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ABSTRACT. Semi-diurnal oscillations are a ubiquitous feature of polar sea-ice motion. Over much of the
Arctic basin, inertial and semi-diurnal tidal variability have similar frequencies so that periodicity alone
is inadequate to determine the source of oscillations. We investigate the relative roles of tidal and
inertial variability in Arctic sea ice using a barotropic ice–ocean model with sea ice embedded in an
upper boundary layer. Results from this model are compared with ‘levitated’ ice–ocean coupling used in
many models. In levitated models the mechanical buoyancy effect of sea ice is neglected so that
convergence of ice, for example, does not affect the oceanic Ekman flux. We use rotary spectral analysis
to compare simulated and observed results. This helps to interpret the rotation sense of sea-ice drift and
deformation at the semi-diurnal period and is a useful discriminator between tidal and inertial effects.
Results indicate that the levitated model generates an artificial inertial resonance in the presence of tidal
and wind forcing, contrary to the embedded sea-ice model. We conclude that sea-ice mechanics can
cause the rotational response of ice motion to change sign even in the presence of strong and opposing
local tidal forcing when a physically consistent dynamic ice–ocean coupling is employed.

1. INTRODUCTION

A prominent feature of sea-ice drift and especially deform-
ation in both the Arctic and Antarctic ice pack is the
presence of considerable power at the semi-diurnal time-
scale (Hunkins, 1967; Hibler and others, 1974; Heil and
Hibler, 2002; Kwok and others, 2003). At high latitudes the
inertial period is close to the semi-diurnal period and
therefore it is difficult to establish from frequency character-
istics alone the most important forcing of the semi-diurnal
power. The two main sources for these semi-diurnal oscil-
lations are inertial and tidal. Inertial forcing typically arises
from wind stress on the ice–ocean mixed layer, resulting in
combined inertial motion of the oceanic boundary layer and
ice cover. Tidal forcing, on the other hand, affects sea ice via
pressure gradients on the oceanic boundary layer as well as
on the ice.

The most recent observational study of rapid variations in
sea-ice drift and deformation by Kwok and others (2003)
shows a general tendency for both ice-drift and strain-rate
ellipses in the central Arctic basin to rotate clockwise with
periods close to the inertial period. Depending on the sense
of the tidally induced drift and deformation, these results
tend to be more supportive of inertial oscillations. A study on
the inertial power by Hunkins (1967) demonstrated that
oscillation amplitude correlates closely with wind magni-
tude. However, a thorough investigation of the main cause
of these oscillations is best conducted with a coupled ice–
ocean tidal model. This is especially true of tidal effects;
simply adding tidal forcing to a stand-alone sea-ice model
will greatly over-amplify tidal effects due to inertial reson-
ance, even with quadratic ice–ocean drag included. By
contrast, a carefully coupled ice–ocean model can include
physics that are fundamental to high-frequency sea-ice

dynamics. Sea ice floating in the ocean must respond to
the same pressure forces as the oceanic boundary layer.
Therefore the ice should not oscillate significantly differently
from the oceanic boundary layer in the absence of internal
ice stresses.

The most direct way to achieve correct coupling of sea
ice and ocean is to ‘dynamically embed’ the ice in the upper
oceanic boundary layer. In the simplest incarnation of this
formulation, a ‘slab’ boundary layer can be used (e.g.
McPhee, 1978) whereby the ice is taken to scale with the
integrated boundary layer motion, albeit in a different
direction and with a different magnitude. In recent work
using a stand-alone slab-embedded ice model, Heil and
Hibler (2002) were able to explain a substantial portion of
the semi-diurnal peak in both sea-ice drift and deformation
obtained from half-hourly autumnal buoy data. The idea of
their dynamically embedded model was to remove the
unphysical quadratic drag term that is often employed in
stand-alone sea-ice models (e.g. Steele and others, 1997).
Use of this term in stand-alone models can result in
significant artificial damping of the ice motion due to the
difference between ice drag and stresses on the lower
portion of the oceanic boundary layer.

The tidal explanation for semi-diurnal sea-ice resonance
was most notably advanced by Kowalik and Proshutinsky
(1994) in an analysis of tidal variability by means of a
barotropic tidal model. However, this study utilized sea-ice
mechanics that only included linear rather than non-linear
shear viscosity and it did not include a detailed comparison
with available buoy deformation data. Perhaps most import-
antly in their model, as is the norm in coupled ice–ocean
models, the ice was separated from the ocean in a ‘levitated’
layer above the sea surface. By levitated we mean that the
modeled sea ice exchanges momentum with the ocean via

Annals of Glaciology 44 2006418

https://doi.org/10.3189/172756406781811178 Published online by Cambridge University Press

https://doi.org/10.3189/172756406781811178


ice–water drag and a sea surface tilt term only. The sea ice is
not included in the ocean’s mass transport and cannot modify
sea surface height. Not including this sea-ice transport in the
ocean violates Archimedes’ principle because modeled sea
ice does not displace water in the ocean and hence it is not
floating in the ocean. Therefore the sea ice is effectively
levitated above, rather than suspended in, the oceanic
boundary layer, which has particularly deleterious effects
when applied to ice–ocean tidal modeling.

