LOCAL CENTRAL $\Lambda(p)$ DUAL OBJECTS ^{BY} WILLARD A. PARKER

The dual object Γ of a compact group is called a local central $\Lambda(p)$ set if there is a constant K such that $||X||_p < K ||X||_1$ for all irreducible characters X of G. For each $\gamma \in \Gamma$, D_{γ} is an irreducible representation of G of dimension d_{γ} . Several authors [1, 2, 3, 4] have observed that Γ is a local central $\Lambda(p)$ set for p>1 provided $\sup\{d_{\gamma}:\gamma \in \Gamma\} < \infty$, and some of them [2, 3] conjectured the converse. Cecchini [1] showed that Γ is not a local central $\Lambda(4)$ set if G is a compact Lie group. Picardello [2] observed that Cecchini's result extends easily to any group G that is not totally disconnected and also showed that Γ is not a local central $\Lambda(4)$ set if G is an infinite product of non-commutative compact groups. This note completes the proof for totally disconnected groups. Hence Γ is a local central $\Lambda(p)$ set for all p>1 if and only if $\sup\{d_{\gamma}: \gamma \in \Gamma\} < \infty$.

Let G be a totally disconnected compact group and suppose that $\sup\{d_{\gamma}: \gamma \in \Gamma\} = \infty$. For any positive integer N, choose D_{γ} with $d_{\gamma} \ge N$. Let $K = \operatorname{Ker} D_{\gamma}$ and X be an irreducible character of maximal degree $M \ge N$ of the finite group H = G/K. Then $X\bar{X} = \sum_{j=1}^{s} n_{j}\theta_{j}$ where the θ_{j} are irreducible characters of H and the n_{j} are positive integers. If e is the identity of H, $\theta_{j}(e) \le X(e) = M$. Thus $M^{2} = X\bar{X}(e) = \sum_{j=1}^{s} n_{j}\theta_{j}(e) \le \sum_{j=1}^{s} n_{j}M$ and so $\|X\|_{4}^{4} = \sum_{j=1}^{s} n_{j}^{2} \ge \sum_{j=1}^{s} n_{j} \ge M \ge N$. Since X extends to an irreducible character X* of G with the same norms,

$$||X^*||_4^4 \ge N$$
 while $||X^*||_1 \le ||X^*||_2 = 1$.

This shows that Γ is not a local central $\Lambda(4)$ set.

ACKNOWLEDGEMENT. The author gratefully acknowledges the help of the referee and has followed his suggested rewriting of the first paragraph so as to include a more complete background for the theorem proved.

REFERENCES

1. Carlo Cecchini, Lacunary Fourier series on compact Lie groups, J. Functional Anal. 11 (1972), 191-203.

2. Massimo A. Picardello, Random Fourier series on compact noncommutative groups, Canad. J. Math. 27 (1975), 1400-1407.

3. J. F. Price, Local Sidon sets and uniform convergence of Fourier Series, Israel J. Math. 17 (1974), 169-175.

4. Daniel Rider, Norms of characters and central Λ_p sets for U(n), Springer Lecture Notes #266 (1971 Maryland Conference), pp. 287-294.

WILLARD A. PARKER DEPARTMENT OF MATHEMATICS CARDWELL HALL KANSAS STATE UNIVERSITY MANHATTAN, KANSAS 66506.

Received by the editors December 1st 1976 and, in revised form, April 20, 1977