◦ T ∈ A.

As for a transfer operator, one may use (2.2) after the appropriate choice of probabil-
ity measures µx is made.

Let us fix for the time being a C∗-algebra A, an injective ∗-endomorphism α of A

preserving the unit, and a transfer operator L such that L(1) = 1.

Definition 2.1 ([11, 3.1]) We will let T(A, α,L) denote the universal unital C∗-al-
gebra generated by a copy of A and an element Ŝ subject to the relations

(i) Ŝa = α(a)Ŝ, and
(ii) Ŝ∗aŜ = L(a),

for every a ∈ A.
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As proved in [11, 3.5], the canonical map from A to T(A, α,L) is injective so we
may view A as a subalgebra of T(A, α,L). Since L(1) = 1, we have that

Ŝ∗Ŝ = Ŝ∗1Ŝ = L(1) = 1,

and hence we see that Ŝ is an isometry.

Following [11, 3.6] a redundancy is a pair (a, k) of elements in T(A, α,L) such
that k is in the closure of AŜŜ∗A, a is in A, and

abŜ = kbŜ, ∀ b ∈ A.

Definition 2.2 ([11, 3.7]) The crossed product of A by α relative to L, denoted by
A ⋊α,L N, is defined to be the quotient of T(A, α,L) by the closed two-sided ideal
generated by the set of differences a − k, for all2 redundancies (a, k).

As a consequence of our assumption that L(1) = 1, we have by [11, 2.3] that the

composition E = α ◦ L is a conditional expectation from A onto the range of α. In
addition L may be given in terms of E by L = α−1 ◦ E. It is easy to see that E is
faithful (meaning that E(a∗a) = 0 ⇒ a = 0) if and only if L is faithful (in the sense
that L(a∗a) = 0 ⇒ a = 0). We thank Iain Raeburn for pointing out the importance

of considering faithful transfer operators.
We will assume from now on that L is faithful. It then follows from [12, 4.12] that

the canonical map from A to A ⋊α,L N is injective and we use it to think of A as a
subalgebra of A ⋊α,L N. We will denote by S the image of Ŝ in A ⋊α,L N.

3 Preliminaries

For ease of reference let us now list the assumptions which will be in force for the
largest part of this work.

Hypotheses 3.1 (Standing Hypotheses)

(i) A is a unital C∗-algebra;

(ii) α is an injective ∗-endomorphism of A such that α(1) = 1;

(iii) L is a faithful transfer operator such that L(1) = 1.

We now wish to review some results from [12] in a form which is suitable for our

purposes. Recall from [12, 2.3] that T(A, α,L) (resp. A ⋊α,L N) coincides with the
closed linear span of the set of elements of the form aŜnŜ∗mb (resp. aSnS∗mb), for
a, b ∈ A.

Proposition 3.2 (See also [11, 2.3]) For each n ∈ N the map En defined by

En = αn ◦ L
n

is a conditional expectation from A onto the range of αn.

2We should remark that in [11, Definition 3.7], one uses only the redundancies (a, k) such that a
belongs to the ideal of A generated by the range of α. But, under the present hypothesis that α preserves
the unit, this ideal coincides with A.
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Proof It is clear that the range of En is contained in the range of αn. Moreover if
a ∈ A and b ∈ αn(A), say b = αn(c) with c ∈ A, we have that

En(ab) = αn(Ln(aαn(c))) = αn(Ln(a))αn(c) = En(a)b.

Plugging a = 1 above, and noticing that En(1) = 1, we see that En is the identity on
the range of αn. The remaining details are now elementary.

Definition 3.3 We will denote by Mn and Kn the subsets of A ⋊α,L N given by

Mn = ASn, and Kn = MnM
∗
n = ASnS∗nA.

Proposition 3.4 For every n,m ∈ N with n ≤ m we have that

(i) KnMm ⊆ Mm, and

(ii) KnKm ⊆ Km.

Proof Given a, b, c ∈ A we have

(aSnSn∗b)(cSm) = aSnSn∗bcSnSm−n
= aαn(Ln(bc))Sm,

whence (i) follows. As for (ii), we have

KnKm ⊆ KnMmM∗
m ⊆ MmM∗

m = Km.

It follows that each Kn is a C∗-subalgebra of A ⋊α,L N. In some cases (see below),
the Kn form an increasing sequence. In any event the closure of the sum of all Kn’s

is a C∗-subalgebra which we denote by

U =

∑∞

n=0
Kn.

Obviously U is the linear span of the set of elements of the form aSnS∗nb, where n ∈ N

and a, b ∈ A.

There is (see [12, 3.3]) a canonical action γ of the circle group T on A ⋊α,L N

given by

γz(S) = zS, and γz(a) = a, ∀ a ∈ A, ∀ z ∈ T,

which we shall call the gauge action. For any circle action the expression

(3.1) F(a) =

∫

z∈T

γz(a) dz, ∀ a ∈ A ⋊α,L N

gives a faithful conditional expectation onto the algebra of fixed points for γ. By [12,
3.5] we have that this fixed point algebra is precisely U.
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4 Faithfulness of Covariant Representations

Our goal in this section is to establish sufficient conditions for a representation of
A ⋊α,L N to be faithful. We therefore fix throughout this section a ∗-homomorphism

π : A ⋊α,L N → B,

where B is any C∗-algebra, quite often chosen to be the algebra of all bounded op-

erators on a Hilbert space, in which case we will be talking of a representation of
A ⋊α,L N as indicated above.

Lemma 4.1 If π is faithful on A then π is faithful on all of U.

Proof We begin by claiming that π is isometric when restricted to Mn for all n ∈ N.

