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Abstract

There is much interest within the mathematical biology and statistical physics
community in converting stochastic agent-based models for random walkers into a
partial differential equation description for the average agent density. Here a collection
of noninteracting biased random walkers on a one-dimensional lattice is considered.
The usual master equation approach requires that two continuum limits, involving three
parameters, namely step length, time step and the random walk bias, approach zero in
a specific way. We are interested in the case where the two limits are not consistent.
New results are obtained using a Fokker–Planck equation and the results are highly
dependent on the simulation update schemes. The theoretical results are confirmed with
examples. These findings provide insight into the importance of updating schemes to
an accurate macroscopic description of stochastic local movement rules in agent-based
models when the lattice spacing represents a physical object such as cell diameter.

2010 Mathematics subject classification: 60G07.

Keywords and phrases: asymmetric random walkers, partial differential equations,
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1. Introduction

Lattice-based random walks conducted by noninteracting and interacting agents are
used to simulate many processes in the physical and biological sciences. Recently
there has been much interest in converting stochastic agent-based models of local
movement into a partial differential equation (PDE) description for the average agent
density or occupancy as a continuous function using various mean-field treatments
[1, 7, 17, 18, 22, 23, 26, 27]. A common approach is to consider the change of
occupancy at each lattice site over discrete time steps or in continuous time, in terms
of a master equation. Appropriate continuum limits are then taken. For unbiased
random walkers (a symmetric random walk process), there is only one limit that is
needed. However, for biased random walkers (an asymmetric random walk process),
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there are two limits which need to be made consistent. The only way to do this is to
make an assumption about the size of the random walk bias [6, 10].

We are interested in the case in which the two limits are not consistent. New results
are obtained for random walkers on a one-dimensional lattice using an alternative
approach in terms of a Fokker–Planck equation. Simulation results for noninteracting
agents moving on lattices are dependent on the simulation update schemes. We
compare the effect of two common updating schemes on the expected evolution of
a collection of noninteracting agents. For discrete-time processes, there are several
ways of progressing m random walkers from one time n to the next. The updating of
the m agents can be done synchronously or asynchronously to obtain the state of the
system at time n + 1. When we refer to the updating of an individual agent, we refer
to allowing that agent to hop left, hop right, or not move, depending on the associated
hopping probabilities. The choice of updating schemes affects the simulation results.

Two update schemes are considered: the synchronous update scheme, and the
most common type of asynchronous updating, namely the random sequential update
scheme. Consider a system of m agents. In the synchronous update (SU) scheme,
at each discrete time step all m agents within the system are updated at the same
time, and therefore only once each time step. This scheme is associated with the
classic discrete-time random walk, as each agent is conducting a discrete-time random
walk independent of the other agents. In the random sequential update (RSU) scheme,
at each time step, m sequential independent random choices of an agent are made,
and each agent is immediately updated upon selection [5]. Of course, sometimes a
particular agent will be selected for updating more than once, or not at all, in a given
time step. However, on average, the number of times a given agent is chosen per time
step will be unity. The RSU scheme is the discrete-time analogue of a continuous time
process [20]. It is commonly used in many biological contexts where no more than
one random walker can occupy a site (called an exclusion process) [7, 9, 14].

Since the choice of updating scheme affects simulation outcomes, the average
behaviour of the system and the associated PDEs are expected to be different for the SU
and RSU schemes. We explore these issues in the context of a general biased random
walk, where the left and right hopping probabilities may depend on the location of
agents and time. Two PDE descriptions are obtained through the Fokker–Planck
formalism.

2. Noninteracting random walkers

Consider an infinite one-dimensional lattice with lattice spacing ∆. Let i ∈ Z denote
the number of the lattice site, so that the position of an agent at site i is given by x = i∆.
Let n ∈ N denote the nth time step and τ the duration of each time step, so that t = nτ.
Nonconstant time steps can be utilised and are discussed in Section 6.

