
Canad. Math. Bull. Vol. 51 (4), 2008 pp. 593–603

Chasing Silver

Andrzej Rosłanowski and Juris Steprāns

Abstract. We show that limits of CS iterations of the n-Silver forcing notion have the n-localization

property.

1 Introduction

This paper is concerned with the n-localization property of the n-Silver forcing no-

tion and countable support (CS) iterations of such forcings. The property of n-

localization was introduced by Newelski and Rosłanowski [12, p. 826].

Definition 1.1 Let n be an integer greater than 1.

(i) A tree T is an n-ary tree provided that (∀s ∈ T)(|succT(s)| ≤ n).

(ii) A forcing notion P has the n-localization property if


P “ (∀ f ∈ ωω)(∃T ∈ V)(T is an n-ary tree and f ∈ [T]) ”.

Later the n-localization property, the σ-ideal generated by n-ary trees, and the n-

Sacks forcing notion Dn (see Definition 2.1) were applied to problems on convexity

numbers of closed subsets of Rn, ([3–5]).

We do not yet have any result of the form “CS iteration of proper forcing no-
tions with the n-localization property has the n-localization”. A somewhat uniform

and general treatment of preserving the n-localization was recently presented in [15].
However, that treatment does not cover the n-Silver forcing notion Sn (see Defini-

tion 2.1). As a matter of fact, at one point it was not clear if Sn has the property at

all. It was stated in [12, Theorem 2.3] that the same proof as for Dn works also for CS
iterations and products of the n-Silver forcing notions Sn (see Definition 2.1(3)). Per-

haps some old wisdom got lost, but it does not appear likely that the same arguments

work for the n-Silver forcing Sn. In the present paper we correct this gap and provide
a full proof that CS iterations of Sn (and other forcings listed in Definition 2.1) have

the n-localization property, see Corollary 2.6.

Our main result, Theorem 2.5, seems to be very Sn-specific and it is not clear
to what extent it may be generalized. In particular, the following general problem

remains open.
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Problem 1.2 Do CS iterations of proper forcing notions with the n-localization
property have the n-localization property? What if we restrict ourselves to (s)nep

forcing notions (see Shelah [17]) or even Suslin+ (see [6, 9])?

1.1 Notation

Our notation is rather standard and compatible with that of classical textbooks [7].
In forcing, however, we keep the older convention that a stronger condition is the

larger one.

(i) n is our fixed integer, n ≥ 2.

(ii) For two sequences η, ν we write ν ⊳ η whenever ν is a proper initial segment
of η, and ν E η when either ν ⊳ η or ν = η. The length of a sequence η is

denoted by lh(η).

(iii) A tree is a family of finite sequences closed under initial segments. For a tree T
and η ∈ T we define the successors of η in T and the maximal points of T by:

succT(η) = {ν ∈ T : η ⊳ ν and ¬(∃ρ ∈ T)(η ⊳ ρ ⊳ ν)},

max(T) = {ν ∈ T : there is no ρ ∈ T such that ν ⊳ ρ}.

For a tree T the family of all ω-branches through T is denoted by [T].

(iv) For a forcing notion P, all P-names for objects in the extension via P will be
denoted with a tilde below, e.g.,

˜
τ ,

˜
X.

Let us explain what is a possible problem with the n-Silver forcing; let us look at
the “classical” Silver forcing S2. Given a Silver condition f such that f 
S2

˜
τ ∈ ωω,

standard arguments allow it to be assumed that the complement of the domain of f
can be enumerated in the increasing order as {ki : i < ω} and that for each i ∈ ω and

ρ : {k j : j < i} → 2 the condition f ∪ρ decides the value of
˜
τ↾i, say f ∪ρ 


˜
τ↾i = σρ.

Now one could take the tree

T⊕
= {ν ∈ ω>ω : (∃i < ω)(∃ρ ∈ {k j : j<i}2)(ν E σρ)

}

.

Easily p 

˜
τ ∈ [T⊕], but T⊕ does not have to be a binary tree! (It could well be

that σρ = σ∗ for all ρ of length 100 and then σρ ′ for ρ ′ of length 101 are pairwise
distinct.) So we would like to make sure that σρ for ρ’s of the same length are distinct,

but this does not have to be possible. To show that S2 has the 2-localization property

we have to be a little bit more careful. Let us give a combinatorial result which easily
implies that S2 has the 2-localization property. Its proof is the heart of our proof of

Theorem 2.5.

