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Summary

The trace T of the metrical energy-momentum tensor Tk
l of fields as-

sociated with particles of zero rest mass may be zero, either identically
or as a consequence of the field equations. This property of Tkl is correlated
here with the behaviour of the Lagrangian of the field under arbitrary
conformal transformations. Certain classes of special fields are considered
explicitly. It is shown in particular that T vanishes for all non-zero spin
fields which correspond respectively to the two-component neutrino field
or the photon field.

1. Introduction

In a recent paper Brill and Wheeler [1] derive the explicit form of the
metrical energy momentum tensor Tkl of the neutrino field and add the
comment that it is remarkable that its trace vanishes [as a consequence
of the field equations] just as it does for the photon field. In the case of
the latter the trace T(= Tl

t) of course vanishes identically, i.e. even when
the field equations are not satisfied. In this paper I now show that the
vanishing or otherwise of T in the case of general fields (of which the two
fields just mentioned are special examples) depends simply upon the
conformal behaviour of the Lagrangian density £ of the field. A general
theorem to this effect is derived in section II. Arbitrary infinitesimal
variations of the metrical tensor and of the linear connections in world
and in spin space, along with their behaviour under arbitrary conformal
transformations are considered in the next two sections. Finally, in sections
V and VI the property of the neutrino field referred Vo above is shown
to be possessed by wide classes of tensor and spinor fields; and the cases
of non-zero rest mass and of non-linear field equations are briefly referred to.
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2. A General Theorem

(a) In so far as spinor fields enter into the present considerations the
notation employed will be that of the two-spinor analysis of Infeld and
van der Waerden [2]. A "general" field shall be described by certain field
quantities £<i)» £(2), • • • (all indices suppressed) which may be tensors,
spinors, or tensor-spinors of any kind. (Thus for example, £(1) and £(2)

might stand for the spin vectors 1 ,̂ rf of the Dirac field and £(3) for the
vector of the photon field, i.e. the electromagnetic potential; etc.) The
index s which distinguishes the s'th component fields C(s) shall be excluded
from the summation convention. It is convenient to take the £(8) as associated
with the points of a Riemann space F4, whose metrical tensor is gkl. The
F4 will be regarded as fixed, that is, in so far as one may regard the gkl

as the components of the gravitational potential any reaction of the fields
under consideration upon the gravitational field shall be disregarded.
Alternatively one may regard the introduction of the F4 as merely a tem-
porary expedient; after the infinitesimal variations and conformal transfor-
mations contemplated below have been carried into effect one returns to
Galilean space-time by taking the untransformed metrical tensor to be
Galilean. One is in any case virtually forced to this viewpoint as soon as
one attempts to treat fields for spin ^ -| in an arbitrary F4 (cf. Buch-
dahl [3].)

The field equations will be supposed to arise from a real Lagrangian £,
that is, — apart possibly from the presence of certain subsidiary con-
ditions,— they shall have the form

(2.1) £(.) = <>, ( s = l , 2 , . . . )

where Z{s) is the hamiltonian derivative of £ with respect to £(s). Again,
the metrical energy-momentum tensor Tkl is the hamiltonian derivative
of £ with respect to gkl (see section 3); and by considering variations of
gkl which arise from infinitesimal variations of coordinates one obtains
in the usual way the identity

(2.2) T".tl = 0,

which allows one to formulate the usual conservation laws in galilean space-
time in a straightforward manner.

Now, the Z(a) and Tkl being hamiltonian derivatives one has identically
for all simultaneous variations of the £(s) and gkl which vanish on the
boundary Q of the region of integration

(2.3) 6 J Qdr = J {T»dgu + £ Z(s)6C{s))(-g)Ur
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(b) A general conformal transformation of F4 is the passage from gkl

to 'gkl,
where

(2-4) 'gkl =

A being an arbitrary real function of the coordinates. With every £(a) there
shall now be associated a "conformal weight" cs (cs real), and a conformal
transformation of the field shall mean the transformation (2.4) coupled
with the simultaneous replacement of £(s) by '£(s), where

(see sections 4 and 5). In particular any quantity is to be called a conformal
invariant if conformal transformations of the field leave it unaffected. Thus
C(g) is a conformal invariant if its conformal weight is zero.