Consider a fixed number of agents on the lattice. When chosen, the agents can
move distance ∆ (a single lattice site, left or right) in time step τ, according to hopping
probabilities. The agent movements are independent of each other. This means that
the number of agents of any particular lattice site is unconstrained.

https://doi.org/10.1017/S1446181113000369 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181113000369


[3] Biased random walks, partial differential equations and update schemes 95

Let pL
n (i) and pR

n (i) denote the left and right hopping probabilities for an agent at
site i into the nearest neighbour sites (i − 1 or i + 1, respectively). Hence, pL

n (i) (pR
n (i))

is the probability that an agent (selected to be updated) will move left (right) a distance
∆ within time τ, given that the agent is at site i at the nth time step. These probabilities
may be dependent on both the agent’s current site i and on the time step n at which
the update occurs. For simple random walks these probabilities are typically constant
and sum to unity. Here we allow more generality and provide examples later. We
note that allowing for generality with respect to the time step for hopping probabilities
is uncommon for discrete-time random walks, especially when attempting to derive
an approximating PDE. One of our examples provides a natural demonstration of a
time-dependent random walk, and how a PDE can be derived which gives an accurate
approximation of the random walk.

The motility parameter pL
n (i) + pR

n (i) is the probability that an agent (selected to be
updated) will move a distance ∆ within time τ, given that the agent is at site i at the
nth time step. For example, in cell migration simulations, a lattice spacing ∆ typically
represents a cell diameter [9, 14]. If pL

n (i) + pR
n (i) = 1 then, on average, the cell/agent

is certain to move (one lattice space) each time step. Without loss of generality, it is
usual to perform dimensionless simulations setting ∆ = τ = 1 [3, 4, 18].

To describe the evolution of agents, we consider the expected occupancy of a site.
Define the random variable γn(i) to be the number of agents on site i at the nth time
step. The expected occupancy of a site i at time step n is denoted by

Cn(i) = E[γn(i)].

We are interested in the evolution of Cn(i). To this end, we transform to continuous
variables according to i 7→ x/∆, n 7→ t/τ and Cn(i) 7→ C(x, t). In addition, the hopping
probabilities transform as pL

n (i) 7→ pL(x, t) and pR
n (i) 7→ pR(x, t). We develop a PDE

for the average occupancy C(x, t) which approximates Cn(i) for given ∆ and τ. This
setup is highly versatile, and can be used to approximate random walkers updating
with either the SU or RSU schemes.

3. Discrete-time master equation approach

The usual method for producing a PDE describing the movement of agents in a
discrete-time process is the discrete-time master equation approach [8, 15, 18, 22, 23].
The change in the expected occupancy Cn(i) at each site i from time step n to time step
n + 1 can be expressed as

Cn+1(i) −Cn(i) = pL
n (i + 1)Cn(i + 1) + pR

n (i − 1)Cn(i − 1) − [pL
n (i) + pR

n (i)]Cn(i). (3.1)

The first two terms on the right-hand side account for agents moving into site i, while
the last term accounts for agents leaving the site. This master equation implicitly
assumes that agents move only once (or on average move only once) per time step.
Equation (3.1) can be converted into a PDE by taking the continuum limits of the lattice
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spacing ∆ and the size of the intervals between consecutive time steps τ (assuming
them to be constant). Transforming to continuous variables and performing Taylor
expansions about x and t, we obtain

∂C
∂t

= −
∆

τ
[(pR(x, t) − pL(x, t))C(x, t)]

+
∆2

2τ
∂2

∂x2 [(pR(x, t) + pL(x, t))C(x, t)] + O(∆3/τ, τ).

Taking the typical limits of ∆, τ → 0, the following advection–diffusion PDE is
obtained:

∂C
∂t

= −
∂

∂x
[V(x, t)C(x, t)] +

1
2
∂2

∂x2 [D(x, t)C(x, t)], (3.2)

where

V(x, t) = lim
∆,τ→0

∆

τ
(pR(x, t) − pL(x, t)), (3.3)

D(x, t) = lim
∆,τ→0

∆2

τ
(pR(x, t) + pL(x, t)). (3.4)

For the above limits to formally exist, we require the expression pR(x, t) − pL(x, t) to
be O(∆) [6, 10].

We are interested in whether the PDE (3.2) provides a good approximation to
averaged noninteracting random walk simulation data. The coefficients in (3.2) are
obtained by a limiting process ∆, τ→ 0 and require pR − pL = O(∆) for consistency,
whereas simulation data typically has ∆ = τ = 1 as discussed, while the bias parameter
may be pR − pL = O(1). To this end, we introduce a different approach.