It is notable that Mellor and Kantha (1989) used this
levitated formulation for their one-dimensional ice–ocean
boundary layer, an application for which it is perfectly
consistent because no ice convergence arises. However, in a
companion paper, Kantha and Mellor (1989) applied it to a
two-dimensional ocean circulation model, an application
for which it is not physically consistent because ice
convergence is present. Levitated ice–ocean coupling has
since become commonplace in multidimensional Earth
system modeling even though it is not physically consistent
(e.g. Polyakov and others, 1998; Maslowski and others,
2000; Wang and others, 2005; Holland and others, 2006). In
some climate-system models, sea ice is part of the atmos-
pheric model component (e.g. Gordon and O’Farrell, 1997)
whereby sea ice remains levitated because its momentum
budget is not solved simultaneously with ocean circulation.

A different coupling of the ice to the ocean was proposed
by Hibler and Bryan (1987) in a diagnostic ice–ocean model.
In the Hibler and Bryan (1987) coupling, ice is considered to
be dynamically embedded into the ocean, and hence the
transport of the upper boundary layer of the ocean including
the ice transport is taken to be driven by wind stress and ice
interaction. This differs considerably from the levitated mode
of water drag, and can be shown to significantly modify the
vorticity balance, especially in coastal regions, sometimes
even changing the sign. While using the concept of an
embedded formulation, Hibler and Bryan (1987) never-
theless utilized a solution for the ice separate from the rigid-
lid ocean model and then calculated the wind stress less the
ice interaction separately. In more detailed investigations of
variations of this coupled ice–ocean model of the Arctic
Ocean (Hibler and Zhang, 1995; Zhang and others, 1998), it
was found that this separate formulation leads to instabilities
at the inertial period in the coupled model, requiring
damping of the inertial variability in the upper oceanic
boundary layer for stability. This damping procedure was
subsequently used in formulations of this model at a variety
of scales by Zhang and others (1998).

A variation on the dynamically embedded formulation
has been built into versions of the Geophysical Fluid
Dynamics Laboratory (GFDL) ocean model (Griffies and
others, 2004). This model includes a separate layer for sea
ice in the ocean transport equations. Consequently the net
ice and ocean transport obeys the Hibler and Bryan (1987)
integrated result when the top layer of the ocean and the ice
layer are vertically integrated. In practice these models do
not solve the ocean barotropic equations simultaneously
with the ice mechanics. However, by allowing slip between
the ice and the rest of the oceanic boundary layer these
models prevent instabilities from occurring without numer-
ical damping of the inertial oscillations (personal commu-
nication from S.M. Griffies, 2007).

The original embedded formulation of Heil and Hibler
(2002) was designed to remove damping in stand-alone sea-
ice models. It was also envisioned as an instrument to

develop a consistent formulation of a coupled ice–ocean
tide model. In this paper, we make such an extension.
Moreover, to make the current work more directly applic-
able to climate-scale ocean model simulations, we formu-
late this in a typical B-grid free-surface ocean model with a
somewhat novel simultaneous solution procedure to insure
against numerical instabilities that would cloud our inter-
pretation. Once the physics has been investigated, other
formulations are, of course, possible. As shown below, in a
full ocean model, this incarnation tends to remove unreal-
istic amplification of tides rather than removing unrealistic
damping. Since we are interested in understanding the
issues with the resonance (or lack of resonance) and the
effect of ice mechanics, we focus here on M2 tides. More-
over we employ a constant f plane with the inertial period
approximately coincident with the M2 period.

2. ICE–OCEAN MODEL: FORMULATION AND
GOVERNING EQUATIONS
To obtain the governing equations for this ice–ocean tidal
model, we take the primitive equations for the ocean.
Integrating these equations vertically, dropping the non-
linear momentum advection terms and approximating the
integral of the viscous terms to be applied to the mean flow,
we obtain the vertically integrated equation of motion for
the mean flow:

@u
@t

¼ f e�i�=2u� gr� þ �r2uþr � �
�wd

þ � a
�wd

: ð1Þ

Here we have approximated the vectors for wind stress, � a,
and force due to the two-dimensional gradient of the internal
ice stress,r � �, as Dirac delta functions at the top surface. � a
is calculated as in Heil and Hibler (2002), � is calculated
from the Hibler and Schulson (2000) rheology and r � � is
calculated from spatial derivatives of the components of � in
a manner applicable to a rectangular coordinate system. All
vectors are in complex form, including the mean flow
velocity u ¼ (u, v). In this equation, d is the depth of the
ocean, � is the lateral viscosity in the ocean, g the accel-
eration due to gravity, � the sea surface height, �w the water
density and f is the Coriolis parameter. f is set constant in the
current work for latitude 73.728N. To obtain the sea surface
height, we assume an incompressible fluid so that the
conservation equation