In order to see this let a ∈ A and notice that

‖π(aSn)‖2
= ‖π(S∗na∗aSn)‖ = ‖π(Ln(a∗a))‖

= ‖Ln(a∗a)‖ = ‖S∗na∗aSn‖ = ‖aSn‖2,

hence proving the claim.
Let k ∈ U and suppose that k =

∑n
i=0 ki , where each ki ∈ Ki . By Proposi-

tion 3.4(i) we have that kbSn ∈ Mn for every b ∈ A. Supposing that π(k) = 0 we

have that π(kbSn) = 0 for every b in A and hence kbSn
= 0 by the above claim. It

follows that kk ′
= 0 for all k ′ ∈ Kn and hence that (k0, k1, . . . , kn) is a redundancy of

order n as defined in [12, 6.2]. By [12, 6.3] we have that k = 0 in A ⋊α,L N and hence
that π is injective on

∑n
i=0 Ki . Since the latter is a C∗-algebra by Proposition 3.4(ii)

and [19, 1.5.8] we see that π is isometric there and hence also on the inductive limit
of these algebras as n → ∞ which coincides with U.

This allows us to prove a version of the “gauge invariant uniqueness theorem” as

in [15, 2.3].

Theorem 4.2 Under the assumptions of Hypotheses 3.1 let B be a C∗-algebra and

π : A ⋊α,L N → B be a ∗-homomorphism which is faithful on A. Suppose that B admits

an action of the circle group such that π is covariant relative to the gauge action on

A ⋊α,L N and the given action on B. Then π is faithful on all of A ⋊α,L N.

Proof By [10, 2.9] it suffices to prove that π is faithful on the fixed point algebra for
the gauge action, which we know is U. But this obviously follows from Lemma 4.1.

5 States

In this section we will develop the necessary tools in order to show that the general-

ized Arzumanian–Vershik algebra ÃV(X,T, µ) fits our crossed product construction.
Since we will be working in the non-commutative setting, what we do here, especially
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Theorem 5.3 below, is related to the situation discussed in the last paragraph of [3].
As before we keep Hypotheses 3.1 in force.

Throughout this section we will fix a state φ on A which is invariant under both α
and L, i.e., such that

φ(α(a)) = φ(a) = φ(L(a)), ∀ a ∈ A.

Observe that φ is then necessarily invariant under the conditional expectations En of

Proposition 3.2.
Let ρ denote the GNS representation associated to φ and denote by H the corre-

sponding Hilbert space and by ξ the cyclic vector. Because φ is α-invariant one has
that the correspondence

ρ(a)ξ 7→ ρ(α(a))ξ, ∀ a ∈ A,

preserves norm and hence extends to H giving an isometry Š ∈ B(H) such that

(5.1) Š(ρ(a)ξ) = ρ(α(a))ξ, ∀ a ∈ A.

We next claim that for every a ∈ A one has that

(5.2) Š∗(ρ(a)ξ) = ρ(L(a))ξ.

In fact, given b ∈ A we have

〈Š∗(ρ(a)ξ), ρ(b)ξ〉 = 〈ρ(a)ξ, Š(ρ(b)ξ)〉 = 〈ρ(a)ξ, ρ(α(b))ξ〉
= φ(α(b∗)a)$ = φ(L(α(b∗)a)) = φ(b∗L(a))

= 〈ρ(L(a))ξ, ρ(b)ξ〉,

from which (5.2) follows. With this it is easy to show that for every a ∈ A one has

that
Šρ(a) = ρ(α(a))Š, and Š∗ρ(a)Š = ρ(L(a)).

By the universal property it follows that there exists a representation Π of T(A, α,L)
on H such that

Π(Ŝ) = Š, and Π(a) = ρ(a),

for all a ∈ A.

Proposition 5.1 For any redundancy (a, k) one has that Π(a − k) = 0. Therefore Π

factors through a representation π of A ⋊α,L N on H such that π(S) = Š and π(a) =

ρ(a) for all a ∈ A.

Proof Substituting a = 1 in (5.1) we see that Š(ξ) = ξ and hence for any b ∈ A we

have
Π(bŜ)ξ = ρ(b)Šξ = ρ(b)ξ.

Therefore,

ρ(a)ρ(b)ξ = ρ(ab)ξ = Π(abŜ)ξ = Π(kbŜ)ξ = Π(k)Π(bŜ)ξ = Π(k)ρ(b)ξ,

which implies that ρ(a) = Π(k).
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There is another representation of A ⋊α,L N obtained from φ which we would like
to describe next.

Proposition 5.2 Consider the above GNS representation ρ of A and let U denote the

bilateral shift on ℓ2(Z). Then there exists a representation π̃ of A ⋊α,L N on H ⊗ ℓ2(Z)
such that

π̃(S) = Š ⊗U , and π̃(a) = ρ(a) ⊗ 1,

for all a ∈ A.

Proof It is elementary to check that

(Š ⊗U )(ρ(a) ⊗ 1) = (ρ(α(a)) ⊗ 1)(Š ⊗U )

and

(Š ⊗U )∗(ρ(a) ⊗ 1)(Š ⊗U ) = ρ(L(a)) ⊗ 1,

from which one concludes that there exists a representation Π̃ of T(A, α,L) on H ⊗
ℓ2(Z) such that

Π̃(Ŝ) = Š ⊗U , and Π̃(a) = ρ(a) ⊗ 1.

As before, we claim that Π̃(a − k) = 0 for any redundancy (a, k). In order to see this

observe that given b, c ∈ A we have

Π̃(bŜŜ∗c) = (ρ(b) ⊗ 1)(Š ⊗U )(Š∗ ⊗U ∗)(ρ(c) ⊗ 1) = Π(bŜŜ∗c) ⊗ 1.

This implies that Π̃(k) = Π(k) ⊗ 1 for all k ∈ AŜŜ∗A and hence the claim follows

from Proposition 5.1. It therefore follows that Π̃ factors through A ⋊α,L N, yielding
the desired representation.