4. The Fokker–Planck equation

The Fokker–Planck equation is a PDE that describes the evolution of the transition
density function for some diffusion process {X(t)}t≥0 with time [12, 24, 25]. In
addition, it describes the evolution of a continuous concentration of independent
stochastically evolving particles from some initial condition, where each particle
evolves according to the diffusion {X(t)}t≥0 [2, 12]. The concentration of these
particles, C(x, t), evolves as

∂C
∂t

= −
∂

∂x
[µ(x, t)C(x, t)] +

∂2

∂x2

[1
2
σ2(x, t)C(x, t)

]
, (4.1)

where µ(x, t) and σ2(x, t) are termed the infinitesimal mean and infinitesimal variance,
respectively, of the stochastic process X(t), defined by

µ(x, t) = lim
h→0

1
h
E[X(t + h) − X(t) | X(t) = x], (4.2)

σ2(x, t) = lim
h→0

1
h
E[(X(t + h) − X(t))2 | X(t) = x]. (4.3)
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The functions µ and σ2 are often called the drift coefficient and diffusivity coefficient,
respectively [12, 24].

It is well known that diffusion processes often prove to be accurate approximations
of discrete processes. Karlin and Taylor [12] outline means of determining when
discrete processes are accurately approximated by diffusions, and provide examples of
such processes, such as the Wright–Fisher process. Here we utilise diffusion processes
to approximate the expected evolution of a collection of random walkers.

5. The Fokker–Planck equation and random walks

Let the discrete stochastic process {X(∆)
n }n≥0 give the continuum position of an

individual agent conducting a random walk with hopping probabilities given by pL
n (i)

and pR
n (i), using the SU scheme. As such, X(∆)

n = ∆Xn, where Xn is the lattice site
occupied by the agent at the nth time step. Following a similar approach to Karlin
and Taylor [12], we determine a diffusion that approximates the interpolated process
{X(∆)(t)}t≥0, where X(∆)(t) = X(∆)

bt/τc, with τ the time step length (this can be generalized
to nonconstant time steps).

This is achieved by deriving expressions analogous to equations (4.2)–(4.3) by
using the mean and second moment of the displacement of the random walker over
one time step. These expressions are then substituted into the Fokker–Planck equation
to produce a PDE that gives an approximation for the expected evolution of a collection
of noninteracting random walkers (using the SU scheme). Specifically, we express µ
and σ2 as follows:

µ =
1
τ
E[X(∆)

n+1 − X(∆)
n | X(∆)

n = ∆i] = V∆,τE[Xn+1 − Xn | Xn = i]

= V∆,τ(pR
n (i) − pL

n (i)), (5.1)

σ2 =
1
τ
E[(X(∆)

n+1 − X(∆)
n )2 | X(∆)

n = ∆i] = D∆,τE[(Xn+1 − Xn)2 | Xn = i]

= D∆,τ(pR
n (i) + pL

n (i)), (5.2)

where

V∆,τ =
∆

τ
, D∆,τ =

∆2

τ
. (5.3)

As for the discrete-time master equation approach, we move to continuous variables
x and t and continuous functions pR(x, t) and pL(x, t). The Fokker–Planck formalism
requires us to take the limits as ∆→ 0 and τ→ 0. This gives

µ(x, t) = lim
∆,τ→0

V∆,τ(pR(x, t) − pL(x, t)), (5.4)

σ2(x, t) = lim
∆,τ→0

D∆,τ(pR(x, t) + pL(x, t)). (5.5)

Note that substituting equations (5.4)–(5.5) into the Fokker–Planck equation (4.1)
gives the same PDE derived via the discrete-time master equation approach,
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equation (3.2). Again, for the above limits to formally exist, we require the expression
pR(x, t) − pL(x, t) to be O(∆).

The Fokker–Plank approach and the discrete-time master equation approach focus
on a discrete process approaching a continuous process via the limits ∆, τ → 0.
However, in the discrete simulation, agents perform random moves to the nearest
neighbour sites with spacing ∆ at discrete time steps τ. Much current research focuses
on deriving PDEs that provide an accurate approximation of the evolution of expected
site occupancy for random walks, typically for ∆ = 1 and τ = 1 [8, 15, 18, 22, 23], and
where the bias pR(x, t) − pL(x, t) may be O(1). We ask: does equation (3.2) give the
best PDE in these situations? As highlighted by Hywood and Landman [11], this does
not appear to be the case. In the following arguments we outline a potentially more
useful PDE for these particular circumstances.