@�

@t
þ @ðudÞ

@x
þ @ðvdÞ

@y
¼ 0 ð2Þ

solves for sea surface height. In the case of the embedded
model or a fixed-depth oceanic boundary layer, we consider
a boundary layer depth ht demonstrated in Figure 1a. For
simplicity, no drag is considered at the bottom of this
boundary layer. Ice velocity ui is related to the upper layer
velocity by

�whtut ¼ �ihiui þ �wcw
f

ei½ð�=2Þ���ui , ð3Þ
where hi is sea-ice thickness. Sea-ice and water density
(�i ¼ 930 kgm–3 and �w ¼ 1000 kgm–3 respectively), the
Eulerian ice–water drag coefficient (cw ¼ 5.6� 10–4m s–1)
and the ice turning angle relative to water (� ¼ 258) remain
constant. This is essentially the slab boundary-layer approx-
imation of Heil and Hibler (2002), whereby the ice velocity
scales with the integrated boundary-layer flow, but with
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different magnitude and direction. Integrating the same
forcing over the upper layer as used for the vertically
integrated equation, we obtain the velocity ut of the upper
boundary layer:

@ut
@t

¼ f e�i�=2ut � gr� þ �r2ut þ
r � �
�wht

þ � a
�wht

: ð4Þ

While the embedding procedure used here is particularly
simple, it may be easily extended to ice–ocean models with
multiple fixed or variable layers including baroclinic effects
with shear between the ice and other layers. The basic
concept is that we provide a simultaneous implicit solution
of the ice velocity, employing highly non-linear ice mech-
anics together with the barotropic mode of the ocean. For this
purpose, ‘locking’ of the ice velocity to the integrated liquid
ocean flow is a convenience adequate for this study, but not
essential to the general method.

In the case that levitated sea ice (Fig. 1b and c) is utilized,
we set sea ice above the boundary layer to obey the
equation

�ihi
@ui
@t

¼ �ihif e�i�=2 ui � uoð Þ þ �wcwe�ið���Þ ui � uoð Þ
þ r � �þ � a , ð5Þ

where uo is the velocity of barotropic ocean as in Figure 1c.
In this version of the stand-alone sea-ice model, both the ice
velocity in the drag term and the Coriolis term are
determined relative to the surface velocity of the ocean.
This is the form used in some levitated models and leads to
less extreme results than the case where the tilt term is taken
to directly act on the ice, in which case only an ice velocity
ui would appear multiplied by the Coriolis term as in the
following equation:

@ui
@t

¼ �ihif e�i�=2ui þ �wcwe�ið���Þ ui � uoð Þ
þ r � �þ � a � �ihigr�: ð6Þ

For the levitated coupled ice–ocean model, we consider
only a barotropic slab ocean with no boundary layer so that
the governing equations are (1), (2) and (5), with wind stress
and the ice interaction term in Equation (1) replaced by the
negative of the second term in Equation (5) so that the ocean
model is being driven by the drag on the bottom of the ice
cover. In the case of the embedded model, we consider an
embedded boundary layer so the governing equations
become (1–4).

In addition, we also examine an ice model driven only by
specified tides calculated with no modification of ice stress
into an ocean. This is done by utilizing Equation (6) with
specified tides via the terms uo and �ihigr�. This model,
referred to as the ‘ice-only model’, is very close to the
Kowalik and Proshutinsky (1994) formulation. This stand-
alone ice model is also the formulation of ice in coupled
global ice–ocean levitated models (e.g. Holland and others,
2006) and will yield an ice response similar to such models
if tides were added. This formulation, as is shown below,
induces very large artificial oscillations in the ice cover
because the ice is levitated.

Since we are interested in a solution of these equations
in a form ultimately usable in ocean general circulation
models, we utilized a variation of the Dukowicz and Smith
(1994) implicit solution whereby Equations (1) and (2), the
integrated free-surface ocean momentum equation and the
conservation equation, are simultaneously solved implicitly.
However, in the embedded case the strong ice interaction
necessitates an implicit solution for the ice boundary layer
(Equation (4)). For stability, this implicit ice solution must be
solved together with the implicit ocean circulation. Conse-
quently, we simultaneously solve all of Equations (1–4)
(including an implicit solution for half of the Coriolis terms
which were only treated explicitly by Dukowicz and Smith)
by a relaxation procedure for the ocean and ice (or
equivalently upper boundary-layer equations). The relax-
ation procedure employed is directly analogous to the
procedure used by Hibler (1979) to solve the viscous–plastic
sea-ice dynamics equations. However, application of the
procedure in this case requires the solution of two vector
equations at each relaxation node rather than only the ice
vector equations as in Hibler (1979). All other aspects of the
model are the same as used in Heil and Hibler (2002).