The main result of this section is in order:

Theorem 5.3 Under Hypotheses 3.1 let φ be a state on A which is invariant under

both α and L. Suppose that the GNS representation of φ, denoted by ρ, is faithful. Then

the representation π̃ of A ⋊α,L N constructed above is faithful. Therefore, A ⋊α,L N is

canonically isomorphic to the algebra of operators on H ⊗ ℓ2(Z) generated by the set

{ρ(a) ⊗ 1 : a ∈ A} ∪ {Š ⊗U},

where Š is given by (5.1) and U is the bilateral shift on ℓ2(Z).

Proof For each z ∈ T let Vz be the unitary operator on ℓ2(Z) given on the canonical
basis {en}n∈Z by Vz(en) = znen. We then have that VzUV ∗

z = zU which implies that

(1 ⊗Vz)π̃(S)(1 ⊗V ∗

z ) = z π̃(S),

while
(1 ⊗Vz)π̃(a)(1 ⊗V ∗

z ) = π̃(a),
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for all a ∈ A. Let B be the C∗-algebra formed by the operators T on H ⊗ ℓ2(Z) for
which the map z 7→ (1 ⊗Vz)T(1 ⊗V ∗

z ) is norm continuous. The above calculations

show that π̃ maps A ⋊α,L N into B. Moreover it is clear that π̃ is covariant for the dual
action on A ⋊α,L N and the action by conjugation by 1 ⊗ Vz on B. The conclusion
then follows from Theorem 4.2.

6 The Arzumanian–Vershik Algebra

Let (X, µ) be a probability space and T : X → X be a measure-preserving transfor-

mation. It is easy to see that the correspondence

α : f ∈ L∞(X, µ) 7→ f ◦ T ∈ L∞(X, µ)

gives an injective ∗-endomorphism of L∞(X, µ). We will assume that µ may be dis-
integrated along the fibers of T as in (2.1). Letting {µx}x∈X be such a disintegration,
it is straightforward to verify that the operator L defined by (2.2) is a normalized

transfer operator. By (2.1) it is obvious that L is faithful. We therefore have all of the
ingredients needed to form the crossed product algebra L∞(X, µ) ⋊α,L N.

Denote by φ the state on L∞(X, µ) given by integration against µ. It is clear that φ
is invariant under α. On the other hand, observe that (2.1) together with the fact
mentioned there that ν = µ says precisely that φ is invariant under L as well.

It is easy to see that AV(X,T, µ) is precisely the range of the representation π of

Proposition 5.1 while ÃV(X,T, µ) is the range of the representation π̃ of Proposi-
tion 5.2 . Since it is obvious that the GNS representation associated to φ is faithful on

L∞(X, µ) we conclude from Theorem 5.3 that:

Theorem 6.1 The generalized Arzumanian–Vershik algebra ÃV(X,T, µ) is canoni-

cally isomorphic to the crossed product L∞(X, µ) ⋊α,L N.

The above result does not rule out the possibility that AV(X,T, µ) might be iso-

morphic to L∞(X, µ) ⋊α,L N as well. Since the former algebra is a quotient of the lat-
ter by Proposition 5.1, these algebras would be isomorphic in case L∞(X, µ) ⋊α,L N

is simple, for example.

Unfortunately we do not have a precise characterization of simplicity, but see be-
low for a similar characterization when T is a covering map of a compact space X.

Theorem 6.1 also helps explain to what extent ÃV(X,T, µ) depends on µ. While
there is no question that the probability measures µx influence the outcome, we see
that this is as far as the dependence goes. In particular, if one takes another measure ν

such that the νx coincide with the µx, then the algebras ÃV(X,T, µ) and ÃV(X,T, ν)

will be isomorphic.

7 Finite Index Endomorphisms

In this section we return to the general case described in Hypotheses 3.1. We will
denote the conditional expectation E1 of Proposition 3.2 simply by E. The main
assumption to be added from here on is that E is of index-finite type according to
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[26, 1.2.2 and 2.1.6]. That is, we will assume the existence of a quasi-basis for E,
namely, a finite sequence {u1, . . . , um} ⊆ A such that

(7.1) a =

m∑

i=1

uiE(u∗

i a), ∀ a ∈ A.

In this case one defines the index of E by

ind(E) =

m∑

i=1

uiu
∗

i .

It is well known that ind(E) does not depend on the choice of the ui ’s, that it belongs

to the center of A [26, 1.2.8] and is invertible [26, 2.3.1].
In particular, A is a finitely generated right B-module with {u1, . . . , um} being a

generating set. See also Proposition 8.2 below for a sufficient condition for E to be of
index-finite type in the case that A is a commutative C∗-algebra.

We would first like to show that, under the present hypothesis, the process of
dividing out by the redundancies in the definition of A ⋊α,L N (Definition 2.2) can
be achieved by adding a single relation.

Proposition 7.1 Let {u1, . . . , um} be a quasi-basis for E and denote by k0 the element

of T(A, α,L) given by k0 =
∑m

i=1 ui ŜŜ∗u∗

i . Then the pair (1, k0) is a redundancy and

hence

1 =

m∑

i=1

uiSS∗u∗

i

in A ⋊α,L N. Moreover the kernel of the natural quotient map q : T(A, α,L) →
A ⋊α,L N coincides with the closed two-sided ideal generated by 1 − k0.

Proof Given b ∈ A we have

k0bŜ =

m∑

i=1

ui ŜŜ∗u∗

i bŜ =

m∑

i=1

uiα(L(u∗

i b))Ŝ =

m∑

i=1

uiE(u∗

i b)Ŝ = bŜ,

proving the first statement. Next let (a, k) be any other redundancy. Then

kk0 =

m∑

i=1

kui ŜŜ∗u∗

i =

m∑

i=1

aui ŜŜ∗u∗

i = ak0.

It follows that
a − k = (a − k)(1 − k0)

and hence that a − k belongs to the ideal generated by 1 − k0.