The issue is not with the expression used for the infinitesimal mean, but with
the expression used for the infinitesimal variance. Kimura [13], in considering the
evolution of a gene frequency Zn within a population, determined that when using the
Fokker–Planck equation it was more natural to use the variance of Zn+1 − Zn rather than
the second moment as is normally the case for the Fokker–Planck equation. Lange [16]
also alluded to this approach to approximating discrete processes. The idea holds true
for deriving PDEs to describe the evolution of the expected site occupancy for random
walkers on a lattice. We continue by outlining why this is the case.

Firstly we note that for a diffusion process {X(t)}t≥0,

Var(X(t + h) − X(t) | X(t) = x)

= E[(X(t + h) − X(t))2 | X(t) = x] − (E[X(t + h) − X(t) | X(t) = x])2,

and since (E[X(t + h) − X(t) | X(t) = x])2 = o(h) for a diffusion process, we must have

lim
h→0

1
h

Var(X(t + h) − X(t) | X(t) = x) = lim
h→0

1
h
E[(X(t + h) − X(t))2 | X(t) = x]

= σ2(x, t). (5.6)

If we want the diffusion X(t) to approximate the interpolated discrete process X(∆)
bt/τc,

with small time steps τ, we want

Var(X(t + τ) − X(t) | X(t) = x) ≈ Var(X(∆)
n+1 − X(∆)

n | X(∆)
n = ∆i).

This suggests that

σ2(x, t) ≈
1
τ

Var(X(∆)
n+1 − X(∆)

n | X(∆)
n = ∆i).

However, the equivalence demonstrated in equation (5.6) will not necessarily hold
when considering the analogous expressions for discrete processes such as the random
walks considered here. Let us consider a set of random walkers which update with the
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SU scheme. It is easy to see that

E[X(∆)
n+1 − X(∆)

n | X(∆)
n = ∆i] = ∆(pR

n (i) − pL
n (i)),

E[(X(∆)
n+1 − X(∆)

n )2 | X(∆)
n = ∆i] = ∆2(pR

n (i) + pL
n (i)).

If, as previously stated, we have pR
n (i) − pL

n (i) = O(∆), then (E[X(∆)
n+1 − X(∆)

n | X(∆)
n =

∆i])2 is of smaller order than E[(X(∆)
n+1 − X(∆)

n )2 | X(∆)
n = ∆i]. So in this case, for

small ∆ we have Var(X(∆)
n+1 − X(∆)

n | X(∆)
n = ∆i) ≈ E[(X(∆)

n+1 − X(∆)
n )2 | X(∆)

n = ∆i]. In this
circumstance, it would be natural to set σ2 as in equation (5.2), which when converting
to continuous variables and functions gives equation (5.5).

However, if pR
n (i) − pL

n (i) = O(1) then (E[X(∆)
n+1 − X(∆)

n | X(∆)
n = ∆i])2 is instead the

same order as E[(X(∆)
n+1 − X(∆)

n )2 | X(∆)
n = ∆i]. Then, even for small ∆, the approximation

Var(X(∆)
n+1 − X(∆)

n | X(∆)
n = ∆i) ≈ E[(X(∆)

n+1 − X(∆)
n )2 | X(∆)

n = ∆i] does not necessarily hold.
We suggest that in these circumstances it is more natural to use µ as in equation (5.1)
and replace equation (5.2) with

σ2 =
1
τ

Var(X(∆)
n+1 − X(∆)

n | X(∆)
n = ∆i) = D∆,τVar(Xn+1 − Xn | Xn = i), (5.7)

with V∆,τ and D∆,τ defined as in (5.3). Moving to continuous variables and functions
we get the following expressions:

µSU(x, t) = V∆,τ(pR(x, t) − pL(x, t)), (5.8)

σ2
SU(x, t) = D∆,τ(pR(x, t) + pL(x, t) − (pR(x, t) − pL(x, t))2), (5.9)

where the subscript SU indicates that the random walk updates using the SU scheme.
We note that equations (5.8)–(5.9) do not contain the limits ∆, τ→ 0. The examples

in Section 6 demonstrate that substitution of the expressions in equations (5.8)–(5.9)
into the Fokker–Planck equation (4.1) gives extremely accurate approximations of the
expected evolution of collections of discrete random walkers. It should be noted that
our arguments still require that ∆ and τ are not too large, compared to unity, and that
in fact the equations that are produced improve in accuracy as ∆ and τ decrease.

