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Abstract

Background. Genetically informative twin studies have consistently found that individual
differences in anxiety and depression symptoms are stable and primarily attributable to time-
invariant genetic influences, with non-shared environmental influences accounting for transient
effects.
Methods. We explored the etiology of psychological and somatic distress in 2279 Australian
twins assessed up to six times between ages 12–35. We evaluated autoregressive, latent growth,
dual-change, common, and independent pathwaymodels to identify which, if any, best describes
the observed longitudinal covariance and accounts for genetic and environmental influences
over time.
Results. An autoregression model best explained both psychological and somatic distress.
Familial aggregation was entirely explained by additive genetic influences, which were largely
stable from ages 12 to 35. However, small but significant age-dependent genetic influences were
observed at ages 20–27 and 32–35 for psychological distress and at ages 16–19 and 24–27 for
somatic distress. In contrast, environmental influences were predominantly transient and age-
specific.
Conclusions.The longitudinal trajectory of psychological distress from ages 12 to 35 can thus be
largely explained by forward transmission of a stable additive genetic influence, alongside
smaller age-specific genetic innovations. This study addresses the limitation of previous research
by exhaustively exploring alternative theoretical explanations for the observed patterns in
distress symptoms over time, providing a more comprehensive understanding of the genetic
and environmental factors influencing psychological and somatic distress across this age range.

Introduction

Previous research by Gillespie, Kirk, et al. (Gillespie, Kirk, et al., 2004) on self-reported anxiety
and depression symptoms from ages 20 to 70 years revealed a complex pattern of genetic
influences across the lifespan.While genetic determinants were largely stable, there was evidence
of age-specific genetic effects at different life stages. The study identified genetic effects at age
20, with additional genetic influences becoming apparent at later ages for some individuals. The
current study seeks to extend these findings by examining a younger sample of twins while also
testing competing theories to best explain the observed longitudinal stability of genetic influences
on symptoms of anxiety and depression including somatic distress.

Analyses of genetically informative twin data spanning childhood through to early old age have
consistently found that individual differences in symptoms of anxiety and depression are stable and
largely attributable to time invariant additive genetic influences, whereas non-shared environmental
influences account for short-term variance (D.I. Boomsma et al., 2005; Nivard et al., 2015). Typically,
these analyses have relied on autoregression models (see Figure 1), which predict that longitudinal
correlations are determined by random, time-specific genetic and environmental effects that are
more or less persistent over time (Boomsma et al., 1989; Boomsma & Molenaar, 1987; Eaves et al.,
1986; Guttman, 1954). An advantage of autoregressionmodels is their utility for highlighting inertial
effects, whereby latent influences at one time are assumed to be causally related to immediately
preceding latent influences including new latent inputs, also known as innovations. This method has
been typically applied to investigate both age-invariant and age-dependent sources of individual
differences. For example, genetically informative autoregression analyses based on early childhood
data have revealed that genetic influences on the symptoms of anxiety and depression are dynamic
and age-dependent (Kendler et al., 2008; Nivard et al., 2015). In addition to anxiety and depression
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(Gillespie et al., 2015;Gillespie, Kirk, et al., 2004), this type ofmodeling
has been applied, but not limited to, studies of personality (Gillespie,
Evans, et al., 2004), substance use (Long et al., 2017), brain aging
(Gillespie, Hatton, et al., 2022), and recently to BMI data (Cardon,
1995; Cornes et al., 2007; Gillespie, Gentry, et al., 2022).

A limitation of the literature describing applications of autore-
gression modeling to anxiety and depression is the absence of

alternative hypothesis testing. We have argued elsewhere
(Gillespie et al., 2015) that different models for the roles of genes
and environment in development will lead to different predictions
regarding the correlational patterns in longitudinal data from
family members.

For example, the variances and covariances of longitudinal
measures of depression in twin data could depend on individual

Figure 1.Multivariate correlated factors and the five competing hypotheses to explain the sources of variance-covariance between the SPHERE domain scores at each age interval.
Note: For brevity, only additive genetic components and residuals are shown. (A) The correlated factors model (null hypothesis) is an atheoretical method for estimating the size of
genetic (A1-A6) (and environmental) variance-covariances (double-headed arrows). (B) The autoregression model predicts causal process of inertial effects whereby genetic
(or environmental) components at one time causally affect genetic variation at the next time e.g., A1 to A2 via β. This method also identifies age-dependent genetic innovations
(ia11-ia66) and age-specific residual variances (ε). (C) The latent growth model predicts that stability and change in the variance-covariance structure and observed means are
explained by latent intercept (INT), linear (S) and quadratic (Q) growth processes. The INT, S and Q factor variances are further decomposed into genetic (Ai, As and Aq) (and
environmental) components. Genetic (Aε1-Aε6) and environmental residuals are also estimated. (D) The dual change score model attributes change to autoregression and latent
growth processes. (E) The common pathway model predicts that variance-covariance is explained by one or more common pathways. (F) In the independent pathway model,
genetic and environmental components are estimated independently.
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genetic or environmental differences in inherent growth patterns
unfolding with age, that is, ‘random growth curves’ (Duncan et al.,
1994; Duncan & Duncan, 1991; McArdle, 1986; McArdle &
Epstein, 1987; Nesselroade & Baltes, 1974) (see Figure 1C). Thus,
in twin-based latent growth curve models, genetic and environ-
mental influences are predicted to determine initial levels and rates
of change over time.