Fix Ψ : ω>2 → ω. We define Ψ
∗ : ω>2 → ω>ω by induction. Let Ψ

∗(〈 〉) = 〈 〉
and define Ψ

∗(t⌢〈i〉) = Ψ
∗(t)⌢〈Ψ(t⌢〈i〉)〉. If ξ is a partial function from ω to 2 and

ℓ ≤ ω, define W ℓ(ξ) = {t ∈ m2 : m < min(ℓ + 1, ω) and ξ↾m ⊆ t} and then define

Tℓ(ξ) = {Ψ∗(t) : t ∈ W ℓ(ξ)}, T(ξ) = Tω(ξ).

Theorem 1.3 For any Ψ : ω>2 → ω there is a partial function ξ : ω → 2 with co-

infinite domain such that T(ξ) is a binary tree.
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Proof To begin, two equivalence relations on ω>2 will be defined. First, define s ≡ t
if and only if Ψ(t⌢θ) = Ψ(s⌢θ) for all θ ∈ ω>2. Next, define s ∼ t if and only if

Ψ
∗(s) = Ψ

∗(t).
Now construct by induction on m < ω an increasing sequence

x0 < x1 < · · · < xm < Nm

and ξm : Nm \ {x0, x1, . . . , xm} → 2 such that TNm (ξm) is a binary branching tree

and, moreover, if s and t are maximal elements of W Nm (ξm) and t ∼ s, then t ≡ s.

The induction starts with x0 = 0. If the induction has been completed for m, then
let xm+1 = Nm. Let ∆ = {d0, d1, . . . , d j} be a set of maximal elements of W Nm (ξm)

such that precisely one member of each ∼ equivalence class belongs to ∆. Now, by

induction on i ≤ j define N i and ξi : N i \ (Nm + 1) → 2 as follows. Let N0
= Nm + 1

and let ξ0
= ∅. Given N i and ξi , if there is some N > N i and ξ ⊇ ξi such that

di
⌢〈0〉⌢ξ ≡ di

⌢〈1〉⌢ξ, then let N i+1
= N and let ξi+1

= ξ. Otherwise it must be
the case that di

⌢〈0〉⌢ξi 6≡ di
⌢〈1〉⌢ξi and so it must be possible to find N i+1 > N i

and ξi+1 ⊇ ξi such that di
⌢〈0〉⌢ξi+1 6∼ di

⌢〈1〉⌢ξi+1. Finally, let Nm+1 = N j and

ξm+1 = ξm ∪ ξ j .
To see that this works, it must be shown that TNm+1 (ξm+1) is a binary tree and that if

s and t are maximal elements of W Nm+1 (ξm+1) and t ∼ s, then t ≡ s. To check the first

condition it suffices to take t a maximal element of TNm (ξm) and check that the tree
TNm+1 (ξm+1) above t is binary. Then t = Ψ

∗(di) for some i, and the tree TNm+1 (ξm+1)

above t is generated by all Ψ∗(d⌢〈a〉⌢ξ j) where d ∼ di and a ∈ 2. Note however that
by the induction hypothesis, if d ∼ di , then d ≡ di and so

Ψ
∗(d⌢〈a〉⌢ξ j) = Ψ

∗(di
⌢〈a〉⌢ξ j).

Therefore Ψ
∗(d⌢〈a〉⌢ξ j) depends only on a and not on d and so TNm+1 (ξm+1) is binary

above t .

To check the second condition, suppose that s and t are maximal elements of
W Nm+1 (ξm+1) and t ∼ s. This implies that t↾Nm ∼ s↾Nm and hence t↾Nm ≡ s↾Nm.

