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Abstract

We consider a branching population where individuals have independent and identically
distributed (i.i.d.) life lengths (not necessarily exponential) and constant birth rates. We
letNt denote the population size at time t . We further assume that all individuals, at their
birth times, are equipped with independent exponential clocks with parameter δ. We are
interested in the genealogical tree stopped at the first time T when one of these clocks
rings. This question has applications in epidemiology, population genetics, ecology, and
queueing theory. We show that, conditional on {T <∞}, the joint law of (NT , T ,X(T )),
where X(T ) is the jumping contour process of the tree truncated at time T , is equal to
that of (M,−IM, Y ′M) conditional on {M �= 0}. Here M + 1 is the number of visits of
0, before some single, independent exponential clock e with parameter δ rings, by some
specified Lévy process Y without negative jumps reflected below its supremum; IM is
the infimum of the path YM , which in turn is defined as Y killed at its last visit of 0
before e; and Y ′M is the Vervaat transform of YM . This identity yields an explanation for
the geometric distribution of NT (see Kitaev (1993) and Trapman and Bootsma (2009))
and has numerous other applications. In particular, conditional on {NT = n}, and also on
{NT = n, T < a}, the ages and residual lifetimes of the n alive individuals at time T are
i.i.d. and independent of n. We provide explicit formulae for this distribution and give a
more general application to outbreaks of antibiotic-resistant bacteria in the hospital.
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1. Introduction

We consider a population of particles behaving independently from one another, where
each particle gives birth at constant rate b > 0 during its lifetime (inter-birth durations are
independent and identically distributed (i.i.d.) exponential random variables with parameter b),
and where lifetime durations are i.i.d. on (0,+∞] (some particles may have infinite lifetimes)
with probability distribution µ (not necessarily exponential).
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Figure 1: A realisation of a splitting tree with individual exponential clocks. Time flows from the bottom
to the top; the horizontal dashed lines show filiation. The filled circles show individual ringing clocks.

The time T when the first clock rings is indicated. Here NT = 7.

The genealogical trees that we consider here are usually called splitting trees [6]. We define
the lifespan measure as the measure on (0,+∞] with total mass b simply defined as π := bµ.

The process (Nt ; t ≥ 0), giving the number of extant particles at time t , belongs to a wide
class of branching processes called Crump–Mode–Jagers processes. Actually, the processes
we consider are homogeneous (constant birth rate) and binary (one birth at a time) but are
more general than classical (simple) birth–death processes [7] in that the lifetime durations
may follow a general distribution.

In addition, we assume that each particle is independently equipped with a random
exponential clock with parameter δ > 0. We are interested in the first time T when one
of these clocks rings, called the detection time. See Figure 1 for a realisation of a splitting tree
with individual clocks. Note that, on the extinction event, T can be infinite (no clock rings)
with positive probability.

This question has applications in population genetics and ecology [4], [5], [12], [14] (T is
then the first time when a new mutant or a new species arises), queueing theory [8], [10], [15]
(because N is a time-changed processor-sharing queue, and then in the new timescale, T is a
single, independent exponential clock), and epidemiology [3], [16] (T is then the first detection
time of the epidemic). In this last setting, ages of individuals in the population at T are the times
since infection of infectives in the detected outbreak, and in the final section we see how more
easily available data, such as the length of stay in the hospital up to time T , can be incorporated.

Our main result is to characterise, on the event {T < ∞}, the joint law of (NT , T ,X(T )),
where X(T ) is the jumping contour process of the tree truncated at time T , in terms of the
Vervaat transform of the path of the (reflected) Lévy process X with jump measure π and
slope−1. In particular, we recover the known fact [10], [16] that, conditional on {T <∞},NT
is geometrically distributed, and we characterise the joint law of T and NT in terms of (joint)
Laplace transforms of some hitting times of X. As a further example, restricting the main
identity to the undershoots and overshoots of X whenever it crosses 0, we get the following
application. Conditional on {NT = n}, and also on {NT = n, T < a}, the ages and residual
lifetimes of the n alive individuals at time T are i.i.d. and independent of n, and follow the
bivariate law of (und, ove) (respectively (unda, ovea)). Here the pair (und, ove) (respectively
(unda, ovea)) is the undershoot and overshoot of the jump across 0 ofX, at its first hitting time
τ+0 of (0,+∞], conditional on τ+0 being smaller than some independent exponential time with

https://doi.org/10.1239/jap/1363784434 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1363784434


210 A. LAMBERT AND P. TRAPMAN

parameter δ, respectively, conditional on the same event intersected with inf0≤s≤τ+0 Xs > −a).
In the epidemics model, these statements are extended by taking into account, in addition to the
age and residual lifetime (of individual infection at time T ), the length of stay in the hospital
up to infection time. In all cases, explicit formulae are also provided for these laws.

2. Splitting trees and Lévy processes

We assume that splitting trees are started with one unique progenitor born at time 0. We
denote by P their law, and the subscript s in Ps means conditioning on the lifetime of the
progenitor being s. Of course, if P bears no subscript, this means that the lifetime of the
progenitor follows the usual distribution µ.

Lambert [13] considered, for t > 0, the so-called jumping chronological contour process
(JCCP), here denoted by X(t), of the splitting tree truncated up to height (time) t , which starts
at s ∧ t (here and in what follows, x ∧ y denotes the minimum of x and y), where s is the time
of death of the progenitor, visits all existence times (smaller than t) of all individuals exactly
once, and terminates at 0 (see Figure 2).

Lambert showed in [13, Theorem 4.3] that the JCCP is a Markov process; more specifically,
the JCCP has the same law as the compound Poisson process X with jump measure π ,
compensated at rate −1, reflected below t , and killed upon hitting 0.

We denote the law of X by P, to make a distinction with the law P of the CMJ process. As
seen previously, we record the lifetime duration, say s, of the progenitor, by writing Ps for its
conditional law on X0 = s. Using notation analogous to that defined for P, it will be implicit
in the absence of a subscript that X0 under P has probability distribution µ.

