COUNTING WORD-TREES

by J. M. O. MITCHELL

(Received 23 August, 1973)

Introduction. In his recent study of free inverse semigroups, Munn [2] introduced and used extensively the concept of a *word-tree*. In this note the number of such trees is found.

DEFINITION. A word-tree on an alphabet A is a finite tree, with at least two points, that satisfies the following conditions.

(WT1) Each line is oriented and is labelled by an element of A.

(WT2) T has no subgraph of the form $o \xrightarrow{a} o \xrightarrow{a} o$ or $o \xrightarrow{a} o \xrightarrow{a} o$ ($a \in A$).

Lines will be described by an ordered pair of adjacent points and are said to be *similar* if their orientations and labellings are the same.

A line $\alpha\beta$, where β is an endpoint of a word-tree T, is called an *endline* of T.

Isomorphism is defined in the obvious way (preserving orientation and labelling of lines). A fundamental fact proved in Munn's paper [2, Theorem 2.2] is that a word-tree has no nontrivial automorphism.

Notations. $d(\alpha) = \text{degree of point } \alpha$.

k =cardinal of A, taken to be finite.

n(p) = number of word-trees on A with p points.

n(p, e) = number of word-trees on A with p points and e endpoints.

$$(n)_j = \begin{cases} n(n-1)\dots(n-j+1) & (j=1,2,\dots), \\ 1 & (j=0). \end{cases}$$

Note that n(p, e) = 0 if e < 2 or p < e and that, for p > 2, n(p, p) = 0.

Construction. Given a word-tree T with p-1 points and e endpoints, we can construct a larger one by adding a new line at any point. The number of dissimilar lines that may be added at α is $2k - d(\alpha)$, since each old line terminating in α imposes one restriction on the new line and, by (WT2), these restrictions are different. The new word-tree has e endpoints if the new line was added at an old endpoint and e+1 endpoints otherwise.

Let T_1 and T_2 be the word-trees obtained by adding endlines $\alpha_1\beta_1$ and $\alpha_2\beta_2$ respectively to T, where α_1 and α_2 are distinct points of T. Then, since T has no nontrivial automorphisms, there can be no isomorphism $\phi: T_1 \rightarrow T_2$ such that $\beta_1 \phi = \beta_2$. Clearly the same result holds if $\alpha_1 = \alpha_2$ but the endlines $\alpha_1\beta_1$ and $\alpha_2\beta_2$ are dissimilar. It follows that there is a 1-1 correspondence between the possible constructions on word-trees with p-1 points and the wordtrees on p points with a distinguished endpoint.

Calculation. From the tree T the construction gives (2k-1)e word-trees with e endpoints and $\sum_{\alpha} (2k-d(\alpha))$ with e+1 endpoints, where the sum is over all points α of T that are not

COUNTING WORD-TREES 149

endpoints of T. But $\sum_{\alpha} d(\alpha) + e = 2$ (number of lines in T) = 2(p-2) (see, e.g., [1, Theorem 4.11]), so that the number of word-trees with e+1 endpoints is

$$2k(p-1-e)-2(p-2)+e$$
.

Among all possible constructions, a particular tree with p points and e points will occur e times. Thus

$$n(p, e) = \frac{1}{e} \{ (2k-1)e n(p-1, e) + (2k(p-1-e+1)-2(p-2)+e-1)n(p-1, e-1) \}$$
$$= (2k-1)n(p-1, e) + \left\{ \frac{2kp-2p+3}{e} - (2k-1) \right\} n(p-1, e-1), \text{ for } p \ge 3.$$
(1)

This recurrence formula is used p-3 times to express n(p), where $p \ge 3$, in terms of n(3, 2), which is k(2k-1). In fact, for $0 \le j \le p-3$,

$$n(p) = (2kp - 2p + j + 2)_j \sum_{e=2}^{p-j-1} n(p-j, e)/(e+j)_j.$$
 (2)

This is proved by induction on j. Application of (1) in (2) gives

$$n(p) = (2kp - 2p + j + 2)_j \sum_{e=2}^{p-j-1} \left[(2k-1)n(p-j-1, e) + \left\{ \frac{2k(p-j) - 2p + 2j + 3}{e} - (2k-1) \right\} n(p-j-1, e-1) \right] / (e+j)_j.$$

In the sum, the coefficient of n(p-j-1, e), when $2 \leq e \leq p-j-2$, is

$$\frac{2k-1}{(e+j)_j} + \frac{2k(p-j)-2p+2j+3}{(e+1)(e+1+j)_j} - \frac{2k-1}{(e+1+j)_j} = (2kp-2p+j+3)/(e+j+1)_{j+1}.$$

The other substitute terms are 0. This verifies (2).

In particular, for j = p - 3, we obtain

$$n(p) = (2kp - 2p + p - 1)_{p-3} \sum_{e=2}^{2} n(3, e)/(e + p - 3)_{p-3}$$
$$= (2kp - p - 1)_{p-3} k(2k - 1) / \frac{(p-1)!}{2}$$
$$= \frac{2k(2k - 1)}{(p-1)(p-2)} \binom{2kp - p - 1}{p-3}.$$

ACKNOWLEDGEMENT. I am grateful to Professor Munn for showing me this problem and for letting me see his paper.

REFERENCES

1. F. Harary, Graph theory (Reading, Mass., 1969).

2. W. D. Munn, Free inverse semigroups, Proc. London Math. Soc.; to appear.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF STIRLING