Let i be such that t↾Nm ∼ s↾Nm ∼ di . If t(Nm) = s(Nm) = y, then t = t↾Nm
⌢〈y〉⌢ξ j

and s = s↾Nm
⌢〈y〉⌢ξ j and, since t↾Nm ≡ s↾Nm, it is immediate that t ≡ s. So assume

that t(Nm) = 0 and s(Nm) = 1. By the same argument it follows that t ≡ di
⌢〈0〉⌢ξ j

and s ≡ di
⌢〈1〉⌢ξ j . Hence it suffices to show that di

⌢〈0〉⌢ξ j ≡ di
⌢〈1〉⌢ξ j . Note that

di
⌢〈0〉⌢ξ j ∼ di

⌢〈1〉⌢ξ j since t ∼ di
⌢〈0〉⌢ξ j and s ∼ di

⌢〈1〉⌢ξ j . This means that it

must have been possible to find ξi such that di
⌢〈0〉⌢ξi ≡ di

⌢〈1〉⌢ξi . It follows that

di
⌢〈0〉⌢ξ j ≡ di

⌢〈1〉⌢ξ j .
After the construction is carried out we let ξ =

⋃

m<ω ξm.

2 The Result and Its Applications

Let us start by recalling the definitions of the forcing notions which have appeared in
the literature in the context of the n-localization property.

Definition 2.1 (i) The n-Sacks forcing notion Dn consists of perfect trees p ⊆ ω>n

such that (∀η ∈ p)(∃ν ∈ p)(η ⊳ ν and succp(η) = n). The order of Dn is the
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reverse inclusion, i.e., p ≤Dn
q (q is Dn-stronger than p) if and only if q ⊆ p.

(See [12].)

(ii) The uniform n-Sacks forcing notion Qn consists of perfect trees p ⊆ ω>n such
that (∃X ∈ [ω]ω)(∀η ∈ p)(lh(η) ∈ X ⇒ succp(ν) = n). The order of Qn

is the reverse inclusion, i.e., p ≤Qn
q (q is Qn-stronger than p) if and only if

q ⊆ p. (See [14].)
(iii) Let us assume that G = (V, E) is a hypergraph on a Polish space V such that

• E ⊆ [V ]n+1 is open in the topology inherited from V n+1,
• (∀e ∈ E)(∀v ∈ V \ e)(∃w ∈ e)((e \ {w}) ∪ {v} ∈ E),
• for every non-empty open subset U of V and every countable family F of

subsets of U , either
⋃

F 6= U or [F]n+1 ∩ E 6= ∅ for some F ∈ F.

The Geschke forcing notion PG for G consists of all closed sets C ⊆ V such that

the hypergraph (C, E ∩ [C]n+1) is uncountably chromatic on every non-empty

open subset of C. The order of PG is the inverse inclusion, i.e., C ≤PG
D (D is

PG-stronger than C) if and only if D ⊆ C. (See [3].)

Definition 2.2 (i) The n-Silver forcing notion Sn consists of partial functions f
such that Dom( f ) ⊆ ω, Rng( f ) ⊆ n and ω \ Dom( f ) is infinite. The order of

Sn is the inclusion, i.e., f ≤Sn
g (g is Sn-stronger than f ) if and only if f ⊆ g.

(ii) For an integer i ∈ ω and a condition f ∈ Sn we let FPi( f ) to be the unique
element of ω \ Dom( f ) such that |FPi( f ) \ Dom( f )| = i. (The FP stands for

Free Point.)

(iii) A binary relation ≤∗
i on Sn is defined by f ≤∗

i g if and only if ( f , g ∈ Sn and)
f ≤Sn

g and (∀ j ∈ ω)( j < ⌊i/4⌋ ⇒ FP j( f ) = FP j(g)).

(iv) For f ∈ Sn and σ : N → n, N < ω we define f ∗ σ as the unique condition
in Sn such that Dom( f ∗ σ) = Dom( f ) ∪ {FPi( f ) : i < N}, f ⊆ f ∗ σ and

f ∗ σ(FPi( f )) = σ(i) for i < N.

The following properties of forcing notions were introduced in [15] to deal with
the n-localization of CS iterations.

Definition 2.3 Let P be a forcing notion.