As illustrated in Figure 1D, different developmental processes
could exist for the genetic and environmental components of
developmental change. For example, it is conceivable that genetic
influences may account for individual differences in levels and rates
of change, whereas autoregressive effects could account for the
‘remembering’ or ‘forgetting’ of time-dependent non-genetic influ-
ences. Indeed, this innovative approach of combining the features
of autoregression (Eaves et al., 1986) with latent growth models
(McArdle, 1986; McArdle, 1994; Nesselroade & Baltes, 1974),
known as the dual change score model, is mathematically and
statistically equivalent to certain random coefficient, multilevel or
hierarchical linear models (Bryk & Raudenbush, 1987; McArdle
et al., 1991; McArdle & Hamagami, 1992; Mehta & West, 2000;
Miyazaki & Raudenbush, 2000) and has been applied to cognition
(McArdle, 2001; McArdle & Hamagami, 2001) drug availability
(Gillespie et al., 2007), alcohol use (Long et al., 2017), and symp-
toms of depression (Gillespie et al., 2015; Hishinuma et al., 2012). In
our longitudinal analysis of symptoms of depression in boys and
girls aged 8–18 years, we found that genetic and environmental
correlations were explained by distinct mechanisms, that is, growth
and autoregression processes, respectively. However, apart from
Gillespie et al. (Gillespie et al., 2015), we are unaware of other
instances of genetically informative dual change score models
applied to longitudinal assessment of anxiety and depression.

It is also conceivable that genetic and environmental influences
observed across time are time-invariant and better explained by
common or independent genetic and environmental pathway the-
ories (Kendler et al., 1987; McArdle & Goldsmith, 1990). The
common pathway model predicts that longitudinal covariance is
explained by one or more common factors (directly analogous to a
factor analysis) which in turn can be decomposed into genetic and
environmental influences. In contrast, and as the name suggests,
the independent pathway model predicts that longitudinal covari-
ance is explained by separate genetic and environmental influences
acting independently (see Figure 1F). To our knowledge, no previ-
ous genetically informative studies have tested the fit of these
models to longitudinal depression or anxiety data.

Aim

Our aim, therefore, was to explore the etiology of symptoms of
psychological distress (comprising non-clinical anxiety and depres-
sion items) and somatic distress in a longitudinal assessment of
men and women aged 12–35 years. In addition to estimating the
stability of heritable individual differences, we tested competing
hypotheses to explain best the longitudinal variation in genetic and
environmental influences over time.

Materials and methods

Subjects

Discussed in detail elsewhere (Gillespie et al., 2013; Mitchell et al.,
2019; Mitchell et al., 2020; Wright & Martin, 2004), subjects were
monozygotic (MZ) and dizygotic (DZ) twins from the ongoing

Brisbane Longitudinal Twin Study (BLTS) at the Queensland Insti-
tute of Medical Research (QIMR). The BLTS began in 1992 when
twins were recruited from primary and secondary schools in the
greater Brisbane area via media appeals and by word of mouth. To
date, BLTS subjects have participated in six waves of assessment at
average ages 12.2 (SD = 0.2, range = 12.0, 13.7), 14.2 (SD = 0.2,
range = 13.6, 14.9), 16.3 (SD = 0.4, range = 16.0, 19.4), 18.1
(SD = 3.0, range = 12.3, 25.8), 25.0 (SD = 3.7, range = 18.5, 35.9),
and 29.9 (SD = 4.2, range = 22.6, 38.7) years.

Ethics

All BLTS assessment protocols were approved by the QIMR Ber-
ghofer Medical Research Institute-Human Research Ethics Com-
mittee. Written informed consent was obtained from all subjects.

Phenotypic data

The Somatic and Psychological HEalth REport (SPHERE) is a
34-item assessment of common symptoms of mental distress and
persistent fatigue by self-report (Hickie et al., 2001). Items were
selected, tested, and validated from four widely used clinical assess-
ments of mental health, based on their predictive ability (Hickie
et al., 2001). Anxiety and depression items were selected from the
General Health Questionnaire (Goldberg, 1978), chronic fatigue
from the Schedule of Fatigue and Anergia (Hadzi-Pavlovic et al.,
2000), neurasthenia from the Illness, Fatigue and Irritability Ques-
tionnaire (Hadzi-Pavlovic et al., 1997), and somatization items
from the Diagnostic Interview Schedule (DSM)-III-R (American
Psychiatric Association, 1987).

In this study, we analyzed the 12 items from the SPHERE-12, a
shortened version of the original SPHERE, which were adminis-
tered at all 6 BLTS assessments (see Supplementary Information
S1). The SPHERE-12 consists of two domains: psychological dis-
tress and somatic distress. The psychological distress domain com-
prises six items assessing symptoms of anxiety and depression,
including ’Feeling unhappy and depressed’ and ’Feeling nervous
or tense’. The somatic distress domain includes six itemsmeasuring
physical symptoms, such as ’Muscle pain after activity’ and ’Pro-
longed tiredness after activity’. Subjects were asked to respond to
the prompt, ‘Over the past fewweeks have you been troubled by…?’
for each item. Responses were recorded on a 3-point ordinal scale:
0 ‘never or some of the time’; 1 ‘a good part of the time’; and 2 ‘most
of the time’. Domain scores were calculated by summing the
respective item scores.

The SPHERE-12 has demonstrated predictive validity for DSM
diagnoses, showing significant correlationswith disabilitymeasures
and doctors’ risk ratings (Hickie et al., 2001). Internal consistency
was high, with Cronbach’s alpha of 0.90 for psychological items and
0.80 for somatic items (Hickie et al., 2001). Finally, test–retest
reliability over 3–6 months was also high, with intraclass correl-
ations of 0.81 and 0.80 for psychological and somatic scores,
respectively (Hickie et al., 2001).