(a)

(b)

t

t

Figure 2: (a) A splitting tree. (b) The jumping chronological contour process associated with the same
splitting tree after truncation at time t . Here Nt = 9.
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Let us be a little more specific about the JCCP. Recall that this process visits all existence
times of all individuals of the truncated tree. For any individual of the tree, we denote by α its
birth time and by ω its death time. When the visit of an individual v with lifespan (α(v), ω(v)]
begins, the value of the JCCP is ω(v). The JCCP then visits all the existence times of v’s
lifespan at constant speed −1. If v has no child then this visit lasts exactly as long as the
lifespan of v; if v has at least one child then the visit is interrupted each time a birth time of
one of v’s daughters, say w, is encountered (youngest child first since the visit started at the
death level). At this point, the JCCP jumps from α(w) to ω(w) ∧ t and starts the visit of the
existence times of w. Since a truncated tree has finite length, the visit of v has to terminate:
it does so at the chronological level α(v) and continues the exploration of the existence times
of v’s mother, at the height (time) where it had been interrupted. This procedure then goes on
recursively and terminates as soon as 0 is encountered (the birth time of the progenitor). See
Figure 2 for an example.

Note that the genealogy of a splitting tree truncated at time t can be coded by associating
each individual with a word of integers, such that ∅ is the root, 1 is the last daughter of the
root born before time t , 2 is the penultimate daughter of the root,…, 11 is the last daughter
of 1 (born before time t), and so on. Then the order in which individuals are first visited by
the contour process is the lexicographical order associated with this (so-called Ulam–Harris–
Neveu) labelling. Roughly speaking, if u and v are two distinct finite words of integers, and hu
and hv are the first integers in the words u and v, respectively, coming immediately after their
longest common prefix, then u comes first in the lexicographical order if and only if hu < hv .
Here we assume that if h �= ∅ then h > ∅.

Since the JCCP is Markovian (as seen earlier, it is a reflected, killed Lévy process), its
excursions between consecutive visits of points at height t are i.i.d. excursions ofX away from
(t,+∞]. Observe in particular that the number of visits of t by X is exactly the number Nt of
individuals alive at time t . Therefore, it is easy to see thatNt has a shifted geometric distribution
with parameters specified as follows. Let τA denote the first hitting time of the set A byX. We
also use the shorthand notation

τx := τ{x} and τ+x := τ(x,+∞],
that is, τx is the first hitting time of x and τ+x is the first hitting time of the open interval (x,+∞].
Then, conditional on the initial progenitor having lived for s units of time, we have

Ps(Nt = 0) = Ps(τ0 < τ+t ), (2.1)

and, recursively applying the strong Markov property,

Ps(Nt = n | Nt �= 0) = Pt (τ
+
t < τ0)

n−1 Pt (τ0 < τ+t ). (2.2)

Note that the subscript s in the last display is useless. Furthermore, because of the truncation
of X at time t , this formula holds even when X drifts to +∞. Also note that the spatial
homogeneity of Lévy processes implies that Pt (τ0 < τ+t ) = P0(τ−t < τ+0 ).

In addition, exact formulae can be deduced for (2.1) and (2.2) from the fact that the JCCP is
a Lévy process with no negative jumps, using scale functions of the Lévy process X. This part
is developed in Section 5.

Later, we see that the population size is not only (conditionally) geometric at fixed times,
but also at the first detection time T , using the same decomposition of the contour
process into excursions away from (T ,+∞]. This decomposition is given in Subsection 3.1.
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212 A. LAMBERT AND P. TRAPMAN

Subsections 3.2 and 3.3 are devoted to path decompositions providing equalities in law for the
whole contour process of the tree stopped at T , involving in particular Vervaat’s transformation;
see Theorems 3.1, 3.2, and especially 3.3 for the result stated in the abstract. In Section 4 we
focus on the joint distribution of T and NT , as well as the ages and residual lifetimes of the
NT alive individuals at time T . In Subsections 4.2 and 4.3 we provide explicit formulae (up
to scale functions of the Lévy process X) for these distributions. The reader interested in
applications is directed to the last statement of Section 4, Proposition 4.2. Finally, in Section 5
we extend these results to the example of a pathogen outbreak in the hospital modelled by a
Crump–Mode–Jagers process with constant transmission rate b and i.i.d. (infection) lifetimes,
but also taking into account the length of stay in the hospital up to infection.

In the rest of the paper we use the following notation: E is any expectation operator,
A and B are any events, and Z is any (positive or integrable) random variable E(Z,A,B) :=
E(Z 1{A∩B}).

2.1. Intuition for the geometric distribution

In this section we show how to gain insight from the equivalence of the splitting tree and the
corresponding contour process, as visualised in Figure 2, and, in particular, intuitively explain
why the number of individuals at the first detection time is geometrically distributed [10], [16].
This intuition also gives the main ideas behind the rigorous proofs below.

We consider the event thatNt = n, n > 0, and no detection has occurred up to time t , i.e. the
event {Nt = n, T > t}. This event occurs if the following events successively occur.

1. The Lévy process X following the contour of the tree truncated below time t starts with
a typical jump (distributed according to µ) and hits the interval (t,∞] before it hits 0
again, and during this time no clock rings. The probability of this event is E(e−δτ+t ,
τ+t < τ0).

2. The process X started at t makes an excursion ending in the interval (t,∞] without
hitting 0, and no clock rings during this excursion. Since the contour process of the tree
truncated below t is started again at t , independently from the past, n − 1 such events
occur successively, and each of them occurs independently with probability Et (e−δτ

+
t ,

τ+t < τ0).

3. X starts at t and reaches 0 before hitting the interval (t,∞], and during this time no clock
rings. This happens with probability Et (e−δτ0 , τ+t > τ0).

The next step is to ‘glue’ the path described in event 3 to the path described in event 1,
forming one excursion with infimum equal to 0 within which no clock rings. This is basically
the inverse of Vervaat’s transformation, see Figure 3, where the inverse is constructed in such
a way that the infimum of the whole process is performed during this newly created (first)
excursion.