The description of A ⋊α,L N in terms of generators and relations therefore be-
comes:
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Corollary 7.2 Under Hypotheses 3.1 suppose that the conditional expectation E =

α ◦L is of index-finite type and let {u1, . . . , um} be a quasi-basis for E. Then A ⋊α,L N

is the universal C∗-algebra generated by a copy of A and an isometry S subject to the

relations:

(i) Sa = α(a)S,

(ii) S∗aS = L(a), and

(iii) 1 =
∑m

i=1 uiSS∗u∗

i ,

for all a in A.

Proof Follows immediately from the theorem above.

We will take the remainder of this section to develop a few technical consequences
of the fact that E is of index-finite type, to be used in later sections. Some of these are
interesting in their own right. The first one is essentially the combined contents of
[12, Propositions 8.2 and 8.3]:

Proposition 7.3 If {u1, . . . , um} is a quasi-basis for E and n ∈ N then

(i)
∑m

i=1 α
n(ui)Sn+1S∗n+1αn(u∗

i ) = SnS∗n,
(ii) Kn ⊆ Kn+1.

Proof We have

m∑

i=1

αn(ui)Sn+1S∗n+1αn(u∗

i ) =

m∑

i=1

SnuiSS∗u∗

i S∗n
= SnS∗n,

proving (i). The second point then follows immediately from (i).

It follows that the fixed point algebra for the gauge action, namely U, is the induc-
tive limit of the Kn. Recall from [12, 8.9] that there exists a conditional expectation
G : A ⋊α,L N → A such that

G(aSnS∗mb) = δnmaI−1
n b, ∀ a, b ∈ A, ∀ n,m ∈ N,

where δ is the Kronecker symbol and

(7.2) In = ind(E)α(ind(E)) · · ·αn−1(ind(E)).

Proposition 7.4 Let {u1, . . . , um} be a quasi-basis for E and put Z = {1, . . . ,m}.

For each n ∈ N \ {0} and for each multi-index i = (i0, i1, . . . , in−1) ∈ Zn let

u(i) = ui0
α(ui1

)α2(ui2
) · · ·αn−1(uin−1

).

Then

(i)
∑

i∈Zn u(i)S
nS∗nu∗

(i) = 1.
(ii) If A is commutative then

∑
i∈Zn u(i)u

∗

(i) = In.
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Proof For n = 1 the conclusion follows from Proposition 7.1 and the definition of
ind(E). So assume that n > 1 and observe that

∑

i∈Zn

u(i)S
nS∗nu∗

(i) =

∑

i∈Zn−1

m∑

j=1

u(i)α
n−1(u j)SnS∗nαn−1(u∗

j )u∗

(i))

=

∑

i∈Zn−1

u(i)S
n−1S∗n−1u∗

(i) Proposition 7.3(i)

= 1,

where the last step is by induction. As for (ii) observe that

∑

i∈Zn

u(i)u
∗

(i) =

∑

i∈Zn−1

m∑

j=1

u(i)α
n−1(u j)α

n−1(u∗

j )u∗

(i)

=

∑

i∈Zn−1

u(i)α
n−1(ind(E))u∗

(i) = αn−1(ind(E))
∑

i∈Zn−1

u(i)u
∗

(i),

and the conclusion again follows by induction.

As a consequence we will see that the conditional expectation G may be described
by an algebraic expression on each Kn when A is abelian.

Corollary 7.5 Suppose that E is of index-finite type and A is a commutative C∗-alge-

bra. Then for each n ∈ N there exists a finite set {v1, . . . , vp} ⊆ A such that

(i) G(a) =
∑p

i=1 viav∗i , for all a ∈ Kn,

(ii)
∑p

i=1 viv
∗

i = 1.

Proof Let {u(i)}i∈Zn be as in Proposition 7.4 and for i ∈ Zn set v(i) = I
−1/2
n u(i),

where In is defined in (7.2). Then for any a, b ∈ A we have

∑

i∈Zn

v(i)aSnS∗nbv∗(i) = aI−1/2
n

(∑

i∈Zn

u(i)S
nS∗nu∗

(i)

)
I−1/2

n b = aI−1
n b = G(aSnS∗nb).

Finally observe that plugging a = 1 in (i) gives (ii).

Recall that En was defined to be the composition En = αn ◦Ln. If we observe that
L = α−1 ◦ E we may write En as

En = αn (α−1E) · · · (α−1E)︸ ︷︷ ︸
n times

=
(
αn−1Eα−(n−1)

)
· · ·

(
α2Eα−2

) (
αEα−1

)
E.

Viewing each αkEα−k as a conditional expectation from αk(A) to αk+1(A), it is obvi-
ous that it is of index-finite type. By [26, 1.7.1] En is of index-finite type as well and
hence by [26, 2.1.5] there are constants λn > 0 such that ‖En(a∗a)‖1/2 ≥ λn‖a‖, for
all a in A.
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Lemma 7.6 Suppose that E is of index-finite type. Then for each n ∈ N one has that

ASn is closed in A ⋊α,L N so that Mn = ASn (without closure).

Proof For each a ∈ A we have

‖aSn‖ = ‖S∗na∗aSn‖1/2
= ‖Ln(a∗a)‖1/2

= ‖αn(Ln(a∗a))‖1/2

= ‖En(a∗a)‖1/2 ≥ λn‖a‖.

Therefore the map a ∈ A 7→ aSn ∈ Mn is a Banach space isomorphism onto its range
which in turn is a complete normed space, hence closed.

Proposition 7.7 Suppose that E is of index-finite type and let n ∈ N. Then any

element k ∈ Kn may be written as a finite sum of the form
∑m

i=1 aiS
nS∗nb∗i , where

m ∈ N and ai, bi ∈ A. If k ≥ 0 we may take bi = ai .

