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1. Introduction

A subgroup H of a group G is said to be a permutable subgroup of G if
HK = KH = <H, K} for all subgroups K of G. It is known that a core-free
permutable subgroup H of a finite group G is always nilpotent [5]; and even
when G is not finite, H is always a subdirect product of finite nilpotent groups [11].
Thus nilpotency is a measure of the extent to which a permutable subgroup
differs from being normal. Examples of non-abelian, core-free, permutable
subgroups are rare and difficult to construct. The first, due to Thompson [12],
had class 2. Further examples of class 2 appeared in [8]. More recently Brad way,
Gross and Scott [1] have constructed corresponding to each positive integer c
and each prime p > c, a finite p-group possessing a core-free permutable sub-
group of class c. In [3] Gross succeeded in dispensing with the requirement p > c.

The present work is to be compared with that of Gross in that we shall
exhibit, for each prime p, finite p-groups with core-free permutable subgroups of
arbitrarily large class. However, whereas the Gross groups were constructed
via ingenious extensions, ours are ready-made. They appeared in Philip Hall's
Cambridge lectures during the 1960 s and occur as finite quotients of some re-
markable groups constructed by Hall in [4]. In fact we consider the (upper or
lower) triangular subgroups H of certain 2 x 2 matrix groups M over Zpn. It is
curious that the subgroups H are permutable in M. Moreover, the task of estab-
lishing this property might have been formidable but for the fact that there are
certain natural embeddings among the groups M which enable us to argue by
induction on group order.

It is also worth remarking that our subgroups H all have rank 2; indeed they
are metacyclic. In previous examples this rank has increased with p. Thus our
main result is

THEOREM A. For each positive integer c and prime p, there exists a finite
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p-group possessing a metacyclic, core-free, permutable subgroup of nilpotency
class at least c.

It is a fact that all known examples of core-free permutable subgroups are
metabelian. We leave the obvious question open.

It is perhaps of interest to indicate how the properties of the groups of
Theorem A came to be discovered. It appeared to be an open question (see [11])
whether a group G generated by two soluble subgroups, each permutable in G,
was necessarily soluble. It turned out that if this was not the case, then there were
tricyclic finite p-groups (i.e. the product of three cyclic subgroups) of the above
form having arbitrarily large derived length. Hall's groups were tricyclic and had
arbitrarily large derived length. Thus it was natural to look for permutable sub-
groups there. As a consequence we can prove

THEOREM B. There exists a non-soluble group G generated by two meta-
belian subgroups, each permutable in G.

We recall that a permutable subgroup is always ascendant ([11] Theorem A).
Therefore a weaker version of Theorem B is

THEOREM B*. There exists a non-soluble group which is the product of two
ascendant metabelian subgroups.

So far our results claim the existence of counterexamples to possible con-
jectures. Our original investigation concerned a join G of soluble subgroups,
each permutable in G. In this connection we have

THEOREM C. A group G which is generated by any number of soluble
subgroups, each permutable in G, is locally soluble.

In proving this result we were able to improve Theorem B of [11] which says
that a permutable subgroup of a finitely generated group is always subnormal.
Thus, following Rae [10], we call a subgroup H of a group G locally subnormal
in G if H is subnormal in each subgroup of G of the form (H,g1,g2,---,gny, for
all choices of finitely many elements gug2, •••,gn in G. Then we have

THEOREM D. A permutable subgroup is locally subnormal.

We remark that this result is independent of Theorem A of [11] since
ascendant subgroups need not be locally subnormal and conversely Example 1
of Kargapolov [1] shows that locally subnormal subgroups need not be ascendant.
Also we remark that subpermutable subgroups (as defined in [11]) need not be
locally subnormal. For, there exist countable groups with permutable subgroups
which are not subnormal (see [6]); and any countable group can be subnormally
embedded in a finitely generated group according to Dark [2].
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2. Some subgroups of SL (2, Zp»)

Let n be a positive integer and p be any prime. Let A = Zpn be the ring of

integers modulo p". Choose positive integers h, k, I and let

M = M, , w

be the set of all 2 x 2 matrices over A of the form

• ( • . : ) •

where r = 0 ( / ) , s = 0(pk), t s l(p') and det^ = 1.