Since X jumps at rate b and has slope−1 (and also is translation invariant), multiplying the
probability of this concatenated path by b dt gives the probability of an excursion of X away
from [0,+∞) without a clock ringing and with infimum in (−t − dt,−t). Then bP(Nt = n,
T > t) dt is the probability that X makes n excursions away from [0,+∞) without making a
clock ring, and that the infimum of the whole path is reached in the first excursion and belongs
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Figure 3: Vervaat’s transformation. Top: a pathZ with finite lifetime V (Z) performing its infimum I (Z)

at time H(Z)−. Bottom: Vervaat’s transform Z′ of Z obtained by shifting Z by −I (Z) and performing
a circular time change starting at time H(Z).

to (−t − dt,−t). This yields

bP(Nt = n, T > t) dt

= E0

(
e−δτ

+
0 , − inf

0<s<τ+0
Xs ∈ dt

)
(E0(e

−δτ+0 , τ+0 < τ−t ))n−1

= E0

(
e−δτ

+
0 , − inf

0<s<τ+0
Xs ∈ dt

)(
E0

(
e−δτ

+
0 , − inf

0<s<τ+0
Xs < t

))n−1

= 1

n

d

dt

(
E0

(
e−δτ

+
0 , − inf

0<s<τ+0
Xs < t

))n
dt.

Now observe that

P(Nt = n, T ∈ dt) = δnP(Nt = n, T > t) dt = δ

b

d

dt
(E0(e

−δτ+0 , τ+0 < τ−t ))n dt.

Integrating over t now gives

P(NT = n, T <∞) = δ

b
(E0(e

−δτ+0 ))n.

A little elaboration on this argument also reveals that the distributions of the ages and
residual lifetimes at time T should be i.i.d. and independent of NT . Precise proofs are given in
the sections below.

3. Main general results

3.1. Decomposition of the splitting tree at the first detection time

In this subsection we call any càdlàg right continuous with left limits [7, p. 346]) path ε
with lifetime V (ε) ∈ [0,+∞], an excursion. We use the notation E for the space of excursions
endowed with Skorokhod’s topology and the associated Borel σ -field.
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214 A. LAMBERT AND P. TRAPMAN

For any time t > 0, we set ρt as the first time X(t) exits the interval (0, t) and we let wt0
denote the finite path of the JCCP X(t) killed upon exiting (0, t), that is, wt0 := (X(t)s ; s ≤ ρt ).
If the life length of the progenitor, say L, exceeds t , thenwt0 is reduced to the one-point process
that maps 0 to L. Furthermore, on the event Nt = n ≥ 1, for i = 1, . . . , n, we define σi to be
the ith hitting time of t by X(t) and we let wti denote the path of the JCCP X(t) between times
σi and σi+1, with the conventions that σ0 = 0 and σn+1 = τ0, that is,

wti (s) := X(t)s+σi , s < σi+1 − σi.
For i = 0, . . . , n, we denote by 	i := V (wti ) = σi+1 − σi the lifetime of the excursion wti (so
thatwtn(	n) = 0), and, for i = 0, . . . , n−1, we record the size of the jump made by the contour
process before reflection by setting wti (	i) equal to the time of death of the individual alive at
time t and visited at time σi+1.

In particular, when t is fixed, we know from [13] that, conditional on {Nt = n},
• the excursion wt0 follows the law of X started at a jump distributed as µ, killed at τ+t ,

and conditioned on τ+t < τ0;

• the excursions wti , i = 1, . . . , n− 1, are i.i.d. and follow the law of X started at t , killed
at τ+t , and conditioned on τ+t < τ0;

• the excursion wtn follows the law of X started at t , killed at τ0, and conditioned on
τ0 < τ+t .

Now recall that all individuals are equipped with an independent exponential clock with
parameter δ, and that the time when the first of these clocks rings is denoted by T and called
the detection time.

Proposition 3.1. Let p := P(T < ∞) be the probability that at least one clock rings before
extinction of the population. Then

p = E(1− e−δτ0).

More specifically,

P(Nt = 0, T > t) = P(Nt = 0, T = ∞) = E(e−δτ0 , τ0 < τ+t )

and, for any n ≥ 1,

P(Nt = n, T > t) = E(e−δτ
+
t , τ+t < τ0)(Et (e

−δτ+t , τ+t < τ0))
n−1 Et (e

−δτ0 , τ0 < τ+t ).

Furthermore, let n ≥ 1 and G′,G, F0, F1, . . . , Fn−1 be nonnegative, measurable functions
on E . Then

E

(
G′(w0

t )G(w
n
t )

n−1∏
i=1

Fi(w
i
t ), NT = n, T ∈ dt

)

= δn dt E(G′(Xs; s ≤ τ+t )e−δτ
+
t , τ+t < τ0)

×
{ n−1∏
i=1

Et (Fi(Xs; s ≤ τ+t )e−δτ
+
t , τ+t < τ0)

}
Et (G(Xs; s ≤ τ0)e

−δτ0 , τ0 < τ+t ).
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Proof. Throughout the proof, e denotes an independent, exponential random variable with
parameter δ. Since the JCCP has slope −1 and jump sizes equal to life lengths, the lifetime τ0
of the contour process is exactly the sum of the lifespans of all individuals in the population.
As a consequence,

p = P(τ0 > e) = E(1− e−δτ0).

Applying this property to the truncated contour process X(t) and using the path decomposition
preceding the statement of the proposition, we obtain

P(Nt = n, T > t) = P(Nt = n, τ0(X
(t)) < e)

= E(e−δτ0(X
(t)), Nt = n)

= P(τ+t < τ0)E(e−δV (wt0))(Pt (τ+t < τ0)E(e−δV (wt1)))n−1

× Pt (τ0 < τ+t )E(e−δV (wtn)),

which yields the desired expression. Note that here we have used the fact that wti is defined
conditional on τ+t > τ0 for i = 0, 1, . . . , n− 1 and wtn is defined conditional on τ0 > τ+t .

Observing that the detection rate equals δn conditional on {Nt = n}, we finally obtain

E

(
G′(w0

t )G(w
n
t )

n−1∏
i=1

Fi(w
i
t ), NT = n, T ∈ dt

)

= δn dtE

(
G′(w0

t )G(w
n
t )

n−1∏
i=1

Fi(w
i
t ), Nt = n, T > t

)
,

and the desired equality follows by the same method as previously.