Now it may so happen that the cs can be chosen in such a way that the
Lagrangian density £ becomes a conformal invariant. When this is the case
it follows that in an arbitrary infinitesimal conformal transformation which
is zero on Q, (A = 1 + rj, say, where r\ is infinitesimal)

(2-6) d{ Ur = f (r
J J s

Since r\ is arbitrary within Q this implies

(2-7) T

One therefore has the general result that if the Lagrangian density of the
field is a conformal invariant then the trace T of the energy-momentum tensor
vanishes: it does so as a consequence of the field equations unless the field
quantities themselves are conformal invariants, in which case T vanishes
identically.

3. Variations of gkl

This section deals briefly with the effects of general variations of gkl.
A variation hkl ( = 8gkl) of gkl induces a variation of the linear connection
of F4, i.e. of the Christoffel symbols 7^6, given by

as is easily confirmed. The basic vector spinor CJ*̂ " varies in such a way that

(3.2) d(ok>vol
Av) = - A « .

It suffices to take (see the remarks following eq. (3.4))

(3-3) <5V = 0,
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in which case (3.2) is satisfied by

(3.4)

Upon the solution (3.3, 4) of (3.2) one may superpose an arbitrary infinitesi-
mal spin transformation Aa

fi. In this way one obtains the most general
variations of the akllv, yap compatible with hah since they are specified by
16 + 2 real functions, a number equal to the 10 + 8 independent real
functions involved in hab, Aa

fi. Though it may at times be convenient to
draw upon such additional spin transformations (3.3, 4) are sufficiently
general in the present context.

Taking dr\k = 0 one may now derive from the equation

(3.5) d(a^;k) = 0

the variation of the linear spinor connection, viz.

(3.6)

where

(3.7) % \

Given £ in any particular case the explicit expression for Tab may then
easily be derived using eqs. (3.1), (3.4) and (3.6).

4. Conformal Transformations

The transformations of the basic spinors associated with the conformal
transformation

(4.1) 'gkl =

of the F4 will be taken as

(4 .2 ) 'ff**" = X

(4.3) V = »-

(4.3) corresponds to the choice (3.3). The most general associated transfor-
mation can be obtained from (4.2, 3) by superposing upon them a spin
transformation of the form

(4-4) A/ = d/X9,

and the choice c = + ^ is indeed often convenient in other contexts. If
subscripts following a colon indicate covariant differentiation with respect
to the transformed linear connections, then

(4.5) '
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It is convenient to write A = ea, and, for either linear connection, T= F-\- A
(indices suppressed.) Then

(4.6) —<yk^vqiS + Ak
tto**v+ A^iaa

kScp + Av
asa

k^ = 0 ,

and

A\s + A*u = 0
It is natural to take Ae

es = 0. Using

(4.6) then yields easily

(4-8) ^%S = W ; > .
(4.8) will be seen to be consistent with (3.7) on taking q to be infinitesimal
and setting Aw = 2qgkl .

5. Special Fields

(i) The two-component neutrino field. This field may be taken as a proto-
type for the case of half odd-integral spin. The Lagrangian is

(5.1) fi = Jto** (t.£v;k - Zvt..)k) = \i(l - I), say.

Then in a conformal transformation

where c is the conformal weight of £„. Using (4.8) this becomes

(5.2) 'I = eiWoV'C, (Cv;k + cq>k - Sk»\qibZx).