The above reasoning also holds when considering the RSU scheme. An identical
approach of analysing the expectation and variance of the displacement of individual
random walkers can be used to produce expressions for equations (5.1) and (5.7),
which, when substituted into the Fokker–Planck equation, give a PDE that is very
accurate at approximating the expected evolution of a collection of random walkers
updating using the RSU scheme. When moving to continuous variables and functions
for the RSU scheme, equations (5.1) and (5.7) become

µRSU(x, t) = V∆,τ(pR(x, t) − pL(x, t)), (5.10)

σ2
RSU(x, t) = D∆,τ(pR(x, t) + pL(x, t)), (5.11)
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where the subscript RSU indicates that the random walk updates using the
RSU scheme. The proofs of how the expressions in equations (5.8)–(5.9) and
equations (5.10)–(5.11) are produced are provided in Appendix A.

When comparing the infinitesimal mean and variance for the SU and RSU schemes
in equations (5.8)–(5.9) and equations (5.10)–(5.11), several interesting properties
are apparent. Both schemes have the same drift coefficient: it is of course nonzero
only when the process is biased. In contrast, the diffusive term may differ between
the two schemes. For a biased process, the infinitesimal variance for the RSU
scheme is (always) larger than for the SU scheme. This makes sense since in the
RSU scheme there is a chance that the leading agent is chosen to move more than
once during a single time step. This can potentially cause a larger spread of the
agent population for a given simulation. This capacity for a larger spread of agents
implies that an approximating diffusion for the RSU scheme would have a larger
infinitesimal variance. Indeed, these properties will be observed in the examples
provided. For a symmetric process, µ(x, t) ≡ 0 and the diffusive terms are identical
for both update schemes, namely σ2(x, t) = D∆,τ(pR(x, t) + pL(x, t)). Therefore, for
a symmetric process, the average behaviour of the stochastic process is independent
of the type of update scheme. We next compare simulation data and solutions to the
Fokker–Planck equations for different update schemes.

It is important to appreciate the difference between these two cases and the well-
known result obtained with the discrete-time master equation approach. The Fokker–
Planck approach using the RSU scheme produces the same PDE as the discrete-
time master equation approach if the strict limits for V and D in (3.3)–(3.4) are
replaced by (5.10)–(5.11). Furthermore, when pR(x, t) − pL(x, t) = O(∆) as ∆→ 0,
as is strictly required in the continuum limit for the master equation approach,
σ2

SU(x, t) = σ2
RSU(x, t). However, our interest arises for the case when agents are

moving on a lattice where ∆ = O(1). We show through examples that there can be
large discrepancies between the two variances given by (5.9) and (5.11).

6. Examples

Data from averaged simulations are compared with solutions of equation (4.1).
Each lattice site between Ml ≤ x ≤ Mr (for some chosen Ml and Mr) is initially
occupied by a single agent, while the remaining lattice sites are empty. Simulations
are performed and averaged over a number of simulations. The PDEs are solved using
Matlab’s pdepe.

Our first example of a biased random walk has constant left and right hopping
probabilities pL and pR. Figure 1 shows expected site occupancy C(x, t) profiles in
space at different times. The average simulation results are well approximated by
the solution to the PDE for both the SU and RSU cases. In particular, we observe
that the RSU scheme is slightly more spread out (albeit difficult to see here, but
easily apparent in Figures 2 and 3), but the solution to the Fokker–Planck equation
approximates well the leading edges of the simulation results. The (blue) simulation
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Figure 1. Expected occupancy C(x, t) versus position x at different times t using the SU scheme (top row)
and RSU scheme (bottom row). Simulation results averaged over 500 realisations (blue curve) and PDE
solution profiles (equation (4.1) with equations (5.8)–(5.9) and equation (4.1) with equations (5.10)–
(5.11) for SU and RSU schemes) (red curve) for t = 200, 400, 600, 800, 1000. Here pR = 0.45 and
pL = 0.05. The initial distribution of agents has all sites with 195 ≤ x ≤ 205 completely occupied. In
(a,c) ∆ = 1 and τ = 1. In (b,d) ∆ = 1/2 and τ = 1/2. Note the different vertical and horizontal axis scales.
(Colour available online.)

results have oscillations, because they are averaged over a relatively small number
of individual realisations. If the number of realisations increases, the oscillations
decrease in amplitude.

