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Introduction. In his recent study of free inverse semigroups, Munn [2] introduced and
used extensively the concept of a word-tree. In this note the number of such trees is found.

DEFINITION. A word-tree on an alphabet A is a finite tree, with at least two points, that
satisfies the following conditions.

(WT1) Each line is oriented and is labelled by an element of A.
Q a a a

(WT2) T has no subgraph of the form o—*-o—*— o or o-<— o—>-o (as A).
Lines will be described by an ordered pair of adjacent points and are said to be similar

if their orientations and labellings are the same.
A line afl, where j? is an endpoint of a word-tree T, is called an endline of T.
Isomorphism is defined in the obvious way (preserving orientation and labelling of lines).
A fundamental fact proved in Munn's paper [2, Theorem 2.2] is that a word-tree has no

nontrivial automorphism.

Notations. d(a) = degree of point a.

k = cardinal of A, taken to be finite.

n(p) = number of word-trees on A with p points.

n(p, e) = number of word-trees on A with p points and e endpoints.

0" = o).
Note that n(p, e) = 0 if e < 2 or p < e and that, for p>2, n(p, p) = 0.

Construction. Given a word-tree T with p—\ points and e endpoints, we can construct
a larger one by adding a new line at any point. The number of dissimilar lines that may be
added at a is 2k—d(a), since each old line terminating in <x imposes one restriction on the
new line and, by (WT2), these restrictions are different. The new word-tree has e endpoints
if the new line was added at an old endpoint and e+1 endpoints otherwise.

Let 7\ and T2 be the word-trees obtained by adding endlines a ^ j and a2j?2 respectively
to T, where aj and <x2 are distinct points of T. Then, since Thas no nontrivial automorphisms,
there can be no isomorphism (f>: T1-+T2 such that j ? ^ = /?2. Clearly the same result holds
if (*! = a2 but the endlines a ^ and a2jS2 are dissimilar. It follows that there is a 1-1 corre-
spondence between the possible constructions on word-trees with p— 1 points and the word-
trees on p points with a distinguished endpoint.

Calculation. From the tree 7 the construction gives (2k— l)e word-trees with e endpoints
and £(2& — d(a)) with e+1 endpoints, where the sum is over all points a of T that are not
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endpoints of T. But £rf(a)+e = 2 (number of lines in T) = 2(p—2) (see, e.g., [1, Theorem
a

4.11]), so that the number of word-trees with e + l endpoints is

2k(p-l-e)-2(p-2)+e.

Among all possible constructions, a particular tree with p points and e points will occur e
times. Thus

1 c
', e) = - {(2k—l)en(p—\, e) + (2k(p—l—e+l) — 2(p — 2) + e—l)n(p—l, e— 1)}

~(2k-\)ln(p-l,e-l), for p ̂  3. (1)

This recurrence formula is used p — 3 times to express n{p), where p ̂  3, in terms of
n(3, 2), which is A:(2ik-1). In fact, for 0 g ; g / > - 3 ,

«(/7) = (2Ay - 2/> + ; + 2 ) / X \{p -j, e)l(e +j)j. (2)
e=2

This is proved by induction on j . Application of (1) in (2) gives

n(p) = (2kp-2p+j + 2)J
P

eZ T(2A:- l)Kp-j-l, e) +

In the sum, the coefficient of n(p—j—\, e), when 2 ̂  e ̂ />—j —2, is

2k-\ 2k(p-j)-2p+2j+3 2k-l

( + )

The other substitute terms are 0. This verifies (2).
In particular, for j = p — 3, we obtain

n(p) = (2kp-2p+p-\)p_3 X "(3, e)/(e+p-3)p_3
e = 2

= (2^-jp-l)p_3A:(2A:-l)|^^-!

2&(2/fc-l) (2kp-p-\
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