Now

(5.3) a^"Sf c
6 A,= - |

so that

(5-4) 'I = ( -g)^^+3)«[ / + (C + ^ A ,

Accordingly, taking c = —-|, the Lagrangian density will be a conformal
invariant, and since c ^ 0 it follows that in this case T vanishes, but only
as a consequence of the field equations. Indeed, using (3.7) and keeping
in mind that the field equations are

it is not difficult to show that Tkl is equal to the symmetrical part of the
imaginary part of — ioy""^ .^ , , ; and the trace of the latter is zero in virtue
of (5.5).

(ii) The spin s — £ (s = 1, 2, . . .) field analogous to the two-component
neutrino field.
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The Lagrangian may be taken as L = \i(l — I), where

which may, for later convenience, be written in the symbolic form o*\ £;A.£*.
The field spinor £ is symmetric in all its dotted and all its undotted indices,
I shall merely indicate in outline the conformal transformation of /. In the
expression analogous to (5.2) there will again be a factor e{2e~1)a, if c is the
conformal weight of £• On the other hand there will now be 2s — 1 terms
corresponding to the last term on the right hand side of (5.2). Upon sim-
plification in the manner above one finds that (a) the s — 1 dotted indices
of C;k contribute — %(s — \)Q, where Q = au

v q;k££*, (b) the first undotted
index contributes + f Q, (c) the remaining s — 1 undotted indices contribute
+ £(s — 1)Q. Hence the term corresponding to the last one of (5.4) has
again a factor c + •§•. Therefore, with c=— f, T vanishes for all such fields,
but only as a consequence of the field equations.

(iii) Integral spin fields analogous to the photon field.
In the case of a field corresponding to particles of spin s (s — 1, 2, . ..)

one may take the field variable to be a completely symmetrical tensor of
zero trace and zero divergence:

The Lagrangian takes the form

Write the first and second factors on the right in the abbreviated forms
fkl, fkl respectively. Then it is easily confirmed by means of (4.7) that the
conformal transform of fkl is

( 5 > 9 ) ' ^ S a t i l A k ] at *, aq>b

c being the conformal weight of A. When 'fkl is multiplied by 'fkl the sum
over t in (5.9) may evidently be rejected, because of (5.7). Since fkl arises
from ftel by the raising of s + 1 subscripts, 'fkl will take a factor <̂c-2s-2j«)

whilst £ will take a factor *<2e-2«-2+4)« = e2(c-s+i)Q B u t t h e n u m erical coef-
ficient of 2q in the exponent is just that which also occurs in the second
term on the right hand side of (5.9). Hence, taking c = s — 1, the Lagrangian
density is a conformal invariant. It follows that T vanishes for all s > 1 as
a consequence of the field equations, whilst for s = 1 it vanishes identically.
(The latter is of course a well known property of the photon field.) It may
be noted that the case s = 0 stands apart from all these in that the Lagran-
gian density is essentially not an invariant under the general conformal
group.
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6. Conclusion

The general result of § 2 has made it possible to infer in a straightforward
manner that the trace of the energy-momentum tensor vanishes for a wide
class of fields corresponding to particles of zero rest mass and arbitrary
spin, to which the case of zero spin is the only exception. Moreover, with the
sole exception of spin 1 T vanishes only as a consequence of the field
equations.

At the same time it is immediately clear why the situation is different
for fields associated with particles of non-zero rest mass. Taking the case
of the tensor fields of § 5 (iii) for example the Lagrangian density will
contain an additional term

(6-1) «a<4tai.....^*'-8'(
where K is a constant. In a conformal transformation this takes the factor
e2(c-s+2)a __ e2a- a n ( j -j-jje Lagrangian density as a whole consequently cannot
be a conformal invariant.

The methods and conclusions above are not essentially altered if more
complicated, or several interacting, fields be contemplated. However, if
one drops the requirement that the field equations be linear, then the
possibility of constructing conformally invariant Lagrangians is greatly
extended. Taking again the example of the tensor fields of § 5 (iii) one will
obtain a field for which T = 0 and whose equations are quasi-linear if
one adds to the Lagrangian above for instance the term

(6-2) M*a2...a/fc<V--°')2

where K is a constant.
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