The next examples arise from a reinterpretation of a discrete model for a growing
biological tissue [3, 4, 11]. They demonstrate the robustness of the Fokker–Planck
approach for the case where the hopping probabilities depend on both space and time.
They also provide a simple means of introducing time dependence into random walks
and how this time dependence can be incorporated into approximating PDEs.

Let L(t) be some specified increasing continuous function. This defines a lattice site
number N(t) = bL(t)/∆c. If n is the number of time steps that have occurred, then the
transformation n 7→ N(t) − N(0) is made when moving to the continuous framework.
For ease of notation we write M(t) = N(t) − N(0). We consider a collection of random
walkers that initially can only occupy lattice sites i such that 0 < i < N(0). Let the
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Figure 2. Expected occupancy C(x, t) versus position x at different times t using the SU scheme (top
row) and RSU scheme (bottom row). Simulation results averaged over 1000 realisations (blue curve) and
PDE solution profiles (equation (4.1) with equations (5.8)–(5.9) and equation (4.1) with equations (5.10)–
(5.11) for SU and RSU schemes) (red curve) for t = 15, 30, 45, 60. The hopping probabilities are given
by (6.1) with L(t) = 24 + t. The initial distribution of agents has all sites with 12 ≤ x ≤ 18 completely
occupied. In (a,c) ∆ = 1. In (b,d) ∆ = 1/2. Here the time step interval is a constant, namely τ = ∆.
(Colour available online.)

hopping probabilities be

pL
n (i) = 0, pR

n (i) = min{i/(N(0) + n), 1}. (6.1)

This is an example of a totally asymmetric random walk.
Now, rather than have τ being a fixed constant, we allow τ to change with the

number of steps. Let T j be the time at which the jth time step occurs. Then
T j = min{t : M(t) = j}. Now let τ j be the value of the time interval between the jth
and ( j + 1)th time steps, that is, τ j = T j+1 − T j. From the definitions of M(t) and τ j, it
is clear that τM(t) gives the time step length that includes the time with value t.

It is worth noting that the time step interval τM(t) is dependent on L(t) and ∆.
Furthermore, as ∆→ 0, we also have τM(t) → 0 for all t. Therefore, while the length
of each time step may vary (for example, decrease as time increases), the potential
number of moves remains equal to the number of agents m in the system.
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Figure 3. Expected occupancy C(x, t) versus position x at different times t using the SU scheme (top
row) and RSU scheme (bottom row). Simulation results averaged over 1000 realisations (blue curve) and
PDE solution profiles (equation (4.1) with equations (5.8)–(5.9) and equation (4.1) with equations (5.10)–
(5.11) for SU and RSU schemes) (red curve) for t = 1, 2, 3, 4. The hopping probabilities are given by (6.1)
with L(t) = 24e0.69t. The initial distribution of agents has all sites with 12 ≤ x ≤ 18 completely occupied.
In (a,c) ∆ = 1. In (b,d) ∆ = 1/2. Here the time step interval decreases as t increases. Note the different
vertical and horizontal axis scales. (Colour available online.)

For this example, for small enough ∆, the coefficients in (5.3) can be rewritten as
the approximations [11]

V∆,τ =
∆

τM(t)
≈ L′(t), D∆,τ =

∆2

τM(t)
≈ L′(t)∆, (6.2)

where L′(t) is the time derivative of L(t). Moving to the continuous variables x and t
and using the approximation ∆N(t) ≈ L(t) together with (6.2), the drift and diffusivity
terms in the Fokker–Planck formulation (equations (5.8)–(5.11)) can be expressed as

µSU(x, t) = L′(t)
x

L(t)
, σ2

SU(x, t) = ∆L′(t)
x

L(t)

(
1 −

x
L(t)

)
,

µRSU(x, t) = L′(t)
x

L(t)
, σ2

RSU(x, t) = ∆L′(t)
x

L(t)
,

for the SU and RSU schemes, respectively.
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We consider two choices of the function L(t), linear and exponential, and two values
of ∆, illustrated in Figures 2 and 3, respectively. The PDE solutions approximate the
averaged simulation results very well. In these two figures, it is easy to see that, as
expected, the spread of agents is larger for the RSU case at each time. It is most
apparent for the last illustrated time.