Remark 3.1. Since the knowledge of the contour of the genealogical tree yields that of the
tree itself, the previous proposition characterises the law of the splitting tree stopped at the first
detection time (noting that, conditional onNT = n, the marked individual is of course uniform
among all n alive individuals).

3.2. Rephrasing with i.i.d. excursions

In this subsection ε denotes an excursion distributed as X started at 0 and killed upon
hitting (0,+∞]. Recall that ε takes only negative values, except at 0 (ε(0) = 0) and at V ,
since ε(V ) > 0 on the event {V <∞} (on the complementary event, ε drifts to −∞).

Set j (ε) := infs ε(s). On the event {j �= −∞} (which coincides almost surely with
{V <∞}), we denote by h(ε) the unique time h such that ε(h−) = j . Also, we denote by ε←
the pre-h process and by ε→ the post-h process, i.e.

ε←(s) := ε(s), 0 ≤ s < h(ε),

with ε←(h(ε)) = ε←(h(ε)−) = j (ε) and

ε→(s) := ε(s + h(ε)), 0 ≤ s ≤ V (ε)− h(ε).
Note that, with positive probability, V (ε) = h(ε), so that ε→ is then reduced to the one-point
process that maps 0 to ε(V ).
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Let n ≥ 1, and let ε1, . . . , εn denote i.i.d. excursions distributed as ε. Set

In := min
k
j (εk) and Kn := arg min

k
j (εk).

The next result is a consequence of the following two lemmas and Proposition 3.1.

Theorem 3.1. Let G,G′, F1, . . . , Fn be nonnegative, measurable functions on E . Then

E

(
G′(w0

t )G(w
n
t )

n−1∏
i=1

Fi(w
i
t ), NT = n, T ∈ dt

)

= δ

b
E

(
G(ε←Kn + t)G′(ε→Kn + t)

∏
k �=Kn

Fk−Kn mod(n)(εk + t)
n∏
k=1

e−δV (εk), −In ∈ dt

)
.

(3.1)

Remark 3.2. Note that the expression inside the expectation on the right-hand side of (3.1) has
zero probability when one of the excursions has infinite lifetime, that is, when there is some k
such that V (εk) = +∞.

Lemma 3.1. Let G and G′ be two nonnegative, measurable functions on E . Then

E(G(ε←)G′(ε→), −j ∈ dt)

= b dt E0(G(Xs; s ≤ τ−t ), τ−t < τ+0 )E(G′(Xs − t; s ≤ τ+t ), τ+t < τ0).

Proof. Applying the strong Markov property at τ−t yields

E(G(ε←)G′(ε→), −j ∈ dt) = E(G(ε←)G′(ε→), −j ∈ dt, τ−t < τ+0 )
= E0(G(Xs; s ≤ τ−t ), τ−t < τ+0 )

× dt
∫
(0,+∞]

π(dy)Ey−t (G′(Xs; s ≤ τ+0 ), τ+0 < τ−t ),

which yields the result.

Lemma 3.2. Let G,G′, F1, . . . , Fn be nonnegative, measurable functions on E . Then, for
j = 1, . . . , n,

E

(
G(ε←Kn)G

′(ε→Kn)
∏
k �=Kn

Fk(εk), −In ∈ dt, Kn = j
)

= b dt E0(G(Xs; s ≤ τ−t ), τ−t < τ+0 )E(G′(Xs − t; s ≤ τ+t ), τ+t < τ0)

×
∏
k �=j

E0(Fk(Xs; s ≤ τ+0 ), τ+0 < τ−t ). (3.2)

Proof. The expression on the left-hand side of (3.2) equals

E(G(ε←j )G′(ε→j ), −j (εj ) ∈ dt)E

(∏
k �=j

Fk(εk), −j (εk) < t for all k �= j
)

= E(G(ε←j )G′(ε→j ), −j (εj ) ∈ dt)
∏
k �=j

E0(Fk(Xs; s ≤ τ+0 ), τ+0 < τ−t ),

and the conclusion follows from the previous lemma.
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3.3. Rephrasing with Vervaat’s transformation

Forgetting about the terminal jump of each excursion (a piece of information that is actually
useful in the next section), Theorem 3.1 can be expressed in a more elegant way.

For any càdlàg path Z with finite lifetime V (Z) and law locally absolutely continuous
with respect to X, we set I (Z) := inf Z and define H(Z) as the unique time t such that
Z(t−) = I (Z). Finally, we let Z′ denote Vervaat’s transform of Z, defined as the path with
lifetime V (Z) such that Z′(V (Z)) = 0 and

Z′(s) = Z(s +H(Z) mod(V (Z)))− I (Z), 0 ≤ s < V (Z).

More specifically,

Z′(s) :=

⎧⎪⎨
⎪⎩
Z(s +H(Z))− I (Z) if 0 ≤ s < V (Z)−H(Z),
Z(s +H(Z)− V (Z))− I (Z) if V (Z)−H(Z) ≤ s < V (Z),

Z′(s) = 0 if s = V (Z).
Note that Z′ takes positive values, apart from its terminal value equal to 0 (and that Z′ is left
continuous at this point).

Now let Yn denote the concatenation of the n i.i.d. excursions (εi)i=1,...,n of the last
subsection. In particular, Yn is equally distributed as the Lévy process X reflected below
its supremum and killed at its (n + 1)th hitting time of 0. Then observe that In = I (Yn) and
let Y ′n denote Vervaat’s transformation of Yn. We have the following corollary of Theorem 3.1.

Theorem 3.2. For any n ≥ 1 and t > 0, and any excursion ε,

P(NT = n, T ∈ dt, X(T ) ∈ dε) = δ

b
e−δV (ε) P(−In ∈ dt, Y ′n ∈ dε).

Proof. From Theorem 3.1 we obtain

E

(
G′(w0

t )G(w
n
t )

n−1∏
i=1

Fi(w
i
t ), NT = n, T ∈ dt

)

= δ

b
E

(
G(ε←Kn − In)G′(ε→Kn − In)

∏
k �=Kn

Fk−Kn mod(n)(εk − In)e−δV (Y ′n), −In ∈ dt

)
,

which, by a monotone class theorem [9, p. 2], ensures that, for any nonnegative, measurable
function F on E ,

E(F (X(t)), NT = n, T ∈ dt) = δ

b
E(F (Y ′n)e−δV (Y

′
n), −In ∈ dt),

completing the proof.