Proof Let {u(i)}i∈Zn be as in Proposition 7.4. Then for each i ∈ Zn we have by
Proposition 3.4(i) that ku(i)S

n ∈ Mn = ASn. So there is ai ∈ A such that ku(i)S
n

=

aiS
n and by Proposition 7.4(i)

k = k
(∑

i∈Zn

u(i)S
nS∗nu∗

(i)

)
=

∑

i∈Zn

aiS
nS∗nu∗

(i).

If k ≥ 0 write k = l∗l, with l =
∑m

i=1 xiS
nS∗n yi , and xi, yi ∈ A. Then

k =

m∑

i, j=1

xiS
nS∗n yi y∗j SnS∗nx∗j =

m∑

i, j=1

xiEn(yi y∗j )SnS∗nx∗j .

Since (En(yi y∗j ))i, j is a positive m × m matrix over αn(A) by [24, IV.3.4] there exists

another such matrix, say (ci, j)i, j such that En(yi y∗j ) =
∑m

k=1 cikc∗jk for all i and j.
Therefore

k =

m∑

i, j,k=1

xicikc∗jkSnS∗nx∗j =

m∑

i, j,k=1

xicikSnS∗nc∗jkx∗j

=

m∑

k=1

( m∑

i=1

xicik

)
SnS∗n

( m∑

j=1

c∗jkx∗j

)
=

m∑

k=1

akSnS∗na∗k ,

where ak =
∑m

i=1 xicik.

Proposition 7.8 If E is of index-finite type the restriction of the conditional expecta-

tion G above to each Kn is faithful.
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Proof Let k ≥ 0 in Kn be such that G(k) = 0. Write k =
∑m

i=1 aiS
nS∗na∗i as in

Proposition 7.7. Then

0 = G

( m∑

i=1

aiS
nS∗na∗i

)
=

m∑

i=1

aiIna∗i ,

which implies that aiIna∗i = 0, for all i, and hence also that aiI
1/2
n = 0. Since In is

invertible we have that ai = 0 and so k = 0.

We will now see that G is also faithful on A ⋊α,L N in the following weak sense.

Proposition 7.9 Suppose that E is of index-finite type and let a ≥ 0 in A ⋊α,L N be

such that G(xax∗) = 0 for all x ∈ U. Then a = 0.

Proof Using the conditional expectation F of (3.1) we have

0 = G(xax∗) = G(F(xax∗)) = G(xF(a)x∗),

for all x ∈ U. Observe that this allows us to suppose that a ∈ U. In fact, should the
result be proved in this special case, we would have that F(a) = 0 in which case a = 0
since F is faithful. We therefore suppose that a ∈ U.

By the polarization identity we have that G(xay∗) = 0 for all x, y ∈ U. Supposing
by way of contradiction that a 6= 0 observe that the closed two-sided ideal J of U

given by
J = {b ∈ U : G(xby∗) = 0, ∀x, y ∈ U}.

is nontrivial. Since U =
⋃

n∈N
Kn, it follows from [1, 1.3] (see also [7, 3.1]) that there

exists a nonzero element b ∈ J ∩ Kn for some n. But since G(b∗b) = 0 we have by
Proposition 7.8 that b = 0, which is a contradiction.

8 Covering Maps

From this section on we will let X be a compact topological space and T : X → X

be a continuous surjective map. We will then consider the C∗-algebra A = C(X)

equipped with the endomorphism α given by

(8.1) α : f ∈ C(X) 7→ f ◦ T ∈ C(X).

We will assume another important hypothesis, namely that T is a covering map.
As we will see this will allow us to define a somewhat canonical transfer operator.

Proposition 8.1 If T : X → X is a covering map, then for each f ∈ A the function

L( f ) given by

L( f )|x =

∑

t∈T−1(x)

f (t), ∀ x ∈ X,

is continuous on X.
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Proof Given x0 ∈ X let W be an open neighborhood of x0 such that T−1(W ) is the
disjoint union of open sets U1, . . . ,Un such that T is a homeomorphism from each Ui

onto W . For each i = 1, . . . , n let φi : W → Ui be the inverse of the restriction of T

to Ui . Then for all x ∈ W one has that T−1(x) = {φ1(x), . . . , φn(x)} and hence

L( f )|x =

n∑

i=1

f (φi(x))

so that L( f ) is seen to be continuous at x0.

Setting

(8.2) L( f ) = L(1)−1L( f ) and E = α ◦ L,

it is easy to see that L is a faithful transfer operator for α, that E is a conditional

expectation from A onto the range ofα, and that L = α−1◦E. Adopting the notation
Λ = α(L(1)) it is easy to see that for all x ∈ X

(8.3) Λ(x) = #{t ∈ X : T(t) = T(x)}

and

(8.4) E( f )|x =
1

Λ(x)

∑

t∈X
T(t)=T(x)

f (t).

The next result is taken from [12, §11] and is reproduced here for the convenience
of the reader:

Proposition 8.2 Let {Vi}m
i=1 be a finite open covering of X such that the restriction

of T to each Vi is one-to-one and let {vi}m
i=1 be a partition of unity subordinate to that

covering. Setting ui = (Λvi)
1/2 one has that {ui}m

i=1 is a quasi-basis for E and hence E

is of index-finite type. Moreover ind(E) = Λ.

Proof Observe that for all f ∈ A and x ∈ X one has that

m∑

i=1

uiE(ui f )|x =

m∑

i=1

ui(x)
1

Λ(x)

∑

t∈X
T(t)=T(x)

ui(t) f (t)

=

m∑

i=1

ui(x)
1

Λ(x)
ui(x) f (x) =

m∑

i=1

vi(x) f (x) = f (x).

Therefore {u1, . . . , um} is a quasi-basis for E and

ind(E) =

m∑

i=1

u2
i =

m∑

i=1

Λvi = Λ.