3. MODEL CHARACTERISTICS: SIMULATIONS AND
OBSERVATIONS
To examine the characteristics of the ice–ocean model, the
effects of embedding and the relative roles of inertial and tidal
forcing, three sets of simulations are carried out: one with
tidal forcing alone, one with both wind and tidal forcing and
one with only wind forcing. In all cases, we use ice mech-
anics with spatially random strengths but no temporal vari-
ation, specified according to P � ¼ 1.4[1.0 – 1.4(0.5 –R)]�
104Nm–1 for the random number 0 � R � 1. This ran-
dom variation has proven more realistic for simulating the

Fig. 1. Model schematics of (a) a dynamically embedded ice–ocean model in an upper oceanic boundary layer (OBL) of fixed depth;
(b) a levitated ice–ocean model on top of a fixed-depth OBL; and (c) a levitated sea-ice model on top of barotropic ocean without an OBL.
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initiation of linear kinematic features (Hutchings and others,
2005), as well as inertial variability that more closely
approximates the heterogeneous character of the Arctic ice
cover than, say, a constant strength. We use an ice thickness
extending to a depth of 3m in the ocean: hi ¼ (3m)�w/�i.

For tidal forcing, amplitude vs time is specified at the
lower boundary of the grid (Fig. 2). These data were taken
from simulation results covering a larger rectangular grid of
which this grid is a subset (essentially the same as Kowalik
and Proshutinsky, 1994). At high latitudes, direct gravita-
tional forcing of tides is small so that boundary forcing
produces adequate tides for our mechanistic study. The M2
tide has a period of 12.42 hours, slightly shorter than the
inertial period of 12.46 hours on the constant f plane.

Our B-grid resolution of 42 km is about three times that of
the finer Kowalik and Proshutinsky (1994) �14 km grid.
While our course grid removes passages through the
Canadian Arctic Archipelago, comparisons with a higher-
resolution B-grid tidal model show that it produces similar
tides in the Arctic basin with M2 forcing. A time-step of
202 s was used, some five times longer than that of Kowalik
and Proshutinsky (1994). Our longer time-steps are allow-
able due to the implicit solver, and are short enough to
negligibly damp tidal propagation. A von Neumann bound-
ary condition was applied at the open southern boundary.

Linearly interpolated-in-time geostrophic winds begin-
ning in October 2001 were derived from 6hourly European
Centre for Medium-Range Weather Forecasts (ECMWF) re-
analysis (ERA-40) mean sea-level pressure fields summar-
ized in Betts and Beljaars (2003). The pressure fields were
linearly interpolated, using the nearest-neighbor method, to
the finer �14 km grid and then spatially averaged to the
42 km grid. In the case of tides only, about 500 hours is
adequate for a steady tidal solution. For cases including
wind forcing, �3000hours were run to provide adequate
statistics under different wind conditions for analysis of
wind-induced semi-diurnal variability. General but not
direct comparisons were made in the wind+tidal simulations
to buoy-drift characteristics. Central basin deformation
characteristics from Kwok and others (2003) were used for
general strain comparisons. The approximate locations of
these comparisons are denoted by letters in Figure 2. Time

series from simulated results were taken from gridcells a
and b, the former over the deep ocean and the latter on the
Siberian shelf. The Kwok and others (2003) deformation
location near the pole at c was also used to compare our
model output with their results. Gridcell a tends to have
central basin deep-water tidal characteristics, whereas b
tends to have a strong tidal regime with different rotational
characteristics than the Kwok and others (2003) deformation
location c.

3.1. Tide-only forcing: a comparison of embedded and
levitated ice–ocean coupling
We compare the embedded and levitated models forced
only with tidal forcing (no wind drag). The tidal amplitudes
for the embedded and levitated models are shown in
Figure 3a and b respectively. For comparison, the tidal
amplitude of the barotropic model without sea ice is shown
in Figure 3c. Amplitude is similar for both embedded and
levitated cases because ice cover has a relatively small effect

Fig. 2. Land–sea mask used in numerical simulations. Tidal forcing
consists of variations in sea surface height along the lower
boundary at ocean gridcells. Axis coordinates are Cartesian
gridpoints. Spectral analysis is conducted for locations marked a–g.

Fig. 3. Tidal amplitude in the absence of wind forcing for the Arctic
basin portion of the grid for (a) the dynamically embedded model,
(b) the levitated model and (c) the ice-free barotropic model.
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on tidal amplitude. The tides generally proceed anti-
clockwise around the basin, resulting in anticlockwise
rotation of both ice and water parcel motion. The deform-
ation inherent in the tidal forcing also typically has this
character in the deep basin in terms of rotation of the strain-
rate ellipse (Kwok and others, 2003). However, topography
effects along, for example, the Siberian shelf cause clock-
wise rotation of tides (shown below). A close examination of
the tidal amplitude approaching the Siberian coast shows
that the levitated model slightly amplifies the overall tidal
amplitude in this region while reducing it somewhat in the
central basin. This relatively small reduction is misleading
since the tidal velocity component is substantially reduced
in the levitated case along the Siberian coast.