Suppose that

(1) h + k^l.

Then it follows that M is closed with respect to multiplication and so M is a group.

Let

be elements of M. Then it is straightforward to verify that

£ = p ( r t - ^ s ' M O
Thus if

i?,, = all p(x) with x = 0(p*)

Sk = all oCy) with y = 0 ( / )

T, = all T(M) with u = 1Q>'),
then

(2) M-JIAT,.

^A and Sk are clearly cyclic of orders pn~h and p"~* respectively. Also it is easy to
check that T, is cyclic of order p"~l provided

(3) 1^2

in case p = 2.

The following relations hold between the elements of Rh, Sk and Tt:

(4) T(«)p(x) = p(xu-2)T(«)

and hence Rh <i RhT,;

(5) T(K)<JO0 = o(yu2)x(u)

https://doi.org/10.1017/S1446788700013975 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700013975


[4] Permutable subgroups of some finite p-groups 93

and hence Sk -a S^;

(6) a(y)p(x) = p(xz-1)c7(yz)z(z)

where z = 1 + xy. Thus we have

(7) W4<«)] = pW«2-l)X

(8) [p(y

(9) IX*
where co = 1 — xy. So by (7)

r p T 1 _ / ^A+J if P is odd
I AA + J+1 u p = Z.

In both cases

(10)

Similarly by (8)

(ID

Thus provided

(12) h + k ^ l + l

(superseding (1)), we see from (9), (10) and (11) that M' ^ Th+k. Therefore

(13) M' = M'k,u ^

and the right-hand side of this inequality is trivial if and only if n ^ min{h + 1 + 1,
k + I + 1, h + k}. It follows that we can make the derived length of M as large
as we please by choosing n sufficiently large and h, k, I consistent with (3) and (12),
e.g. h = 1, k = / = 2. So we have proved

LEMMA 2.1. Provided I ^ 2 and h + k ^ / + 1, the derived length of M
tends to infinity with n.

For simplicity we write R = Rh, S = Sk, T = 7].

We establish now

LEMMA 2.2. RT and ST are both permutable subgroups of M.

PROOF. Let <J = \q r I eM. We must show that
\ t)

= \q r I eM.
\s t)

(14) RTiO =

We proceed by induction on n — k. If n — k — 0, then RT = M and the result is
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trivial. If n - k = 1, then S has order p. Thus \M: RT\ = p, by (2), and so
RT<3 M. In this case (14) clearly holds and so we may suppose that n — k ^ 2.

If s s 0(pk + 1), then ^ M » ] i + U and so (14) holds by induction. Therefore
we may assume that

(15) s

We claim that, for each m ^ 1,

(16) r = P{-)a{

where um = 1 (p2) and Xm e ,4. To see this, we proceed by induction on m. When
m = 1, (16) is certainly true. Thus suppose that (16) holds for some m k 1.
Then, for some tm e /I,

= ?>£ = p(...)a(sum(m

= p(-Msum(m +

by (4). Therefore by (6)

r + 1 = p(-)<j{sum{m + lmp2)z)x(Z)z(tm)a(st)x(t),

where z = 1 + rsuj'11~2 (m + Xmp2). Hence by (5)

Put wm+1 = umz. Since wm,/,z,fm are all congruent to 1 modulo p2 (recalling (3)),
we see that (16) holds for m + 1. Therefore (16) is valid for all m ^ 1.

Now consider

Clearly £peMhk+ll and hence, by induction on n — k,

(17) RT(Z"} = <£"}RT.