One can now push this path decomposition even further by starting from a path, say Y , of
X reflected below its supremum as before, but not stopped at the (n + 1)th hitting time of 0.
Furthermore, use an independent, exponential random variable e with parameter δ. Note that
Y is the mere concatenation of a sequence (εi)i≥1 of i.i.d. excursions distributed as ε (stopped
at the first one with infinite lifetime). Then let M be the unique nonnegative integer such that
e falls into the (M + 1)th excursion of Y away from 0, i.e.

M := max{n ≥ 0 : V (ε1)+ · · · + V (εn) < e},
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with the usual convention that an empty sum is 0. As previously, define YM as the path Y killed
at its (M + 1)th hitting time of 0, set IM := inf YM , and let Y ′M denote Vervaat’s transform
of YM .

Theorem 3.3. For any n ≥ 1 and t > 0, and any excursion ε,

P(NT = n, T ∈ dt, X(t) ∈ dε) = δ

b E0(1− e−δτ+0 )
P(M = n, −IM ∈ dt, Y ′M ∈ dε).

Proof. Using the definition of M , we obtain

P(M = n, −IM ∈ dt, Y ′M ∈ dε)

= P(V (Y ′n) < e < V (Y ′n)+ V (εn+1), −In ∈ dt, Y ′n ∈ dε)

= e−δV (ε) E(1− e−δV (εn+1)) P(−In ∈ dt, Y ′n ∈ dε)

= e−δV (ε) E0(1− e−δτ
+
0 ) P(−In ∈ dt, Y ′n ∈ dε),

and an appeal to Theorem 3.2 yields the result, where we have used the fact that, on the event
Y ′n ∈ ε, V (Y ′n) = V (ε) is deterministic.

4. Applications and explicit formulae

4.1. Some lower-dimensional marginals of interest

In this subsection we give the joint law of T andNT , as well as the joint law of the ages and
residual lifetimes (A1, R1, . . . , ANT , RNT ) of the NT alive individuals at time T on the event
{T <∞}.

The next statement follows from Theorem 3.1 by taking all functionals equal to 1. Note that
E0(e−δτ

+
0 , τ+0 < τ−t ) can be read as E0(e−δτ

+
0 , − inf0≤s≤τ+0 Xs < t), so it is differentiable

with derivative equal to E0(e−δτ
+
0 , − inf0≤s≤τ+0 Xs ∈ dt)/dt .

Corollary 4.1. Let n ≥ 1 and y, t > 0. The joint law of T and NT is given by

P(NT = n, T ∈ dt)

= δ

b
E

( n∏
k=1

e−δV (εk), −In ∈ dt

)

= nδ

b
E0

(
e−δτ

+
0 , − inf

0≤s≤τ+0
Xs ∈ dt

)
(E0(e

−δτ+0 , τ+0 < τ−t ))n−1.

Integrating the variable t over (0, y) yields

P(NT = n, T < y) = δ

b
(E0(e

−δτ+0 , τ+0 < τ−y))n,

and, finally, letting y →∞, we obtain

P(NT = n) = δ

b
(E0(e

−δτ+0 ))n.

The next statement follows from Theorem 3.1 by reducing the functionals to functions of
the bivariate random variable (−ε(V (ε)−), ε(V (ε))), known as the undershoot and overshoot
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of ε at its first upcrossing of the x-axis. Indeed, recall that the age Ai and the residual lifetime
Ri of the ith individual in the population at time t in the order of the contour are seen directly
on the JCCP as the undershoot and overshoot of wti across t (which occurs at time V (wti ),
with terminal value equal to the date of death of this ith individual). We use the notation
und(ε) := −ε(V (ε)−) and ove(ε) = ε(V (ε)) for the undershoot and overshoot of ε.

Corollary 4.2. The joint law of the ages and residual lifetimes (A1, R1, . . . , ANT , RNT ) of the
NT alive individuals at time T is given by

P(NT = n, T ∈ dt, Ai ∈ dai, Ri ∈ dri, i = 1, . . . , n)

= δ

b
E

( n∏
k=1

e−δV (εk), −In ∈ dt, und(εi−1+Kn mod(n)) ∈ dai,

ove(εi−1+Kn mod(n)) ∈ dri, i = 1, . . . , n

)

= nδ

b
E0

(
e−δτ

+
0 , − inf

0≤s≤τ+0
Xs ∈ dt, −Xτ+0 − ∈ da1, Xτ+0

∈ dr1

)

×
n∏
k=2

E0(e
−δτ+0 , −Xτ+0 − ∈ dak, Xτ+0

∈ drk, τ
+
0 < τ−t ).

Recall from Theorem 3.3 (or observe from the last statement) that A1 and R1 are the
undershoot and overshoot of the excursion where the infimum is reached. In order to lose this
information (which is certainly not available to the observers at the beginning of the epidemic),
we reshuffle the labels of the individuals at T , on the event {T < ∞, NT = n}, by drawing
independently a uniform permutation ς on {1, . . . , n} and setting

(A′i , R′i ) := (Aς(i), Rς(i)), i = 1, . . . , n.

The first equality in the next statement is a mere reformulation of Corollary 4.2 using the
previous definition. The integration part comes from the same argument as that mentioned
before Corollary 4.1, i.e. by writing the event {τ+0 < τ−t } in the form {− inf0≤s≤τ+0 Xs < t}.
Corollary 4.3. The joint law of the (reshuffled) ages and residual lifetimes (A′1, R′1, . . . ,
A′NT , R

′
NT
) of the NT alive individuals at time T is given by

P(NT = n, T ∈ dt, A′i ∈ dai, R
′
i ∈ dri, i = 1, . . . , n)

= δ

b

n∑
i=1

E0

(
e−δτ

+
0 , − inf

0≤s≤τ+0
Xs ∈ dt, −Xτ+0 − ∈ dai, Xτ+0

∈ dri
)

×
∏
k �=i

E0(e
−δτ+0 , −Xτ+0 − ∈ dak, Xτ+0

∈ drk, τ
+
0 < τ−t ).