For the embedded case, no drag at the base of the
boundary layer and ocean bottom means that the embedded
model yields identical tidal amplitudes where there is no ice
interaction as would occur in an ice-free barotropic model.
That this must be the case can be seen from the governing
equations since the upper-layer equation is identical to the
integrated layer except for ocean depth. By contrast, the
levitated model has the unrealistic characteristic of produ-
cing both different tides and ice drift when there is no ice
interaction.

Amplification and damping effects are much more clearly
seen in the tidal velocity characteristics (Fig. 4) and ice
velocity characteristics (Fig. 5) shown as rotary spectra
(Gonella, 1972) in deep-water central basin locations
(Figs 4a and 5a) and near shore (Figs 4b and 5b). For each
rotary spectrum presented, we use circles to denote
anticlockwise rotation, and crosses to denote clockwise
rotation in the direction of inertial oscillations. Lefthand

panels refer to the embedded model, and righthand panels
present levitated model results.

The general character of the tides (and embedded ice in
the free-drift limit) is shown in Figure 4 to be relatively small
and anticlockwise in the central basin and substantially
larger and clockwise nearer the shores. In particular, the
clockwise rotational peak is about two orders of magnitude
higher than the anticlockwise peak near the coast and vice
versa over deep water. This rotational feature is also present
in the levitated model (Fig. 4, righthand panels). However,
for the levitated model, the tidal magnitude is reduced
twofold in the nearshore region relative to the embedded
case. The reverse effect, albeit smaller, occurs in the central
basin where the levitated model amplifies the clockwise
tides by about 50%. Analysis of the free-drift case of the
levitated model shows much of this effect is due to the mass
of the ice (taken to be 3m in thickness here) and the
resulting artificial inertial ice motion for the levitated case.
In the free-drift limit with zero ice thickness, the levitated
model yields identical tides to the embedded case, as must
physically occur.

There are significant differences in ice velocity between
the two models. This is illustrated with the aid of rotary
spectra for the central basin (Fig. 5a) and near shore
(Fig. 5b). In the case of the central basin, the embedded
model yields a dominant anticlockwise rotation consistent
with the rotation direction of the tidal forcing noted above.
However, in the case of the levitated model, there is
effectively no consistent rotation in either direction. This
means that the levitated model motion consists of oscilla-
tions along a straight line at the semi-diurnal peak. Such
motion yields rotary spectra with equal magnitude in both

Fig. 4. Rotary spectra (+ clockwise, * anticlockwise) for average ocean tidal velocities using tidal forcing only (no wind) for the embedded
(left) and levitated (right) sea-ice–ocean models at locations a (a) and b (b) in Figure 2. Note that relative power axes may be converted to
power spectral density by dividing by the frequency separation between spectral points.
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clockwise and counterclockwise directions, and is symp-
tomatic of a tendency in the levitated model to exaggerate
clockwise motion in ice drift.

This tendency of the levitated model to exaggerate
clockwise motion arises from the fact that the stand-alone
ice momentum equation (Equation (5)) is a damped ‘rotary
harmonic’ oscillator. It has a resonant frequency shifted
slightly from the inertial period by the drag term. By ‘rotary
harmonic’ we mean that the oscillator selectively responds
to rotational forcing parity with an enhanced clockwise
reaction relative to the counterclockwise. The levitated
central basin result is somewhat modified by the ice
interaction, but these essential features are still present if
we consider free drift (no ice interaction) with non-zero ice
mass. In this case (not shown), the embedded model yields
identical tidal and boundary-layer drift results as would be
obtained for a barotropic tidal model independent of ice
thickness (evident in Equations (1–3)). However, because of

its unphysical nature, the levitated model yields substantial
and preferential clockwise motion amplification for the ice.

Note that the alternate stand-alone sea-ice model (Fig. 5c),
as presented in Equation (6), amplifies the diurnal power in
ice velocity in a relatively similar manner to the primary
levitated model. Differences are due to different tides, as
free-drift tides were used in the stand-alone sea-ice model,
and to the fact that the surface tidal currents are non-
geostrophic, especially over deep water. The amplification of
the clockwise rotary component is about a factor above the
embedded case in the central basin (Fig. 5c, left panel). Over
shallow water the response is typically >1000 times the
clockwise component for the embedded model, as shown by
the exceptional shallow response in the right panel of Figure
5c. This ‘ice-only model’ case demonstrates the artificial
nature of forcing a sea-ice model with r� from a separate
ocean model without providing necessary feedback to sea
surface height and hence to ice divergence and convergence.