On the other hand, sup(p + Xpp
2) # 0(pk + 2), by (15), and so

(18)

Since the subgroups between RT = Mhnl and M = Mhkl are nested, it follows
from (17) and (18) that

^ M
hk+1J.

But, according to (2), \Mhkl: Mhk+1,| = p and |so Mhk+l ,<i Mhkl. Therefore
since ££Af
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M = Mhk+ll(O = RT^'XO = RT<D,

and (14) follows.

In the same way we see that ST is a permutable subgroup of M.

3 Proofs of Theorems A and B

PROOF OF THEOREM A. We consider the group M introduced in § 2. According
to Lemma 2.2, the subgroups H = RT and K = ST are both permutable in M.
Also, by (4) and (5), we see that H and K are metacyclic. Let H, K be the cores
of H,K respectively in M. Suppose, for a contradiction, that there exists a bound
c for the nilpotency class of a core-free permutable subgroup of any group.
Then HjH, K/K would be nilpotent of class at most c. Thus HKIHK and KH/HK
would be nilpotent of class at most c and both of these subgroups are permutable
in MjHK. It would then follow, according to Theorem E of [ H ] , that HKjHK
= M/HK was soluble with derived length bounded by some function of c. Since
HK halTderived length at most 4, this would bound the derived length of M,
contradicting Lemma 2. This proves Theorem A.

PROOF OF THEOREM B. If p is the zth prime, let Mt be one of the p-groups M,
defined in §2, with derived length ^ i. Let # . = RT and Kt = ST. Then define
(writing Dr for the restricted direct product)

G = DrM, ,

H = Dr H^ K = Dr Kt.

So G = HK; and H,K are metabelian. However, since Ht and K( are both per-
mutable subgroups of Mt, it is straightforward to show (see [1]) that H and K
are both permutable in G. Finally, G cannot be soluble since it has subgroups of
arbitrarily large derived length.

4. Proofs of Theorems C and D
We need

LEMMA 4.1. Let H be a permutable subgroup of G = (H,gl,g2,-">gny
with gT'eH.for some mf ^ 1, 1 ^ i g », Then \HG: H | is finite.

PROOF. We argue by induction on

£ \H<gt>:H\.
i = l

The method is an easy adaptation of the proof of Theorem B of [11] and may be
omitted.
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We recall the following result (Corollary 2.2) of [11].

LEMMA 4.2. Let H be a permutable subgroup of G and let N be the sub-
group of G generated by all those elements no positive power of which lies in H.
Then

(i) NoG;
(ii) f/oHJV;
(iii) HN/N is a permutable subgroup of GjN and every element of GjN

has some positive power in HN/N.

PROOF OF THEOREM D. We suppose that if is a permutable subgroup of
G = (H,gug2, •••,gn

s> and show that H is subnormal in G. Thus let N be defined
as in Lemma 4.2. Since 2V-o G and H<3 HN, we may suppose, without loss of
generality, that N = 1. Then \HG: H j is finite, by Lemmas 4.1 and 4.2. Since a
permutable subgroup of a finite group is always subnormal [9], it follows that
H is subnormal in HG. Therefore H is subnormal in G.

LEMMA 4.3. Let G = HK, where H is a soluble permutable subgroup of
G and K is a locally soluble subgroup of G. Then G is locally soluble.

PROOF. Without loss of generality we may suppose that K is finitely generated
and therefore soluble. In this case we show that G is soluble.

Let N be as defined in Lemma 4.2. Then

H^HN = HNnHK = H(HN r>K).

Thus HN is soluble and so JV is soluble. Therefore we may suppose that N = 1.
Then, by Lemma 4.1, | HG: H | is finite and so it is easy to see that HG is soluble.
Hence G is soluble.

PROOF OF THEOREM C. We have to show that a group G generated by soluble
subgroups, each permutable in G, is locally soluble. Clearly we may suppose that
G is generated by finitely many such subgroups. Then an induction argument on
this number, together with Lemma 4.3, establishes the Theorem.
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