Relatively large values of ∆ (values 1/2, 1) have been used in these examples.
With smaller values, the accuracy of the PDE description is even greater. Of course,
as ∆ is decreased to zero, the diffusive terms become negligible and the PDE is a
pure convective equation, as expected. However, for spatially dependent probabilities
the convective component contributes two terms through the product rule, namely a
transport term and a kinetic (dilution) term. This occurs because the tracked mass in
the growing tissue is conserved.

7. Conclusions

We compare the usual discrete-time master equation approach with an alternative
framework for establishing an approximating PDE description for a population of
biased random walkers. The Fokker–Planck approach is used to derive PDEs to
approximate simulation data where either a synchronous or an asynchronous update
scheme is implemented. The PDEs are different if the random walk is biased
(asymmetric). For unbiased (symmetric) random walks, the update scheme does not
influence the average behaviour and the PDEs are identical. By contrast, the discrete-
time master equation approach produces the PDE appropriate only to the RSU scheme,
and overestimates the diffusivity if the SU scheme is used. The accuracy of the PDE
descriptions has been demonstrated with several examples. While only walks on a
one-dimensional lattice have been considered here, this approach can be extended to
higher dimensions.

This work highlights the influence of updating schemes when using stochastic
random walkers in real world applications. In order to deduce population-level
behaviour, the appropriate PDE description is affected by the type of simulation
updating scheme, as well as by the local probabilistic movement rules. These
considerations are important to the expanding field of agent-based models, applied
to traffic flow, pedestrian flow and biological cell migration. In particular, this
study reconciles the discrepancy between two different continuum representations of a
discretely growing lattice used in modelling biological tissue growth, where the lattice
spacing represents cell diameter [3, 11].
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Appendix A. Proofs of equations (5.8)–(5.11)

Let m be the number of agents in the system. For ease we simplify the
notation introduced in Section 5 and define ∆Yn(i) to be the random variable for the
displacement of an agent over one time step, where i denotes the lattice site number
and n denotes the nth time step.

A.1. SU scheme Each agent is given the opportunity to move exactly once per time
step, so each will be updated exactly once at each time step. Then P(Yn(i) = 1) = pR

n (i),
P(Yn(i) = −1) = pL

n (i) and P(Yn(i) = 0) = 1 − pL
n (i) − pR

n (i). Transforming to continuous
variables in the usual way, it is easy to verify that

E[∆Y(x, t)] = ∆[pR(x, t) − pL(x, t)],

E[(∆Y(x, t))2] = ∆2[pR(x, t) + pL(x, t)],

Var(∆Y(x, t)) = ∆2[(pR(x, t) + pL(x, t)) − (pR(x, t) − pL(x, t))2].

Thus, for sufficiently small ∆ and τ, the coefficients in the Fokker–Planck equation are
given by

µ(x, t) =
1
τ
E[∆Y(x, t)] = V∆,τ(pR(x, t) − pL(x, t)),

σ2(x, t) =
1
τ

Var(∆Y(x, t)) = D∆,τ[(pR(x, t) + pL(x, t)) − (pR(x, t) − pL(x, t))2],

where V∆,τ and D∆,τ are given by (5.3).

A.2. RSU scheme Now m random choices of agents are given an opportunity to
move at each time step. Therefore, any particular agent may be updated more than
once, or not at all, at some time steps. We write Yn(i) =

∑Z
k=0 Jk(i, n), where: (i) Z

is a random variable giving the number of times that the considered agent is selected
to update, so that Z d

= Binomial(m, 1/m); and (ii) Jk(i, n) = −1, 0, 1 are the random
variables indicating the displacement of the agent at the kth update.

Since Jk(i, n) may be dependent on position, the random variables Jk(i, n) may
not be independent. Specifically, we have the following conditional distribution for
Jk(i, n):

P(Jk(i, n) = 1 | J1(i, n), J2(i, n), . . . , Jk−1(i, n))

= pR
n (i + J1(i, n) + J2(i, n) + · · · + Jk−1(i, n)),

P(Jk(i, n) = −1 | J1(i, n), J2(i, n), . . . , Jk−1(i, n))

= pL
n (i + J1(i, n) + J2(i, n) + · · · + Jk−1(i, n)),

P(Jk(i, n) = 0 | J1(i, n), J2(i, n), . . . , Jk−1(i, n))