Given the variation in chronological age at each wave and
unequal time intervals between the six waves, longitudinal analysis
of these wave-based data will preclude meaningful understanding
of age-related changes. For instance, ignoring irregular spacing
between time intervals in longitudinal modeling can lead to biased
parameter estimates (Estrada & Ferrer, 2019). Our solution, there-
fore, was to convert thewave-based data to age-based or age interval
data. To reduce sparse data while maintaining computational effi-
ciency, our age-anchored SPHERE scores were re-coded to one of

Psychological Medicine 3

https://doi.org/10.1017/S0033291724003222 Published online by Cambridge University Press

http://doi.org/10.1017/S0033291724003222
http://doi.org/10.1017/S0033291724003222
https://doi.org/10.1017/S0033291724003222


the seven age intervals according to each individual’s age at the time
of each BLTS assessment: 12–15; 16–19; 20–23; 24–27; 28–31; 32–
35, and 36–39 years. Thus, for example, if two subjects ‘Subject A’
and ‘Subject B’ were each 20 years old at the 4th and 5th BLTS
assessments, respectively, their SPHERE scores would be assigned
to the 20 to 23 age interval. Based on comparisons using the
software package bestNormalize in R3.4.1 (R Development Core
Team, 2018), which attempts to find and execute the best normal-
izing transformation, domain scores at each wave were square root
transformed (see Supplementary Figures S1 and S2).

Supplementary Table S1 includes summary statistics for the
psychological and somatic distress domain score. Given the small
sample size at ages 36–39, we restricted all subsequent analyses to
the first five age intervals, that is, ranging 12–35 years. No subject
provided data at all five age intervals. There wereN = 1639,N = 972,
N = 931, and N = 229 subjects with SPHERE scores at one, two,
three, and four age intervals, respectively.

Statistical analyses

We use the OpenMx2.21.11 software package with its raw data Full
Information Maximum Likelihood (FIML) fit function (Boker
et al., 2011) in R3.4.1 (R Development Core Team, 2018) t to test
the assumptions (see below) of mean and variance homogeneity,
that is, that there are no substantial differences between twin 1 and
twin 2 with zygosity, nor differences between the means and
variances of MZ and DZ twins (Neale & Cardon, 1992).

The raw data FIML option has several advantages. FIML is gen-
erally robust to moderate violations of normality under certain con-
ditions (e.g., larger sample sizes, mild to moderate non-normality),
particularly when compared to methods that apply listwise deletion
(Enders, 2001). Moreover, FIML enables the inclusion and analysis of
missing or incomplete data (see Supplementary Table S1 for the
numbers of complete and incomplete twin pairs). Enders and Banda-
los (Enders & Bandalos, 2001) have empirically demonstrated that
FIML leads to increased parameter estimate efficiency compared to
listwise deletion. These properties of FIML – its relative robustness to
non-normality and its ability to handle missing data – contribute to
more precise parameter estimates in many practical scenarios.

In all univariate and multivariate analyses, the mean of each
variable was adjusted for the effects of sex using the definition
variable option in OpenMx (Boker et al., 2011). By combining data
from men and women and adjusting for sex differences, our aim
was to interpret longitudinal covariance that is shared or common
across the sexes. This approach allows us to identify patterns that
are generalizable across sex, thus providing a foundation for under-
standing broader trends in the population.

Mean and variance homogeneity

Each observed, phenotypic variable is assessed as four distinct meas-
urements: MZ twin 1, MZ twin 2, DZ twin 1, and DZ twin 2.Models
for twin data usually predict that the means and variances are the
same across all (four) instances. Therefore, we began by testing these
predictions of (i) equal means and (ii) equal variances across twin 1
and twin 2 within each zygosity group. These tests were followed by
tests for mean and variance equality across zygosity.

Twin pair correlations

Prior to the univariate model fitting, we estimated twin pair cor-
relations by zygosity for the SPHERE domain scores at each age

interval (Supplementary Table S1). If familial aggregation in a
complex trait exists and is entirely attributable to shared family
environments, then two expectations should hold: (1) bothMZ and
DZ twin pair correlations are statistically significant and greater
than zero; and (2) theMZ and DZ twin pair correlations should not
be significantly different from each other. If familial aggregation is
attributable to shared environmental factors, both MZ and DZ
correlations should be significantly greater than zero and not
significantly different from each other at standard significance
levels (e.g., α = 0.05). We note that if both correlations are not
significantly different from zero, this would suggest a lack of
familial aggregation altogether, rather than aggregation stemming
from shared environmental factors.

Univariate analyses

Univariate models were fitted to confirm familial aggregation by
estimating the size, significance and relative contribution of genetic
and environmental variance influences in each SPHERE domain
score at each age. Specifically, we applied the Classical Twin Design
(CTD), which relies on twins reared together, to decompose the
total variation in each SPHERE domain score into additive
(A) genetic variance, shared or common environmental (C), and
non-shared or unique (E) environmental variance components (see
Supplementary Figure X). This decomposition is achieved by
exploiting the expected genetic correlations between MZ and DZ
twin pairs; MZ twin pairs are genetically identical, whereas DZ twin
pairs share, on average, only half of their genes. Therefore, MZ and
DZ twin pair correlations (rA) for additive genetic effects are fixed
to 1.0 and 0.5, respectively. The CTD assumes neither genotype by
environmental interactions nor genotype-environment correl-
ations and that parental mating is random. It also assumes that
shared environmental effects are equal for MZ and DZ twin pairs,
that is, equality of parental treatment, equality of environmental
exposure, and no effects caused by placentation (Scarr, 1968). Given
this equal environmental assumption, the MZ and DZ twin correl-
ations (rC) for shared or common (C) environmental influences are
both fixed to 1.0. Because all non-shared environmental influences
(E), which include measurement error, are by definition uncorrel-
ated, the MZ and DZ twin pair correlation (rE) for these ‘E’
influences is fixed to zero.