Integrating the variable t over (0, y) yields

P(NT = n, T < y, A′i ∈ dai, R
′
i ∈ dri, i = 1, . . . , n)

= δ

b

n∏
k=1

E0(e
−δτ+0 , −Xτ+0 − ∈ dak, Xτ+0

∈ drk, τ
+
0 < τ−y),
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and, finally, letting y →∞, we obtain

P(NT = n, A′i ∈ dai, R
′
i ∈ dri, i = 1, . . . , n)

= δ

b

n∏
k=1

E0(e
−δτ+0 , −Xτ+0 − ∈ dak, Xτ+0

∈ drk).

Remark 4.1. We observe that, conditional on NT = n and/or conditional on NT = n and
T < y, the random pairs (Ai, Ri), 1 ≤ i ≤ n, are i.i.d. and their common distribution does not
depend on n.

4.2. Completely asymmetric Lévy processes

In this subsection we seek to provide the reader with more explicit formulae regarding the
quantities considered in Subsection 4.1, taking advantage of background knowledge on Lévy
processes. Except for the proposition stated at the end of this subsection, all results stated here
and the references to their original contributors can be found in [1] and [2].

Instead of the jump measure π of the Lévy process X with no negative jumps, it can be
convenient to handle its Laplace exponent ψ defined as

ψ(a) := a −
∫
(0,+∞]

π(dx)(1− e−ax), a ≥ 0.

Recall that the real number π({∞}) can be positive, since particles may have infinite lifetimes.
It is also the killing rate ofX. The function ψ is differentiable and convex, and we denote by η
its largest root. Then ψ is increasing on [η,+∞) and we denote by φ its inverse mapping on
this set. Furthermore, the so-called two-sided exit problem (exit of an interval from the bottom
or from the top by X) has a simple solution of the form

Ps(τ0 < τ+t ) =
W(t − s)
W(t)

, (4.1)

where the so-called scale functionW is the nonnegative, nondecreasing, differentiable function
such that W(0) = 1, characterised by its Laplace transform∫ ∞

0
dxe−axW(x) = 1

ψ(a)
, a > η.

Equation (4.1) gives the probability that X exits the interval (0, t] from the bottom. The
following formula gives the Laplace transform of the first exit time ρt := τ0 ∧ τ+t on this event.
For any q > 0,

Es(e
−qρt , τ0 < τ+t ) =

W(q)(t − s)
W(q)(t)

,

where the so-called q-scale function W(q) is the nonnegative, nondecreasing, differentiable
function such that W(q)(0) = 1, characterised by its Laplace transform∫ ∞

0
dxe−axW(q)(x) = 1

ψ(a)− q , a > φ(q).

The q-resolvent of the process killed upon exiting (0, t] is given by the formula (s, y ∈ (0, t])

u
q
t (s, y) := Es

(∫ ρt

0
e−qv1{Xv∈dy} dv

)/
dy = W(q)(t − s)W(q)(y)

W(q)(t)
− 1{y>s}W(q)(y − s).

(4.2)
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We also need the q-resolvent of the process killed upon exiting (−∞, 0] (s, y ≥ 0):

uq(s, y) := E−s
(∫ τ+0

0
e−qv1{−Xv∈dy} dv

)/
dy = e−φ(q)yW(q)(s)− 1{s>y}W(q)(s − y).

(4.3)
Lastly, we have the following expression for the bivariate law of the undershoot and overshoot
on the event that the process exits (0, t] from the top

Es(e
−qρt , τ+t < τ0, Xρt− ∈ dy, Xρt −Xρt− ∈ dz)

= uqt (s, y) dyπ(dz), z+ y > t, y ∈ (0, t); (4.4)

an analogous result holds for the exit from (−∞, 0].
The next statement deals with the following quantities of interest in relation to Subsection 4.1.

For any t > 0 and q ≥ 0, set

Gq(t) := 1− E0(e
−qτ+0 , τ+0 < τ−t ).

In particular, as t →∞, Gq(t) converges to Gq(∞) := E0(1− e−qτ+0 ).

Proposition 4.1. For any q, r ≥ 0 and 0 < a < t ,

E0(e
−qτ+0 , −Xτ+0 − ∈ da, Xτ+0

∈ dr, τ+0 < τ−t ) = W(q)(t − a)
W(q)(t)

da dπ(a + r)

and
E0(e

−qτ+0 , −Xτ+0 − ∈ da, Xτ+0
∈ dr) = e−φ(q)a da dπ(a + r).

For any q, t ≥ 0,

Gq(t) = 1+ q ∫ t
0 W

(q)(s) ds

W(q)(t)

and
φ(q) = q + b E(1− e−qτ0) = q

Gq(∞) .

Proof. The first two displays follow from evaluating (4.2) or (4.3), respectively, and (4.4)
at s = t or s = 0, respectively, using the spatial homogeneity of Lévy processes.

Writing π̄(x) := π((x,+∞]), x > 0, from the first display we obtain

E0(e
−qτ+0 , −Xτ+0 − ∈ da, τ+0 < τ−t ) = W(q)(t − a)

W(q)(t)
daπ̄(a),

so that

1−Gq(t) = gq(t)

W(q)(t)
,

where

gq(t) :=
∫ t

0
daW(q)(t − a)π̄(a), t ≥ 0.

The third display is proved as in Theorem 8.1(iii) of [11] (note that there the process X is
mirrored in the horizontal axis).
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The last two equalities are classical results in fluctuation theory of Lévy processes [1].
To be more specific, the first equality is the well-known fact that the inverse mapping of the
Laplace exponent of a Lévy process without negative jumps is the Laplace exponent of its dual
ladder time process. Since q �→ Gq(∞) = E0(1− e−qτ+0 ) is the ladder time process of X, the
Wiener–Hopf factorisation yields the second equality (which could also be proved in the same
fashion as the third display, using the second display).

4.3. Summary statement with explicit formulae

The analytical results of Proposition 4.1 can be applied straightforwardly to rephrase the
conceptual results of Subsection 4.1 at the preference of the reader. The next statement is
one of the practical ways of doing this. It provides explicit formulae, up to the knowledge (or
numerical computation) of δ-scale functions (occasionally viaGδ , but then use Proposition 4.1)
and φ (which is fast to compute as the inverse mapping of ψ) for various marginals of interest
of the splitting tree stopped when the first clock rings.