Fig. 5. (a, b) Rotary spectra (+ clockwise, * anticlockwise) for average ice velocities using tidal forcing only (no wind) for the embedded (left)
and levitated (right) sea-ice models at locations a (a) and b (b) in Figure 2. (c) A comparison is shown for the ‘ice-only’ levitated model
summarized in Equation (6) for locations a (left) and b (right).
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More generally it shows that a coupled ice–ocean model
must be used to obtain realistic ice tidal response.

We now turn attention to nearshore ice motion where
strong tidal effects occur (Fig. 5b). Here the embedded
model ice mechanics modify the ice response to tidal
forcing, whereas the levitated model not only modifies the
ice response but also produces spurious tidal currents
(Fig. 4b). In particular, the levitated ice response has a
greatly enhanced amplification of the nearshore clockwise
rotation, resulting in, we suggest, an unrealistically large ice
motion and related deformation. It is likely that the presence
of this motion in the levitated Kowalik and Proshutinsky
(1994) model contributed to their conclusions that high-
frequency variability in ice production through deformation
is small in the central basin compared to nearshore regions.
As in the central basin, the unphysical magnitude of the
levitated result is buttressed by free-drift results for the
levitated case where a similar over-amplification is ob-
tained. This contrasts with the embedded case, where tides

are unchanged by the presence of ice in free drift and the ice
response has a local clockwise motion reflecting the tidal
boundary-layer forcing in this region.

The interesting anticlockwise rotation of the embedded
ice velocities shows how ice mechanics can cause ice to
respond to the integrated tidal forcing coherent with the
ocean (Fig. 5b, lefthand panel). In particular, while the
mainly anticlockwise forcing of Arctic basin tides is smaller
than the opposite parity forcing on some of the shelves, the
areal integral of this clockwise forcing is larger. Hence the
ice can move in a more coherent fashion, smoothing out and
reversing the vorticity of the ice motion expected from local
tidal forcing. We note, however, that because of the lack of
changes in the ice strength due to deformation and
advection, this effect may be over-amplified here.

3.2. Inertial- vs tide-driven drift and deformation
Of more relevance to the physics of ice-covered oceans
is the combined role of tides and inertial variability in

Fig. 6. Rotary spectra (+ clockwise, * anticlockwise) for modeled ice velocities in the embedded model for wind+tidal forcing and wind-
only forcing at locations a (a) and b (b) in Figure 2. (c) Spectra for wind+tidal forcing for the levitated model in these two locations.

Hibler and others: M2 tidal variability in Arctic sea-ice drift and deformation424

https://doi.org/10.3189/172756406781811178 Published online by Cambridge University Press

https://doi.org/10.3189/172756406781811178


high-frequency sea-ice drift and deformation. Kwok and
others (2003) included information on the rotational
character of observed drift and deformation. Here we
present analogous rotational results of our embedded model
output together with selected levitated model results, and
explicitly examine the contribution of tides and inertial
variability to sea-ice motion.

For an initial analysis of the tide–inertia interlink, we
carry out combined wind- and tidally forced simulations for
the several simulated months described above. For com-
parison, a second simulation without tidal effects (wind
only) was conducted for the same time period. Figure 6
shows the ice-velocity results from these simulations in the
far- and nearshore regions, while Figure 7 presents deform-
ation for a central basin location near the Kwok and others
(2003) RADARSAT geophysical processor system (RGPS)
measurement area. For observational perspective, Figure 8
provides the rotary spectra of hourly velocity from four
Arctic buoys whose positions are marked in Figure 2 as
letters: one on the Siberian shelf (d), one slightly off the
Siberian shelf (e), one near the pole (g) and one in the
Lincoln Sea near Ellesmere Island (f).

To analyze the rotary character of the deformation rate in
Figure 7, we formed two time series u ¼ �2 _"xy and
v ¼ _"yy � _"xx from sea-ice strain-rate tensors. We used these
to carry out a rotary spectral analysis. The motivation for this
was that for a system where the principal axes of strain rotate
uniformly with the ratio of the magnitude of the principal
axes fixed, in the Mohr’s circle construction (represented in a
complex plane with real and imaginary components equal
to u and v) the strain-rate location uniformly rotates around
the circle. It is therefore the exact analog to the rotation of

the vector velocity of a particle moving in a circle. For more
complex rotating strain rates, this analogy breaks down, but
nevertheless this method provides, in practice, a good
estimate of the sense of rotation of the strain-rate tensor
principal axes.

The main conclusion arising from the central basin
spectra in Figures 6a and 5a is that the inclusion of wind
forcing induces a substantial clockwise inertial signal that is
amplified by the tides. Moreover, this signal is large enough
to overwhelm the clockwise signal arising from tidal forcing.
This is not particularly surprising given that the general
amplitude of the clockwise oscillations is of order 20m2 s–1

at the semi-diurnal peak in both the wind and wind+ tides
case (Fig. 6a). This can be compared to the much more
pronounced peak in the tidal-forcing-only case (Fig. 5a,
lefthand panel) but nevertheless with a peak magnitude of
about 10m2 s–1 for the anticlockwise spectra together with a
much lower peak of about 0.5m2 s–1 for the clockwise peak.
In addition, in this central basin case the winds have
transformed the spectra to contain more red noise.