In the CTD, shared environmental (C) and non-additive genetic
(D) influences are negatively confounded and cannot be modeled
simultaneously (Martin et al., 1978b). The C variance estimate
effectively combines shared environmental (C) and non-additive
genetic (D) sources of variation. While DZ correlations less than
half the MZ correlations in some age ranges suggested genetic non-
additivity, we retained the C parameter because this pattern was not
consistent across all ages. In our variance components analysis, the
C estimate captures both environmental and non-additive genetic
effects, with its sign indicating which influence predominates
(positive for shared environment, negative for genetic non-
additivity). Finally, because the SPHERE was assessed in a
population-based sample of twins representing the full range of
variation in psychological distress, the estimates of A, C, and E
capture influences from both risk and protective factors across the
population distribution.

Multivariate analyses

The univariate method was extended to themultivariate to estimate
the size and significance of genetic and environmental influences
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within and between the SPHERE domain scores across time. In
order to have a reference for contrasting and choosing the best
fitting theoretical model, we first fitted a multivariate ‘ACE’ cor-
related factors (see Figure 1A). As with a Cholesky Decomposition,
the correlated factors reproduces the mean and variance-
covariance information within and between variables while making
no theoretical prediction regarding how genes and environments
change over time. We chose the correlated factors model over the
Cholesky decomposition because it typically yields less biased
estimates of genetic and environmental influences, especially for
multiple phenotypes (Verhulst et al., 2019). It also reduces false
positive findings, is more robust to model misspecification, and
offers more intuitive interpretations of the genetic and environ-
mental correlations (Verhulst et al., 2019).

We then fitted competing models to explain the observed
variance-covariance matrices between the longitudinal measures
of somatic and psychological distress separately: autoregression,
latent growth, dual change score, one common pathway (CP), two
CPs, three CPs, and independent pathway models (see Figures 1B–
1F). These seven models were selected as they represent a compre-
hensive range of theoretical perspectives on how traits may develop
and change over time. The autoregression and latent growthmodels
capture stability and change, respectively. The dual change score
model combines elements of both. The common pathway and
independent pathway models allow us to test different hypotheses
about the underlying structure of genetic and environmental influ-
ences. By comparing these models, we aim to identify which
theoretical framework best explains the longitudinal patterns of
psychological and somatic distress in our sample.

The autoregression model predicts that time-specific random
genetic or environmental effects may persist over time
(autoregressive effects) (Eaves et al., 1986) (Figure 1B). As detailed
in the Supplement, each observed phenotype can be decomposed
into underlying genetic and environmental components, represent-
ing stable trait-like influences distinct from measurement error. At
each occasion, these genetic and environmental components are
determined by (i) new random genetic or environmental effects or
’innovations’ arising at that time point and (ii) the causal contri-
bution, via the beta coefficients, from the components expressed at
the preceding time. Such autoregression effects may occur between
phenotypes or between the latent genetic and environmental com-
ponents. Cross-temporal correlations within subjects emerge when
autoregressive coefficients are non-zero, indicating that genetic or
environmental innovations at one time point influence subsequent
time points. These contributions may, under some circumstances,
accumulate, potentially giving rise to developmental increases in
genetic or environmental variance and increased correlations
between adjacent measures. Depending on the magnitude of an
innovation and its relative persistence, the observed variances and
cross-temporal covariances may also increase during development
towards a stable asymptotic value. Another feature of the autore-
gressivemodel is that cross-temporal correlations will tend to decay
as a function of increasing time intervals. Note that our autoregres-
sion modeling included occasion-specific residual variance (E1 res–

E4res) or random error components that include measurement
error not captured by the genetic and environmental autoregression
processes. See Eaves et al. (Eaves et al., 1986) for graphical examples
of an application to longitudinal cognitive data. See Supplement
describing constraints to ensure model identification.

In contrast, the latent growth model posits that developmental
change follows a trajectory characterized by initial levels (intercept)
and rates of change over time, typically modeled as linear and

quadratic functions (Figure 1C). This approach allows for the
examination of both genetic and environmental influences on these
growth parameters. These models can be conceptualized as a
specialized form of factor analysis where the underlying constructs
represent initial levels and patterns of change over time. Factor
loadings in these models typically correspond to the timing of
measurements, but can also be simplified for ease of interpretation.
In our latent growth model, we used simplified factor loadings of
0, 1, 2, 3, 4, and 5 for the linear change factor, corresponding to our
sixmeasurement occasions spanning ages 12–15, 16–19, 20–23, 24–
27, 28–31, and 32–35 years, respectively. While this approach
assumes equal intervals between measurements, it provides a rea-
sonable approximation given the roughly equal spans of our age
intervals. The intercept in this model represents the expected value
at the first measurement (ages 12–15), and the slope represents the
average change per measurement occasion. We acknowledge that
this simplification may not capture the exact timing of develop-
mental changes but allows for a straightforward interpretation of
growth trajectories across the entire age range from adolescence to
early adulthood. This approach allows us tomodel how individuals’
traits evolve, considering both their starting point and their rate of
change. Mathematically, these loadings correspond to coefficients
of a priori contrasts based on the measurement ages, enabling a
nuanced analysis of developmental trajectories.