Proposition 4.2. Let n ≥ 1 and y, t > 0. The joint law of T and NT is given by

P(NT = n, T ∈ dt) = −nδ
b
G′δ(t)(1−Gδ(t))n−1 dt.

As a consequence,

P(NT = n, T < y) = δ

b
(1−Gδ(y))n,

with respective one-dimensional marginals

P(NT = n) = δ

b
(1−Gδ(∞))n = δ

b

(
1− δ

φ(δ)

)n

and P(T < y) = δ

b

1−Gδ(y)
Gδ(y)

.

In particular,
P(NT = n | T = t) = nG2

δ (t)(1−Gδ(t))n−1

and P(NT = n | T < y) = Gδ(y)(1−Gδ(y))n−1.

Also, the probability p that T <∞ equals

δ

b

1−Gδ(∞)
Gδ(∞) = φ(δ)− δ

b
.

Conditional on {NT = n, T < y}, y ≤ ∞, the ages and residual lifetimes of the n alive
individuals at time T are i.i.d., distributed as the random variable (A(y), R(y)) (independent
of n). If y <∞,

P(A(y) ∈ da, R(y) ∈ dr) = 1

1−Gδ(y)
W(δ)(y − a)
W(δ)(y)

da dπ(a + r)

= W(δ)(y − a)
W(δ)(y)− 1− δ ∫ y

0 W
(δ)(s) ds

da dπ(a + r).

If y = ∞,

P(A(∞) ∈ da, R(∞) ∈ dr) = 1

1−Gδ(∞)e−φ(δ)a da dπ(a + r)

= φ(δ)

φ(δ)− δ e−φ(δ)a da dπ(a + r).
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5. A (more general) model of epidemics

As in [3] and [16], we aim to model the spread of some antibiotic resistant bacteria, such
as MRSA (methicillin-resistant Staphylococcus aureus) in a hospital. Once in a while, a
patient is colonised by MRSA (presumably by introduction from outside) and this may cause
an outbreak in the hospital. The first time T that the outbreak is detected occurs either when
the first symptoms appear in a carrier or at the first positive medical exam of a carrier.

We make the following assumptions.

• Patients have i.i.d. lengths of stay in the hospital, all distributed as some positive random
variable K with finite expectation.

• The outbreak starts with the infection of a randomly chosen patient.

• The length of stay is not influenced by whether or not an individual carries MRSA
(neutrality, or exchangeability assumption).

• During an outbreak no further introductions from outside occur (no immigration).

• Carriers are infective from the first time they were infected till their departure from the
hospital.

• While infective, patients independently transmit MRSA to other individuals at times of
a Poisson process with parameter b (susceptible individuals are always assumed to be in
excess, so that effects of the finite size of the hospital are ignored).

• As a consequence of the renewal theorem (assuming stationarity of the regenerative set
of arrivals at the hospital), the length of stay of a patient conditional on infection is a size-
biased version of K , and the time at which he/she is infected is independent, uniformly
distributed during his/her stay.

• Each patient is classified as a carrier only after an independent, exponential time with
parameter δ running from the beginning of his/her infection (time of screening or of
developing symptoms). The first time T when a carrier is detected is called the detection
time.

• At the detection time, all patients in the hospital are screened with a perfect test, so all
carriers at T are immediately identified.

Remark 5.1. The second assumption above can be disputable, since MRSA is often introduced
by a patient who already carries MRSA before entering the hospital (personal communication
with Martin Bootsma). Changing this assumption on introduction of MRSA for a more realistic
one would make the analysis harder, although possible, and obscure the illustrative character
of the example provided in this section.

It is not possible to obtain useful data from patients who have already left the hospital at
the moment of detection. Indeed, most carriers leaving the hospital will soon lose MRSA
because—in the absence of antibiotic pressure—the antibiotic resistant strains will soon be
outcompeted by antibiotic susceptible strains. Thus, our goal is to infer the parameters of the
epidemics by using available medical data belonging to the detected carriers.

The model is thus a Crump–Mode–Jagers branching process where every birth event is
interpreted as an infection, and individuals are endowed with i.i.d. bivariate random variables
distributed as the pair (U, V ), with V the lifetime (as an infective), i.e. the time between
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infection and departure from the hospital, and U the time already spent in the hospital before
infection. Individuals ‘give birth’ at a constant rate b during their (infective) lifetime (length V )
to copies of themselves. Finally, the joint law of (U, V ) is given by

E(f (U, V )) = m−1
∫
(0,∞)

P(K ∈ dz)
∫
(0,z)

dxf (x, z− x), (5.1)

where m := E(K) and f is any nonnegative Borel function.
At detection time T , all carriers i = 1, . . . , NT are identified and we focus on the following

medical data belonging to them:

• Ui is the time already spent in the hospital by carrier i upon his/her infection;

• Ai is the time elapsed between infection of carrier i and T (‘age’ of the infection);

• Ri is the remaining length of stay of carrier i in the hospital after T (‘residual lifetime’
of the infection);

• Vi := Ai + Ri is the total infective lifetime of carrier i;

• Hi := Ui+Ai is the time elapsed between entrance to the hospital of carrier i and time T .

Note that (Ui, Vi) is merely the typical pair (U, V ) attached to carrier i, and that Ai and Ri
have the interpretations given in the previous section. The quantities of empirical interest are
the random variables Hi , which should be easy to obtain from the hospital administrations.
Also, the distribution of K should be easy to estimate from hospital data.

It is not difficult to see that, with this extra information, Proposition 4.2 still holds with µ
(and, hence, ψ, φ,W(δ), . . .) defined thanks to (5.1) as

µ(dx) := P(V ∈ dx) = m−1
P(K > x) dx. (5.2)

Corollary 5.1. Conditional on {NT = n}, the triples (Ui, Ai, Ri) of the n (randomly labelled)
carriers at time T are i.i.d., distributed as the random variable (U,A,R) (independent of n),
where

E(f (U,A,R)) = b

m

φ(δ)

φ(δ)− δ
∫ ∞
u=0

du
∫ ∞
a=0

da
∫ ∞
z=u+a

P(K ∈ dz)e−φ(δ)af (u, a, z−u−a).