In the final result of this section we denote by supp( f ) the support of the func-
tion f , namely the closure of the set {x : f (x) 6= 0}.
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Lemma 8.3 Let L be any transfer operator for α (such as the one defined in (8.2) but

not necessarily). Then for f ∈ C(X) one has

(i) supp(α( f )) ⊆ T−1(supp( f )), and

(ii) supp(L( f )) ⊆ T(supp( f )).

Proof The first point is trivial. As for (ii), let x be such that L( f )|x 6= 0. We claim
that x ∈ T(supp( f )). Otherwise let g be a continuous function on X which vanishes

on T(supp( f )) and such that g(x) = 1. Then fα(g) = 0 because for all y ∈ X

f (y)α(g)(y) = f (y)g(T(y)),

and if f (y) 6= 0 then y ∈ supp( f ) in which case g(T(y)) = 0. We then have

L( f )|x = L( f )|xg(x) = L( f )g|x = L
(

fα(g)
)
|x = 0,

contradicting our assumption. This proves our claim that x ∈ T(supp( f )). Since the
latter is closed the conclusion follows.

9 The Algebra C
∗(X,T)

As before let X be a compact topological space and let T : X → X be a covering map.

We will suppose, as in [8], that each point of X has exactly p inverse images under T.

Motivated by earlier work of Renault on the Cuntz groupoid [21] and on Arzu-
manian and Vershik’s paper [4], Deaconu [8] has considered the set

Γ = {(x, n, y) ∈ X × Z × X : ∃ k, l ∈ N, n = l − k, Tk(x) = T l(y)}

with the following groupoid structure: the product of (x, n, y) and (w,m, z) is defined
if (and only if) y = w in which case it is given by (x, n + m, z). The inverse of

(x, n, y) is set to be (y,−n, x). Deaconu has proven that Γ admits the structure of an
r-discrete locally compact groupoid with Haar system given by counting measures
(see [8, Theorem 1]). We will denote the corresponding groupoid C∗-algebra [21] by
C∗(X,T).

We will view C(X) as a subalgebra of C∗(X,T) by identifying a function f ∈ C(X)
with the function (also denoted) f on Γ given as

f (x, n, y) = [n = 0 ∧ x = y] f (x),

where the brackets correspond to the obvious boolean valued function. Let v be the
element of C∗(X,T) defined shortly before the statement of Theorem 2 in [8] by

v(x, n, y) = [n = −1 ∧ y = T(x)]/
√

p

where p is the index of the covering.
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Theorem 9.1 Let X be a compact topological space and T : X → X be a covering

map. Consider the endomorphism α of C(X) given by (8.1) and the transfer operator L

defined in (8.2). Then there exists a ∗-isomorphism φ from C(X) ⋊α,L N onto C∗(X,T)
which is the identity on C(X) and such that φ(S) = v.

Proof By [8] we have that

(vv∗)(x, n, y) = [n = 0 ∧ T(x) = T(y)]/p.

Let vi , ui , and Λ be as in Proposition 8.2 observing that in the present case Λ is the
constant function equal to p. Since T is injective when restricted to the set where
each ui does not vanish, we have

(uivv∗ui)(x, n, y) = ui(x) (vv∗)(x, n, y) ui(y)

= [n = 0 ∧ T(x) = T(y)]ui(x)ui(y)/p

= [n = 0 ∧ x = y]ui(x)2/p = [n = 0 ∧ x = y]vi(x).

Since the vi form a partition of unity, we have that

m∑

i=1

uivv∗ui = 1.

By direct computation one can prove that v f = α( f )v and v∗ f v = L( f ) for each

f ∈ C(X), so by Corollary 7.2 there exists a ∗-homomorphism

φ : C(X) ⋊α,L N → C∗(X,T)

such that φ( f ) = f , for all f ∈ C(X) and φ(S) = v. It is clear that φ is injective
on C(X) and covariant for the gauge action on C(X) ⋊α,L N and the circle action on

C∗(X,T) described in [8] in terms of the cocycle

c(x, n, y) = −n.

That φ is injective then follows from Theorem 4.2. On the other hand we have that
C(X) ∪ {v} generates C∗(X,T) as a C∗-algebra and hence φ is surjective as well.

The description of the C∗(X,T) in terms of generators and relations therefore
becomes:

Theorem 9.2 Let X be a compact topological space and let T : X → X be a covering

map. Then C∗(X,T) is the universal C∗-algebra generated by a copy of C(X) and an

isometry S subject to the relations

(i) S f = α( f )S,

(ii) S∗ f S = L( f ),

(iii) 1 =
∑m

i=1 uiSS∗u∗

i ,

https://doi.org/10.4153/CJM-2006-003-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-003-x


58 R. Exel and A. Vershik

for all f in C(X), where L is given by (8.2) and the ui are as in Proposition 8.2.

Proof This follows immediately from the result above and Corollary 7.2.

Before closing this section we should remark that an example of the situation

treated above is given by the Markov one-sided subshift associated to a zero-one ma-
trix A with no zero rows, in which case C(X) ⋊α,L N is isomorphic to the Cuntz–
Krieger algebra OA by [11, Theorem 6.2].

10 Topological Freeness

In this section we will obtain another result about faithfulness of representations.
This time, instead of requiring gauge-covariance as in Theorem 4.2, we will make
assumptions on the dynamical properties of the transformation T.

We keep the standing assumptions of Section 8, namely that T is a covering map
of the compact space X and the endomorphism α of C(X) is given by (8.1). The
transfer operator L will be given, as before, by (8.2).

We begin by describing the main hypothesis to be used below (see also [25, 2.1],
[2], [8], and [14, 2.1]).

Definition 10.1 We will say that the dynamical system (X,T) is topologically free if
for every pair of nonnegative integers (n,m) with n 6= m, the set

{x ∈ X : Tn(x) = Tm(x)}

has empty interior.

The next result is motivated by [14, Lemma 2.3].