The dual change score model (Figure 1D) is a hybrid approach
that combines elements of both the autoregressive and latent
growth models. This model integrates the concepts of time-specific
changes (as in the autoregressive model) with overall developmen-
tal trajectories (as in the latent growth model). By incorporating
features from both approaches, the dual change score model allows
for a more flexible representation of change over time, capturing
both short-term fluctuations and long-term developmental trends.

The one common pathway (CP) model predicts that the covari-
ance structure between all age intervals is explained by a single
common liability, which can be decomposed into A, C, and E
components (Figure 1E). Here, the size of the factor loadings from
the CP indicate the strength of the relationship between the CP and
the SPHERE domain scores at each age interval. We also explored
the fit of the two and three CP models, to test the hypotheses that
longitudinal covariance is accounted for by two and three correl-
ated common pathways, respectively. In each case, residual vari-
ances not explained by the common pathway(s), or risks unique to
each age interval, are decomposed into variable-specific genetic
(Aε1–6) and environmental (C ε1–6 & E ε1–6) residuals. See Supple-
ment describing constraints to ensure model identification.

Finally, the independent pathway model predicts that latent gen-
etic and environmental risk factors separately or independently gen-
erate the observed covariance between the domain scores at each age
interval (Figure 1F). Variances that are unique to each age interval
(i.e., not captured by the independent pathway) again are decomposed
into variable-specific genetic and environmental residuals.

Model fit

For eachunivariate analysis,we determined themost likely sources of
variance by fitting three nested sub-models in which the (i) C, (ii) A,
and (iii) C and A influences were fixed to zero. Specifically, the
significance of the A, C, and E parameters was determined using
the change in the minus two Log-Likelihood (Δ-2LL), which under
certain regularity conditions is asymptotically distributed as chi-
squared with degrees of freedom equal to the difference in the
number of free parameters in the two models. In multivariate

Psychological Medicine 5

https://doi.org/10.1017/S0033291724003222 Published online by Cambridge University Press

https://doi.org/10.1017/S0033291724003222


analyses, we compared the fit of the competingmodels (Dual Change
Score, Latent Growth, Autoregression, Common and Independent
Pathway models) to the saturated variance components model, by
again, relying on the change in Δ-2LL. For all univariate and multi-
variate analyses, the determination of the best-fitting model was also
based on the optimal balance of complexity and explanatory power
by using Akaike’s Information Criterion (AIC) (Akaike, 1987).

Results

Twin pair correlations

For the SPHERE psychological distress and somatic distress
domain scores at ages 12–15 years, as well as psychological distress
at ages 16–19 years, the DZ twin pair correlations were greater
than 1/2 of their MZ twin pair counterparts (Supplementary Table
S1). This is consistent with familial being aggregation attributable
to a combination of additive genetic and shared environmental
influences. In contrast, the DZ twin pair correlations at all of the
remaining age intervals were 1/2 or less their MZ twin pair coun-
terpart, which is consistent with familial aggregation being attrib-
utable to additive genetic and non-additive genetic influences, as
described by Falconer (Falconer & Mackay, 1996). In the Classical
Twin Design of twins reared together, the effects of non-additivity
or dominance (D) and common environmental (C) influences are
negatively confounded, and therefore, cannot be modeled simul-
taneously (Martin et al., 1978a). While distinguishing between D
and C effects requires very large samples while also depending on
effect sizes and alpha levels, our univariate analyses showed that AE
models provided the best fit to the data beyond age 19. Conse-
quently, this empirical evidence, rather than power considerations
alone, supported our decision to focus on C rather than D in the
univariate and multivariate analyses below.

Univariate analyses

Detailed univariate model fitting comparisons are shown in
Supplementary Table S2. Standardized estimates of the additive
genetic (A), shared (C) & unshared (E) environmental influences

for each best fitting univariate model are shown in Table 1 (see
Supplementary Table S2 for 95% confidence intervals). For somatic
and psychological distress at ages 12 to 15 and 16 to 19 years,
familial aggregation was explained by a combination of additive
genetic and shared environmental influences. At all subsequent
ages, familial aggregation was entirely explained by additive genetic
influences. From ages 20 to 35 years, the average univariate herit-
ability for psychological and somatic distress ranged from 56% to
68%, respectively.

Longitudinal correlations

Prior to multivariate model fitting we estimated longitudinal
phenotypic correlations within each domain. As shown in
Table 1, correlations were small to moderately high, ranging from
0.10 to 0.51 (see Supplementary Table S1 for 95% confidence
intervals). For somatic and psychological distress, the correlations
approached zero as the time between age intervals increased. This
simplex structure is consistent with autoregression.

Multivariate analyses

We then compared the fit of the competing longitudinal models to
the saturated correlated factors model (see Table 2). See Supple-
ment for detailed model fitting methods.

Somatic distress
For somatic distress, the dual change, autoregression, and the
2- and 3-factor common pathway models did not deteriorate
significantly when compared to the correlated factors. However,
the autoregression was chosen as the best fitting based on the lowest
AIC values. We next determined if the ‘A’ and ‘C’ autoregression
processes could be removed. Neither the shared environmental nor
additive genetic influences could be removed from the somatic
distress autoregression model (see Supplementary Table S3).