Overall, comparison of the wind+ tides and wind-only
cases (Fig. 6a) shows that adding wind and tidal forcing here
creates a clockwise inertial peak �100 times greater than
the original tides-only clockwise peak, and greater by at
least a factor of two than the tidal anticlockwise peak. This
peak is also substantially greater than the wind-only inertial
peak, indicating that it has been amplified by the tides. The
best description of the central basin characteristics is that the
inertial effects dominate, and are enhanced by, tidal forcing,
and the overall rotation is clockwise. There is still a tidal
signal there, but it is not strong enough to dominate. This
result is consistent with the Kwok and others (2003)

Fig. 7. Rotary spectra (+ clockwise, * anticlockwise) for a combination of sea-ice deformation components at location c close to Kwok and
others’ (2003) observations in 2002 and 2003. (a) The embedded model with tidal forcing only; (b) the levitated model with tidal forcing;
and (c, d) the embedded model using wind-only and wind+tidal forcing respectively.
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measurements, and the Heil and Hibler (2002) inertial-only
results. It is also generally consistent with observed buoy-
drift spectra in Figure 8c.

However, this result is in strong contrast to conclusions
that could be drawn by adding wind forcing to the Kowalik
and Proshutinsky (1994) model without a boundary layer:
namely that the high-frequency variability in the central
basin is dominated by tidal rather than inertial effects. How
this conclusion could be reached is shown in Figure 6c,
where the levitated model spectra for wind + tides are shown
for the central basin and nearshore regions. In the case
where wind forcing is added to the levitated model, there is
very little addition of inertial power and/or amplification of
clockwise rotation by the tides. Hence, because of the
artificial inertial resonance in the tidal forcing case alone
(see Fig. 5a), the central basin signal is still close to
clockwise from tidal forcing alone.

In the case of the nearshore peak with embedding
(Fig. 6b), wind increases the clockwise inertial peak but in
this location, even with some tidal amplification in the
wind+ tides case, does not increase the signal enough to
overcome the tidal signal with opposite parity. The tidal
signal is, for ice-mechanics reasons noted above, of opposite
rotational parity to the local tides. In the case of the levitated
model (Fig. 6c), addition of winds produces much the same
result as tidal forcing only, with an excessive clockwise peak
in the nearshore region.

It is unlikely that the wind-driven currents, effectively
following f /d topography contours, account for any of the
additional power in either the nearshore or central-basin

locations. The maximum variance (not shown) of the wind-
driven currents occurs near the Siberian shelf position,
with a semi-diurnal magnitude of about 10% of the tidal
currents. These topography-following currents are driven
by the average vorticity input enclosed by the contour
(e.g. Pedlosky, 1986), or alternatively by Green’s theorem:
the line integral of the surface ‘stress’ vector into the ocean
(wind stress minus ice force) tangent to the topography
contour integrated around the closed contour. Because of
the complexity of these barotropic currents, the sense of
the ice rotation induced is difficult to access a priori. We
also note in general that our barotropic currents and hence
sea surface height are in strong contrast to Proshutinsky
and Johnson (1997) who effectively used a flat-bottom
ocean with minimal bottom torque effects so that the
wind-driven circulation largely simply follows the wind
direction and can (unrealistically) effectively reverse almost
immediately.

The lack of a dominant clockwise rotation in simulated
Siberian-shelf ice velocity is consistent with observed buoy
drift shown in Figure 8. The Siberian-shelf buoy of Figure 8a
and to a lesser degree Figure 8b lacks dominance by the
clockwise semi-diurnal peak. The buoy-drift record shows
what appear to be very strong oscillations with a weak semi-
diurnal peak and some preference toward clockwise
rotation.

The Lincoln Sea buoy spectra (Fig. 8c) are in contrast to
the Siberian shelf buoy (Fig. 8a). At first glance, the Lincoln
Sea time series has a similar character to that of the Siberian
shelf. However, it also shows a strong inertial-oriented peak,

Fig. 8. Rotary spectra (+ clockwise, * anticlockwise) for buoy velocity during February and March 2002. The buoys were in the locale of
letters marked in Figure 2: (a) d (on the Siberian Shelf); (b) e (over deeper water adjacent to the Siberian Shelf); (c) g (central basin); and
(d) f (Lincoln Sea).
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consistent with the Kwok and others (2003) observations and
central-basin model results. The power here is notable
because it is an area of strong ice conditions. This suggests
that the substantial ice-thickness variations in the region may
have more of an inertial or tidal origin than previously
thought. The ice build-up here has previously been
attributed to land–sea boundary effects. The buoy in the
central basin (Fig. 8b) shows only a weak tidal inertial peak,
suggesting that the strong peak in the Kwok and others
(2003) observations may have some relationship to the
topography variations of the Lomonosov Ridge.