= 1 − pL
n (i + J1(i, n) + J2(i, n) + · · · + Jk−1(i, n))

− pR
n (i + J1(i, n) + J2(i, n) + · · · + Jk−1(i, n)).
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Transforming to continuous variables in the usual way, we determine the moments
of ∆Y(x, t) using expressions for E[Jk(x, t)] and Var(Jk(x, t)). From the conditional
distribution of Jk(i, t),

E[Jk(i, n)] = E[E[Jk(i, n) | J1(i, n), J2(i, n), . . . , Jk−1(i, n)]]

= E[pR
n (i + J1(i, n) + J2(i, n) + · · · + Jk−1(i, n))]

− E[pL
n (i + J1(i, n) + J2(i, n) + · · · + Jk−1(i, n))]. (A.1)

This expression cannot be simplified for general hopping probabilities. However,
moving to continuous variables, equation (A.1) can be written as

E[Jk(x, t)] = E[pR(x + ∆J1(x, t) + ∆J2(x, t) + · · · + ∆Jk−1(x, t), t)]

− E[pL(x + ∆J1(x, t) + ∆J2(x, t) + · · · + ∆Jk−1(x, t), t)],

and, similarly,

E[Jk(x, t)2] = E[pR(x + ∆J1(x, t) + ∆J2(x, t) + · · · + ∆Jk−1(x, t), t)]

+ E[pL(x + ∆J1(x, t) + ∆J2(x, t) + · · · + ∆Jk−1(x, t), t)].

Using the dominated convergence theorem [19], with the natural assumption of
continuity for pR(x, t) and pL(x, t), it can be shown that

lim
∆→0

E[Jk(x, t)] = pR(x, t) − pL(x, t), lim
∆→0

E[Jk(x, t)2] = pR(x, t) + pL(x, t). (A.2)

Therefore,

lim
∆→0

Var(Jk(x, t)) = pR(x, t) + pL(x, t) − (pR(x, t) − pL(x, t))2. (A.3)

The number of agents m is required to be large in order for the RSU scheme to
approximate a continuous time process [20]. Consider an initial condition in which the
lattice sites within Ml ≤ x ≤ Mr are occupied by agents. As ∆ decreases, the number
of lattice sites falling inside these segments increases, and thus the number of agents
in the system will also increase. Thus m→∞ is equivalent to taking ∆→ 0.

Using the limits (A.2)–(A.3) and the fact that Z → Z∗ = Poisson(1) as m→∞ (or
equivalently as ∆→ 0), we deduce [21] that

lim
∆→0

E[Y(x, t)] = lim
∆→0

E
[
E
[ Z∑

k=0

Jk(x, t)
∣∣∣∣∣ Z]]

= lim
∆→0

E
[ Z∑

k=0

E[Jk(x, t)]
]

= pR(x, t) − pL(x, t).

Using the law of total variance, we write

lim
∆→0

Var(Y(x, t)) = lim
∆→0

E[Var(Y(x, t) | Z)] + lim
∆→0

Var(E[Y(x, t) | Z]). (A.4)
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Using the law of iterated expectation, the first term on the right side of equation (A.4)
becomes

lim
∆→0

E[Var(Y(x, t) | Z)] = lim
∆→0

E
[
Var

( Z∑
k=1

Jk(x, t)
∣∣∣∣∣ Z

)]
= lim

∆→0
E
[ Z∑

k=1

Var(Jk(x, t))
]

= pR(x, t) + pL(x, t) − (pR(x, t) − pL(x, t))2. (A.5)

Similarly, the second term on the right side of equation (A.4) can be written as

lim
∆→0

Var(E[Y(x, t) | Z]) = lim
∆→0

Var
( Z∑

k=1

E[Jk(x, t)]
)

= (pR(x, t) − pL(x, t))2. (A.6)

Combining (A.5) and (A.6) in (A.4) gives

lim
∆→0

Var(Y(x, t)) = pR(x, t) + pL(x, t).

Thus, for sufficiently small ∆ and τ, the coefficients in the Fokker–Planck equation
are given by

µ(x, t) =
1
τ
E[∆Y(x, t)] = V∆,τ(pR(x, t) − pL(x, t)),

σ2(x, t) =
1
τ

Var(∆Y(x, t)) = D∆,τ(pR(x, t) + pL(x, t)),

where V∆,τ and D∆,τ are given by (5.3).
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