When based on the lowest AIC value, the multivariate ‘ACE’
autoregression model would normally be selected as the best fit
(Table 3). However, as illustrated in Supplementary Figure S3, apart
from the first age interval at 12–15 years, the 95% confidence

Table 1. Monozygotic (MZ) and dizygotic (DZ) twin pair correlations, standardized additive genetic (A), shared or common environment (C), and non-shared
environmental (E) components of variance based on each best fitting univariate model, and longitudinal phenotypic correlations

Age interval MZ DZ A C E Phenotypic longitudinal correlations

Somatic distress 12–15 years 0.41 0.27 0.32 0.42 0.26 1

16–19 years 0.39 0.16 0.42 0.36 0.22 0.35 1

20–23 years 0.32 0.13 0.70 – 0.30 0.15 0.34 1

24–27 years 0.32 0.08 0.68 – 0.32 0.21 0.31 0.42 1

28–31 years 0.42 0.08 0.70 – 0.30 0.10 0.24 0.36 0.41 1

32–35 years 0.37 –0.01 0.65 – 0.35 NA 0.21 0.28 0.51 0.38 1

Psychological distress (anxiety & depression) 12–15 years 0.40 0.27 0.33 0.25 0.41 1

16–19 years 0.27 0.15 0.38 0.19 0.43 0.26 1

20–23 years 0.32 0.15 0.61 – 0.39 0.22 0.30 1

24–27 years 0.30 0.17 0.56 – 0.44 0.17 0.38 0.41 1

28–31 years 0.29 0.10 0.53 – 0.47 0.10 0.27 0.36 0.48 1

32–35 years 0.34 0.08 0.52 – 0.48 NA 0.33 0.34 0.45 0.46 1

Note: All parameter estimates based on full informationmaximum likelihood, for 95% confidence intervals see Supplementary Table S1, NA =Correlation not estimated since no subjects provided
data from both the first (12–15 years) and the last (32–35 years) assessments.
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intervals spanning all of the remaining shared environmental
innovations (ages 16–35 years) spanned zero. This is consistent
with the univariate results, which revealed no significant ‘C’ influ-
ences beyond age 19. In post hoc analyses, we, therefore, we
dropped from the ‘ACE’ autoregression model the ‘C’ innovations
at the last four time intervals (C3–C6), including the last four causal
coefficients (βc) starting at age 16 years (see Figure 2). This model
provided the best fit to these data (see Table 3).

As illustrated in Figure 2, there were significant genetic innov-
ations at the first three age intervals (A1–A3). All remaining
genetic innovations (A3–A6) were non-significant. Despite the
significant non-shared environmental autoregression causal coef-
ficients (βe), all non-shared environmental innovations (E1–E6)
were non-significant. In contrast, transient influences, including

measurement not captured by this model, were significant at each
age interval.

Supplementary Table S3 shows the standardized variance com-
ponents attributable to additive genetic, shared and non-shared
environmental influences, and the additive genetic and non-shared
environmental longitudinal correlations based on this best fitting
multivariate model. Heritability was moderate and ranged from
22% to 36%, and at ages 12–15 years, there were significant shared
environmental correlations that explained 18% of the total variance
in somatic distress.

Psychological distress
For psychological distress, all seven competing multivariate models
provided a good fit, as judged by the non-significant changes in chi-

Table 2. Multivariate model fitting comparisons between the reference correlated factors (null hypothesis) and the competing models. Best fitting models bolded

Model ep �2LL df Δ�2LL Δdf p AIC

Somatic distress Correlated factors 67 18366.74 7223 18500.74

Dual Change Score 47 18386.74 7243 20.00 20 0.4581 18480.74

Latent Growth 43 18392.61 7247 25.87 24 0.3595 18478.61

Autoregression 29 18409.83 7261 43.09 38 0.2627 18467.83

1 Common Pathway 34 18452.59 7257 85.85 34 0.0000 18520.59

2 Common Pathways 46 18389.89 7246 23.15 23 0.4521 18481.89

3 Common Pathways 61 18375.00 7232 8.26 9 0.5079 18497.00

Independent Pathways 43 18405.59 7247 38.85 24 0.0283 18491.59

Psychological distress (anxiety & depression) Correlated factors 67 18782.50 7223 18916.50

Dual Change Score 47 18800.92 7243 18.42 20 0.5599 18894.92

Latent Growth 43 18801.19 7247 18.69 24 0.7684 18887.19

Autoregression 29 18812.44 7261 29.94 38 0.8215 18870.44

1 Common Pathway 34 18827.57 7257 45.07 34 0.0971 18895.57

2 Common Pathways 46 18801.06 7246 18.57 23 0.7262 18893.06

3 Common Pathways 61 18793.02 7232 10.52 9 0.3099 18915.02

Independent Pathways 43 18803.53 7247 21.03 24 0.6367 18889.53

Note: ep = number of estimated parameters, �2LL = �2 × log-likelihood, Δ�2LL = change in �2 × log-likelihood, Δdf = change in degrees of freedom, AIC = Akaike Information Criteria.