Lemma 10.2 Let x0 ∈ X and n,m ∈ N be such that Tn(x0) 6= Tm(x0). Then there

exists h ∈ C(X) with

(i) 0 ≤ h ≤ 1,

(ii) h(x0) = 1,

(iii) hSnS∗mh = 0.

Proof We begin by claiming that there exists an open set U ⊆ X with x0 ∈ U such

that U ∩ T−n(Tm(U )) = ∅. In fact let A,B ⊆ X be disjoint open sets such that
Tn(x0) ∈ A and Tm(x0) ∈ B and set U = T−n(A) ∩T−m(B). Then obviously x0 ∈ U

and Tn(U ) ∩ Tm(U ) = ∅. In addition

∅ = T−n
(

Tn(U )∩Tm(U )
)

= T−n
(

Tn(U )
)
∩T−n

(
Tm(U )

)
⊇ U ∩T−n

(
Tm(U )

)
,

thus proving our claim. Pick h ∈ C(X) satisfying (i) and (ii) above and such that
supp(h) ⊆ U . Then

‖hSnS∗mh‖2
= ‖hSnS∗mh2SmS∗nh‖ = ‖hαn(Lm(h2))SnS∗nh‖.
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So it suffices to prove that hαn(Lm(h2)) = 0. For this purpose observe that by [11,
3.2] we have that Lm is a transfer operator for αm and hence by Lemma 8.3 we have

supp
(
αn(Lm(h2))

)
⊆ T−n

(
supp(Lm(h2))

)
⊆ T−n

(
Tm(supp(h2))

)

⊆ T−n(Tm(U )).

Since the latter set is disjoint from U , and hence also disjoint from supp(h), we have
that hαn(Lm(h2)) is indeed zero.

We now come to the main result of this section (for similar results see [1, 1.2], [6,

2.1], [14, 2.6], [16, 3.7], [23, 2.1]).

Theorem 10.3 Let T be a topologically free covering map of the compact space X,

let α be the endomorphism of C(X) given by (8.1), and L be the transfer operator given

by (8.2). Then any nontrivial ideal of C(X) ⋊α,L N must have a nontrivial intersection

with C(X). Given a C∗-algebra B and a ∗-homomorphism π : C(X) ⋊α,L N → B which

is faithful on C(X) one has that π is faithful on all of C(X) ⋊α,L N.

Proof Let π : C(X) ⋊α,L N → B be faithful on C(X). We begin by claiming that

(†) ‖G(a)‖ ≤ ‖π(a)‖

for all a ≥ 0 in C(X) ⋊α,L N. In order to prove this observe that the set of nonnega-
tive elements of the form

(‡) a =

t∑

i=1

aiS
ni S∗mi bi ,

where ni ,mi ∈ N and ai, bi ∈ C(X), is dense in the positive cone of C(X) ⋊α,L N. In
fact, given any a ≥ 0 in C(X) ⋊α,L N one may write a = b∗b and then approximate b

by elements of the above form by [12, 2.3]. Using [12, 2.2] we have that b∗b again has
the above form and clearly b∗b can be made to be as close as necessary to a. In order

to prove (†) we may therefore assume that a has the form of (‡). Let us also suppose
that the sum in (‡) is arranged in such a way that ni = mi for all i = 1, . . . , s, while
ni 6= mi for i = s + 1, . . . , t .

For each i = s + 1, . . . , t we have by hypothesis that {x ∈ X : Tni (x) 6= Tmi (x)}
is an open dense set and hence so is their intersection. Consequently, fixing a real
number ρ with 0 < ρ < 1, there exists x0 ∈ X such that G(a)|x0

> ρ‖G(a)‖ and
Tni (x0) 6= Tmi (x0) for all i = s + 1, . . . , t .

Using Lemma 10.2 choose for each i = s + 1, . . . , t an hi ∈ C(X) with 0 ≤ hi ≤ 1,
hi(x0) = 1, and hiS

ni S∗mi hi = 0. Setting h = hs+1 · · · ht we therefore have that

hah =

t∑

i=1

aihSni S∗mi hbi =

s∑

i=1

aihSni S∗ni hbi = hF(a)h,
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where F is given by (3.1). Since F(a) ∈ Kn, where n = max{n1, . . . , ns}, by Propo-
sition 7.3(ii) we may choose by Corollary 7.5 a finite set {v1, . . . , vp} ⊆ C(X) such

that
∑p

i=1 viv
∗

i = 1 and

G(a) = G(F(a)) =

p∑

i=1

viF(a)v∗i .

It follows that

‖hG(a)h‖ = ‖π(hG(a)h)‖ =

∥∥∥
p∑

i=1

π(hviF(a)v∗i h)
∥∥∥

=

∥∥∥
p∑

i=1

π(vihahv∗i )
∥∥∥ ≤ ‖π(a)‖.

Since

‖hG(a)h‖ ≥ h(x0)G(a)|x0
h(x0) = G(a)|x0

> ρ‖G(a)‖

and ρ is arbitrary we conclude that ‖G(a)‖ ≤ ‖π(a)‖ as claimed.

Let a ∈ C(X) ⋊α,L N be such that π(a) = 0. Then for any b ∈ C(X) ⋊α,L N we
have

‖G(b∗a∗ab)‖ ≤ ‖π(b∗a∗ab)‖ = 0,

and hence G(b∗a∗ab) = 0. Applying Proposition 7.9 we conclude that a∗a = 0 and
hence also that a = 0.

The assertion about ideals in the statement is proved as follows. Given an ideal
J of C(X) ⋊α,L N which is not the trivial ideal let π be the quotient map. Then π
cannot be faithful on C(X) or else it would be faithful on all of C(X) ⋊α,L N by what
we have already proved. It follows that J ∩C(X) 6= {0}.

11 Simplicity

As before, we fix a compact space X and a covering map T of X, and we let α and L be

given respectively by (8.1) and (8.2). Our main goal here will be to find a necessary
and sufficient condition for C(X) ⋊α,L N to be simple.