In particular, the times Hi = Ui + Ai spent in the hospital up to time T are i.i.d., distributed
as the random variable H :

P(H ∈ dy) = b/m

φ(δ)− δP(K > y)(1− e−φ(δ)y) dy. (5.3)

The only novelty here is that individuals are not only endowed with a lifetime V and an
exponential clock, they are now endowed with a time U previously spent at the hospital. Now
the epidemics model is constructed only from the V s and independent Poisson processes of
transmission. So, the timeUi associated to the ith detected individual depends on the epidemics
only through Vi . Therefore, Proposition 4.2 gives the law of the (i.i.d.) pairs (Ai, Ri) and then,
conditional on all the (Ai, Ri)s, the Uis are independent and the conditional distribution of Ui
is the distribution ofU conditional on V = Ai +Ri . As a consequence, the triples (Ui, Ai, Ri)
are i.i.d., and their common law is given by

P(Ui ∈ dx, Ai ∈ da, Ri ∈ dr) = P(U ∈ dx | V = a + r)P(A(∞) ∈ da, R(∞) ∈ dr),
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then we use (5.1), (5.2), and the last line of Proposition 4.2 to obtain the first display of the
corollary. The second display arises from an integration.

Remark 5.2. From the definition of φ(a) we deduce that

δ = φ(δ)− b
∫ ∞

0
µ(dx)(1− e−φ(δ)x) ⇐⇒ b

φ(δ)− δ =
1∫∞

0 µ(dx)(1− e−φ(δ)x)
,

and (5.3) might be rewritten as

P(H ∈ dy) = 1/m∫∞
0 µ(dx)(1− e−φ(δ)x)

P(K > y)(1− e−φ(δ)y) dy.

Finally, using (5.2), we obtain

P(H ∈ dy) = P(K > y)(1− e−φ(δ)y) dy∫∞
0 P(K > x)(1− e−φ(δ)x) dx

.

The right-hand side depends only on K (which might be estimated from independent hospital
data) and φ(δ).

Now assume that various outbreaks in various hospitals are observed at their detection times.
If the sizes of outbreaks (all distributed asNT ) are the only observable statistics then, as stressed
in [3] and [16], the fact that NT is geometrically distributed allows only for the estimation of
a single epidemiological parameter. Enlarging this information to, e.g. the times Hi spent in
the hospital before T , we can hope to make finer inferences on the dynamical characteristics
of these epidemics.

Assume that n outbreaks are observed of sizes x1, x2, . . . , xn ∈ N>0 and s(n) := ∑n
i=1 xi

carriers are detected, which at the time of detection have been in the hospital for y1, y2, . . . ,

ys(n) ∈ R+ time units. We also assume that, since the distribution ofK may be estimated from
independent hospital data, its distribution is known exactly.

Using Remark 5.2, the likelihood of the observations L(b, δ; x1, . . . , xn, y1, . . . , ys(n)) is
given by

L(b, δ) =
( n∏
i=1

δ

φ(δ)

(
1− δ

φ(δ)

)xi−1) s(n)∏
j=1

P(H ∈ dyj )

=
(

δ

φ(δ)

)n(
1− δ

φ(δ)

)s(n)−n s(n)∏
j=1

P(K > yj )(1− e−φ(δ)yj ) dyj∫∞
0 P(K > x)(1− e−φ(δ)x) dx

. (5.4)

We write L = L1L2, where

L1(b, δ) =
(

δ

φ(δ)

)n(
1− δ

φ(δ)

)s(n)−n

and

L2(b, δ) =
s(n)∏
j=1

P(K > yj )(1− e−φ(δ)yj ) dyj∫∞
0 P(K > x)(1− e−φ(δ)x) dx

.
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We observe thatL1 is the likelihood function for n realisations x1, x2, . . . , xn of i.i.d. geometric
random variables with parameter g1 := g1(b, δ) := δ/φ(δ), while L2 (assuming that the
distribution of K is exactly known) depends only on g2 := g2(b, δ) := φ(δ). Observe that
δ = g1g2 and (recalling that m := E(K)),

b = φ(δ)− δ∫∞
0 µ(dx)(1− e−φ(δ)x)

= mg2(1− g1)∫∞
0 P(K > x)(1− e−g2x) dx

.

Furthermore, reparametrization ofL1(b, δ) in a function of g1 and g2 results in a function which
is independent of g2, while reparametrization of L2(b, δ) in a function of g1 and g2 results in
a function which is independent of g1. It is straightforward to deduce that the maximum
likelihood estimator (MLE) of g1, say ĝ1, is given by

ĝ1 = n

s(n)
,

while, since L1 does not depend on g2, the MLE of g2, say ĝ2, is given by

ĝ2 = arg max
g2

s(n)∏
j=1

P(K > yj )(1− e−g2yj ) dyj∫∞
0 P(K > x)(1− e−g2x) dx

.

Standard theory on maximum likelihood estimation reveals that the MLEs of b, say b̂, and δ,
say δ̂, are given by

b̂ = mĝ2(1− ĝ1)∫∞
0 P(K > x)(1− e−ĝ2x) dx

and δ̂ = ĝ1ĝ2.

If H is exponentially distributed with parameter ν [3], [16] then ĝ1 = n/s(n), while

ĝ2 = arg max
g2

s(n)∏
j=1

(
(ν + g2)ν

g2
(1− e−g2yj )e−νyj

)

= arg max
g2

(
s(n) log

(
1+ ν

g2

)
+
s(n)∑
j=1

log(1− e−g2yj )

)
,

and the MLE of b and δ are given by b̂ = (1− ĝ1)(ν + ĝ2) and δ̂ = ĝ1ĝ2.
Note that it is possible to allow for differences in the distributions of lengths of stay (the

random variableK) and infection rates (the parameter b) for different hospitals, while keeping
the biologically governed rate of onset of symptoms (δ) the same for all hospitals. In that case
we use the likelihood (5.4) with hospital specific parameters and observations for estimation.

Derivation of similar formulae for models relaxing too simplistic assumptions (see
Remark 5.1), and applications to real hospital data, will be addressed in a future work.
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