Table 3. Multivariate model fitting comparisons between the ACE autoregression, competing AE, CE and E sub-models, and post hoc analyses for somatic and
psychological distress

Model ep -2xLL df Δ-2LL Δdf p AIC

Somatic distress ACE 29 18409.83 7261 18467.83

AE 22 18424.69 7268 14.86 7 0.0378 18468.69

CE 22 18457.31 7268 47.48 7 0.0000 18501.31

E 15 18682.29 7275 272.46 14 0.0000 18712.29

ACE post-hoc 25 18414.18 7265 4.35 4 0.3603 18464.18

Psychological
distress
(anxiety & depression)

ACE 29 18812.44 7261 18870.44

AE 22 18825.27 7268 12.83 7 0.0764 18869.27

CE 22 18840.41 7268 27.97 7 0.0002 18884.41

E 15 19038.28 7275 225.84 14 0.0000 19068.28

ACE post-hoc 25 18818.83 7265 6.39 4 0.1720 18868.83

Note: A = additive genetic, C = common or shared environment, E = non-shared environment, ep = number of estimated parameters, -2LL = -2 x log-likelihood,Δ-2LL = change in -2 x log-likelihood,
Δdf = change in degrees of freedom, AIC = Akaike Information Criteria. Post-hoc = shared environmental autoregression processes at first two age intervals only (see Figures 2-3).
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square. Again, the autoregression was chosen as the best fitting
based on the lowest AIC values (see Table 2), but because the 95%
confidence intervals spanning the shared ‘C’ environmental innov-
ations from age 16 onwards included zero (see Supplementary
Figure S4), we modeled in post hoc analyses, a ‘C’ autoregression
process at the first two age intervals only (see Figure 3). This model
provided a better fit to these data (see Supplementary Table S3).

As illustrated in Figure 3, there were significant genetic innov-
ations at ages 12–15 and 24–27. The second shared environmental
innovation (C2) and causal regression coefficient (βc) from C1 to
C2 were non-significant. With the exception of psychological dis-
tress measured at ages 16–19, the non-shared environmental
innovations (E1, E3–E6) were non-significant. All remaining vari-
ances were explained by transient influences (including measure-
ment error) not captured by the autoregression processes.

Supplementary Table S3 shows the standardized variance com-
ponents attributable to additive genetic and non-shared environ-
mental influences, as well as the longitudinal additive genetic and
non-shared environmental correlations based on this best fitting
multivariate model. Heritability was moderate and ranged from
24% to 34%, and at ages 12 to 15 years there were shared environ-
mental influences that explained 11% of the total variance in
psychological distress.

Discussion

Individual differences in self-report, non-clinical measures of psy-
chological and somatic distress from ages 15 to 35 years were best
captured by autoregression processes comprising mostly stable
genetic influences. For somatic distress, the genetic influences
observed at ages 12–15 years were stable and enduring. In addition,
time-specific genetic influences emerged at 16–19 and 24–27 years.
Significant shared environmental influences were also observed at
ages 12–15 years. For psychological distress, the significant genetic
influences observed at ages 12–15 years were also stable and endur-
ing. There were also dynamic, age-specific genetic influences
observed at ages 24–27 years. Finally, the impact of non-shared
environmental influences was largely transient for both anxiety and
depression and somatic distress.

Our findings are broadly consistent with previous applications
of genetically informative autoregression models to longitudinal
measures of anxiety and depression symptoms. Additive genetics
account for stability whereas environmental influences are largely
short-term and transient (Gillespie et al., 2015; Gillespie, Kirk, et al.,
2004; Nivard et al., 2015). Contrary to our results, analyses by
Nivard et al. (Nivard et al., 2015) (based on a much larger sample
[N= 49,524 twins]) found no significant genetic innovations or age-

Figure 2. Best fitting multivariate autoregression ACE model for the SPHERE somatic distress scale from ages 12 to 35.
Note: Illustrated are the latent genetic (A1-A6), shared environment (C1-C2), and non-shared environmental (E1-E6) components and their age-specific genetic, shared
environmental, and non-shared environmental innovations, along with transient non-shared environmental influences including measurement error (ε). The genetic, shared,
and non-shared environmental autoregression causal coefficients (βa, βc & βe) are each constrained equal across time. 95% confidence intervals are estimated for all free
parameters. Age-specific innovation variances are constrained to one, as are factor loadings fromeach latent ‘A’, ‘C’ and ‘E’ component to their corresponding observed phenotypes.
Transient, non-shared environmental influences (ε) are constrained equal across all age intervals for model identification and parsimony.
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specific genetic influences beyond age 18 years.We found small, but
significant genetic innovations at ages 24–27 years. Nivard et al.’s
average heritability from ages 12 to 25was also higher (43.7% versus
31.2%). Such differences between the Australian and Dutch sam-
ples may reflect cohort or regional differences or, more likely,
differences in the anxiety and depression scales employed. To our
knowledge, there are no reports of genetically informative autore-
gressionmodels to longitudinal measures of somatic distress, which
is a common but often ignored dimension of affective disorders
(Hansell et al., 2012).

Our results have implications for molecular efforts aimed at
identifying alleles associated with symptoms of anxiety, depression
and somatic distress. Broadly, the results of autoregression modeling
here and elsewhere (Nivard et al., 2015) suggest that estimating
polygenic risk scores in young adult or adolescent samples when
based on adult meta-analytic genome-wide association scan
(GWAS) discovery summary statisticsmay not be optimal.Wherever
biometrical genetic innovations are observed, age-stratified GWAS
should be explored and may reveal developmentally specific allelic
variants associated with anxiety and depression and somatic distress.