The central-basin deformation spectra shown in Figure 7
generally support the idea of superposition of inertial
variability onto the tidal signal. But an important addition
to this notion is that the deformation signal has a broader
and more substantial region of inertial-oriented power. This
result is generally in agreement with observational results
(e.g. Hibler and others, 1974; Kwok and others, 2003),
showing that even in the absence of a strong inertial signal
under compact ice conditions, there can be a deformational
signal. What is new here is that this strain rate tends to rotate
in terms of the principal axes rotating, and this rotational
sense is dominated by the inertial direction in the central
basin. A strong point of these model calculations is that they
correctly simulate this deformation feature, even with
temporally constant ice strengths.

With tidal forcing only (Fig. 7a and b), the results show a
deformation in the central basin rotating in the opposite
sense to that observed in the embedded case, providing
more support for the dominance of inertial power there (as
suggested by Heil and Hibler, 2002). For the levitated
model, the artificial inertial resonance yields a clockwise
rotating strain rate for tidal forcing only, suggesting that the
tidal signal dominance (suggested by Kowalik and Proshu-
tinsky, 1994) is as in the case of ice velocity, likely the right
answer for rotation direction and for the wrong reason: i.e. it
is likely a model artefact, being directly due to tidal forcing
on a levitated ice model with an artificial resonance. In the
embedded case, the tidal forcing plays a role, but only via
amplifying inertial clockwise strain-rate rotation induced by
the wind.

4. DISCUSSION AND CONCLUSIONS
The results of our simulations suggest there are substantial
erroneous features inherent in levitated sea-ice models. This
seems to be true even in our seemingly safe case of sea ice
coupled to a single-layer barotropic ocean. The worst effects
of this coupling can be avoided by slightly degrading this
coupling by parameterizing the ocean tilt term on the pack
ice to be a Coriolis term proportional to the ocean surface
velocity. But even still, the coupling in the Arctic generally
leads to excessive tidally induced ice velocities on the
Siberian shelf and a reduction of tides in that region.
Moreover, in the central basin the levitated coupling leads
to excessive clockwise motion in the absence of ice
interaction or wind, even though the tidal forcing is locally
counterclockwise.

Both these deleterious effects can largely be traced to the
fact that the levitated ice cover, even with some drag, is a
resonant damped harmonic oscillator with parity-dependent
response. This leads to a parity-dependent artificial reson-
ance when levitated ice is employed. Because of this
preferential response to clockwise forcing and the fact that

ice convergence and divergence is not considered in ocean
volume conservation, the levitated model dramatically over-
amplifies response in that direction. By application of
Newton’s third law in the nearshore region, this effect leads
to a bogus damping of the amplitude of the tidal velocities.
The embedded model together with the combined implicit
solver used here has no such unrealistic results and reduces
to the free barotropic tide solution in the case of no ice
interaction even with finite ice mass and a boundary layer.
The levitated model has an artificial inertial resonance,
whereas the embedded model does not.

Probably the most important new physical idea arising
from this study is that, even in strong tidal regions, ice
mechanics can cause the rotational response of the ice
motion to change sign in spite of very strong local forcing. In
the Arctic, this response is counter-intuitive at first glance
since it effectively means that a strong tidal forcing can be
overcome by a much smaller one. However, the smaller
forcing covers a larger region, and since sea ice is a good
integrator the integral over the larger region dominates.
While we have only represented semi-diurnal tides here, this
notion can be extended to multispectral tides and could be a
candidate theory to explain the presence of multiple peaks
in Antarctic ice signals in strong ice conditions (demon-
strated by Geiger and others, 1998).

Apart from this important integrating notion, the various
combinations of wind-driven and tidal simulations analyzed
here support the tidal amplification concept of inertial and
tidal motion. Under this mechanism, increased inertial
forcing from wind or ice-mechanics effects raises the
clockwise rotary character of power which may then be
amplified by the clockwise rotary component of the tidal
forcing. Hence the tidal amplification plays a role, but only
through the intermediary of inertial power induced by the
wind. Tidal forcing alone tends to yield the incorrect
rotation direction for sea-ice velocity and strain-rate rotation
in the central basin. In the nearshore region, this same effect
applies but the spatially integrating sea-ice effect is
substantial, and during certain periods non-local tidal effects
can return to modulate at least the amplitude of the inertial
signal, if not the direction and phase. We note, however,
that our simulations are limited by a lack of temporal ice-
strength evolution through ice advection, deformation,
growth and melt. Inclusion of these features is in progress.
It is possible that these features may lead to sporadic periods
when the spatial-average response becomes much weaker
or stronger.
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