Recall that two points x, y ∈ X are said to be trajectory-equivalent (see e.g., [3])
when there are n,m ∈ N such that Tn(x) = Tm(y). We will denote this by x ∼ y. A

subset Y ⊆ X is said to be invariant if x ∼ y ∈ Y implies that x ∈ Y . It is easy to see
that Y is invariant if and only if T−1(Y ) = Y . We will say that T is irreducible when
there is no closed (equivalently open) invariant set other than ∅ and X. Notice that
irreducibility is weaker than the condition of minimality defined in [8].

Proposition 11.1 If T is irreducible then either

(i) T is topologically free, or

(ii) X is finite and T is a cyclic permutation of X.
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Proof Suppose that T is irreducible and not topologically free. Then there is a
nonempty open set U ⊆ X and n,m ∈ N with n 6= m such that Tn(u) = Tm(u) for

all u in U . Clearly
⋃

k,l∈N
T−k(T l(U )) is an open invariant set so, being nonempty,

it must coincide with X. In this case {T−k(T l(U ))}k,l∈N is an open cover of X and

hence admits a finite subcover, say {T−ki (T li (U ))}i=1,...,p. Given any x ∈ X choose i

such that x ∈ T−ki (T li (U )). Therefore there exists u ∈ U such that Tki (x) = T li (u).
It follows that

Tn+ki (x) = Tn(T li (u)) = T li (Tn(u)) = T li (Tm(u)) = Tm(T li (u)) = Tm+ki (x).

Setting k = max{k1, . . . , kp} we therefore see that

Tn+k(x) = Tm+k(x), ∀ x ∈ X.

Assuming without loss of generality that n > m, and setting r = m+k and s = n−m,
this translates into Ts+r(x) = Tr(x). Since Tr is a surjective map we conclude that

Ts
= 1. The reader may now easily prove that we must be in the situation described

by (ii).

The next result improves on Deaconu’s characterization of simplicity [8]. It is also

a generalization of the corresponding result for crossed products by automorphisms
(see [9, 20, 25]).

Theorem 11.2 Let T be a covering map of an infinite compact space X to itself, let α
be the endomorphism of C(X) given by (8.1), and let L be the transfer operator given by

(8.2). Then C(X) ⋊α,L N is simple if and only if T is irreducible.

Proof Supposing that T is irreducible, let J be an ideal in C(X) ⋊α,L N. Obviously
J ∩ C(X) is an ideal in C(X) and hence coincides with C0(U ) for some open set
U ⊆ X. We claim that U is invariant. For this we need to prove that x ∼ y ∈ U

implies that x ∈ U .

Let f be a nonnegative function in C0(U ) such that f (y) = 1. Given that x ∼ y,
let n,m ∈ N be such that Tn(x) = Tm(y). Taking {u(i)}i∈Zn as in Proposition 7.4 we
therefore have that

J ∋
∑

i∈Zn

u(i)S
nS∗m f SmS∗nu∗

(i) =

∑

i∈Zn

u(i)α
n(Lm( f ))SnS∗nu∗

(i)

= αn(Lm( f ))
∑

i∈Zn

u(i)S
nS∗nu∗

(i) = αn(Lm( f )),

by Proposition 7.4(i). It follows that αn
(
Lm( f )

)
∈ C0(U ). On the other hand,

observe that

αn
(
L

m( f )
)
|x = L

m( f )|Tn(x) = L
m( f )|Tm(y) = αm(Lm( f ))|y

= Em( f )|y ≥ c f (y) > 0,
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where the constant c appearing above is obtained from [26, 2.1.5]. One must then
have that x ∈ U , which concludes the proof of the claim that U is invariant. Since T

is irreducible we have that U is either empty or equal to X. In case U = ∅ we have
that J∩C(X) = {0}, but since T is topologically free by Proposition 11.1 we have that
J = {0} by Theorem 10.3. On the other hand if U = X we have that 1 ∈ C0(U ) ⊆ J

in which case J = C(X) ⋊α,L N.

Let us now suppose that T is not irreducible, that is, that there exists a nontrivial
open invariant subset U ⊆ X. Let I = C0(U ). It is then clear that α(I) ⊆ I and
L(I) ⊆ I. The conclusion then follows from the following result which actually
holds under more general hypotheses.

Proposition 11.3 Let α be an injective ∗-endomorphism of a unital C∗-algebra A with

α(1) = 1 and let L be a transfer operator for α such that L(1) = 1. If there exists a

closed two-sided ideal I of A such that α(I) ⊆ I and L(I) ⊆ I then there exists a closed

two-sided ideal J of A ⋊α,L N such that J ∩ A = I.

Proof Consider the operators α̃ and L̃ on A/I obtained by passing α and L to the
quotient, respectively. It is then obvious that α̃ is an endomorphism of A/I and L̃

is a transfer operator for α̃. Denote by S̃ the standard isometry of (A/I) ⋊α̃,L̃ N and

view the quotient map of A modulo I as a ∗-homomorphism

q : A → A/I ⊆ (A/I) ⋊α̃,L̃ N.

It is elementary to check that

S̃q(a) = q(α(a))S̃, and S̃∗q(a)S̃ = q(L(a)),

for all a ∈ A, which implies that there exists a ∗-homomorphism

φ : T(A, α,L) → (A/I) ⋊α̃,L̃ N

such that φ(a) = q(a), for all a ∈ A, and φ(Ŝ) = S̃. If (a, k) ∈ A × AŜŜ∗A is a
redundancy it is easy to see that φ(a) = φ(k) and hence that φ drops to the quotient,
providing a ∗-homomorphism

ψ : A ⋊α,L N → (A/I) ⋊α̃,L̃ N

which coincides with φ, and hence also with q, on A. The kernel of ψ is then the
desired ideal.
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