Limitations

Our results should be interpreted in the context of at least four
potential limitations. First, to maximize power we jointly analyzed
data frommen and women. It is important to recognize that sex can
not only affect differences in means, but differences in the causes of
residual variance, the latter being our primary interest. For example,

in our previous analysis of self-report anxiety and depression symp-
toms from ages 20 to 70 years we observed different patterns in men
and women (Gillespie, Kirk, et al., 2004). For men, genetic variation
across all age intervals could be explained by genetic innovations
occurring at age 20, indicating longitudinal stability. In contrast,
women showed a more complex pattern with age-specific genetic
effects emerging at different life stages: at age 30 for anxiety, and at
ages 40 and 70 for depression. This suggests that while genetic
influences on anxiety and depression are largely stable among
men, women experience additional genetic effects that come into
play at specific points across the lifespan, which, we speculate,may be
attributable to (but not limited to) sex differences in (i) hormonal
variation at specific life stages, (ii) gene-environment interactions,
(iii) maturation and brain development, and (iv) cumulative stress
and social role transitions. In the current analyses, we included sex as
a fixed covariate in all our analyses. While this corrects for mean
differences, the estimated variance components are pooled across
sex, thus obscuring any differences in genetic architectures between
men andwomen. In the best fitting autoregressionmodels, we found
that the effect of sex on mean levels of somatic distress was not
significant (βsex = �0.02, 95% CI = �0.07, 0.03), whereas for psy-
chological distress (anxiety and depression), men reported signifi-
cantly lower scores (βsex = �0.14, 95% CI = �0.08, �0.09). Nivard
et al. (2015) also found sex differences in their longitudinal analysis of
combined, non-clinical anxiety and depression items. In contrast,
Kendler et al.’s (2008) analysis of parental and self-reports on a
combined measure of anxiety and depression in men and women
aged 8–20 years found no qualitative or quantitative sex differences

Figure 3. Best fitting multivariate autoregression ACE model for the SPHERE psychological (anxiety and depression) distress scale from ages 12 to 35.
Note: Illustrated are the latent genetic (A1-A6), shared environment (C1-C2), and non-shared environmental (E1-E6) components and their age-specific genetic, shared
environmental, and non-shared environmental innovations, along with transient non-shared environmental influences including measurement error (ε). The genetic, shared,
and non-shared environmental autoregression causal coefficients (βa, βc & βe) are each constrained equal across time. 95% confidence intervals are estimated for all free
parameters. Age-specific innovation variances are constrained to one, as are factor loadings fromeach latent ‘A’, ‘C’ and ‘E’ component to their corresponding observed phenotypes.
Transient, non-shared environmental influences (ε) are constrained equal across all age intervals for model identification and parsimony.
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in genetic influences. Future studies with larger sample sizes could
explore sex-specific patterns in these age-dependent genetic innov-
ations. Such studies could test hypotheses related to hormonal
changes, gene-environment interactions, and psychosocial factors
across different life stages.

Second, our data were limited to ages 12–35 years inclusive.
The reports by Nivard et al. (Nivard et al., 2015) and Kendler et al.
(Kendler et al., 2008), which included twins as young as 3 and
8 years respectively, found that childhood anxiety and depression
were genetically very dynamic. Note that Nivard et al. (2015)
applied an autoregression model to longitudinal measures of
combined, non-clinical anxiety, and depression items. Data came
from maternal reports for ages 3–12 and self-reports for ages 12–
18. Similarly, Kendler et al. (2008) collected longitudinal data on
combined anxiety and depression from parental and self-reports
at ages 8–20, to which they applied a rater bias model to each wave
before fitting a Cholesky Decomposition. Genetically informative
twin analyses by Silberg et al. (Silberg et al., 2001) have suggested
that symptoms of depression measured before and after age
14 years may be etiologically distinct syndromes.

Third, although comprehensive, our modeling was not exhaust-
ive. Kendler et al. found that DSM-III-R major depression was not
etiologically homogeneous, but instead was comprised of partially
distinct syndromes with different clinical, genetic and longitudinal
profiles (Kendler et al., 1996). It was beyond the scope of the current
report to test for heterogeneous classes of anxiety and depression or
somatic distress.

Finally, our analyses relied on self-report data and may not
generalize to clinical diagnoses. For example, we have shown that
genetic risks in major depressive disorder (MDD) are not entirely
explained by the common factor underpinning the general liability
to self-report depression symptoms, Neuroticism and MDD
(Kendler et al., 2019). In future analyses, we plan to fit longitudinal
models to psychiatric symptoms of MDD.

Conclusions

We explored the genetic and environmental influences on longitu-
dinal measures of self-report anxiety and depression and somatic
distress. We evaluated the fit of the autoregressive, latent growth,
dual change, common and independent pathway models to the
longitudinal data, with the aim of identifying the model that best
describes the observed longitudinal covariance andmost accurately
accounts for variation and covariation in genetic and environmen-
tal influences in anxiety and depression and somatic distress from
ages 15 to 35 years. Anxiety and depression including somatic
distress were best explained by autoregression modeling implying
that an initial quantum of genetic predisposition is carried forward
through teenage and early adult development with reasonable
fidelity, augmented by small, age-specific genetic innovations.
Familial aggregation was entirely explained by additive genetic
influences. These influences were largely stable from ages 12 to
35, but also dynamic with evidence of small but significant age-
dependent genetic influences. In contrast, environmental influ-
ences were largely transient and age-specific. The longitudinal
trajectory of anxiety and depression including somatic distress
from ages 12 to 35 was best captured by autoregression modeling,
which reveals a combination of largely stable as well as smaller
dynamic genetic influences.

Supplementary material. The supplementary material for this article can be
found at http://doi.org/10.1017/S0033291724003222.
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