(i) For a condition p ∈ P we define a game a⊖
n (p, P) of two players, Generic and

Antigeneric. A play of a⊖
n (p, P) lasts ω moves, and during it the players con-

struct a sequence 〈(si , η̄
i , p̄i , q̄i) : i < ω〉 as follows. At a stage i < ω of the

play:

(α) First Generic chooses a finite n-ary tree si such that |max(s0)| ≤ n, and if

i = j + 1, then s j is a subtree of si such that

(

∀η ∈ max(si)
)(

∃ℓ < lh(η)
)(

η↾ℓ ∈ max(s j)
)

,

and
(

∀ν ∈ max(s j)
)(

0 <
∣

∣{η ∈ max(si) : ν ⊳ η}
∣

∣ ≤ n
)

.

(β) Next Generic picks an enumeration η̄i
= 〈ηi

ℓ : ℓ < ki〉 of max(si) (so

ki < ω), and then the two players play a subgame of length ki , choosing
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successive terms of a sequence 〈pi
ηi

ℓ
, qi

ηi
ℓ

: ℓ < ki〉. At a stage ℓ < ki of the

subgame:

(γ)i
ℓ First Generic picks a condition pi

ηi
ℓ

∈ P such that If j < i, ν ∈ max(s j)

and ν ⊳ ηi
ℓ, then q

j
ν ≤ pi

ηi
ℓ

and p ≤ pi
ηi

ℓ

.

(δ)i
ℓ Then Antigeneric answers with a condition qi

ηi
ℓ

stronger than pi
ηi

ℓ

.

After the subgame of this stage is over, the players put p̄i
= 〈pi

ηi
ℓ

: ℓ < ki〉

and q̄i
= 〈qi

ηi
ℓ

: ℓ < ki〉.

Finally, Generic wins the play 〈(si , η̄
i , p̄i , q̄i) : i < ω〉 if and only if

(⊛) there is a condition q ≥ p such that for every i < ω the family {qi
η : η ∈

max(si)} is predense above q.

(ii) We say that P has the ⊖n-property whenever Generic has a winning strategy in

the game a⊖
n (p, P) for any p ∈ P.

(iii) Let K ∈ [ω]ω, p ∈ P. A strategy st for Generic in a⊖
n (p, P) is K-nice whenever

(⊠K
nice) if so far Generic used st, and si and η̄i

= 〈ηi
ℓ : ℓ < k〉 are given to that

player as innings at a stage i < ω, then

– si ⊆
⋃

j≤i+1
j(n + 1), max(si) ⊆

(i+1)(n + 1);

– if η ∈ max(si) and i /∈ K , then η(i) = n;
– if η ∈ max(si) and i ∈ K , then succsi

(η↾i) = n;

– if i ∈ K and 〈pi
ηi

ℓ

, qi
ηi

ℓ

: ℓ < k〉 is the result of the subgame of level
i in which Generic uses st, then the conditions pi

ηi
ℓ

(for ℓ < k) are

pairwise incompatible.

(iv) We say that P has the nice ⊖n-property if for every K ∈ [ω]ω and p ∈ P, Generic
has a K-nice winning strategy in a⊖

n (p, P).

Theorem 2.4 (See [15, 3.1, 1.6, 1.4]) The limits of CS iterations of the forcing notions
defined in Definitions 2.1 and 2.2 have the nice ⊖n-property.

Now we may formulate our main result.

Theorem 2.5 Assume that P has the nice ⊖n-property and the n-localization property.

Let
˜
Sn be the P-name for the n-Silver forcing notion. Then the composition P ∗

˜
Sn has

the n-localization property.

The proof of Theorem 2.5 is presented in the following section. Let us note here

that this theorem implies n-localization for CS iterations of the forcing notions men-

tioned earlier.

Corollary 2.6 Let Q̄ = 〈Pξ ,
˜
Qξ : ξ < γ〉 be a CS iteration such that, for every ξ < γ,

˜
Qξ is a Pξ-name for one of the forcing notions defined in Definitions 2.1 and 2.2. Then

Pγ = lim(Q̄) has the n-localization property.

Proof By induction on γ.
If γ = γ0 + 1 and

˜
Qγ0

is a Pγ0
-name for the n-Silver forcing notion, then Theo-

rem 2.5 applies. (Note that Pγ0
has the nice ⊖n-property by Theorem 2.4 and it has

the n-localization property by the inductive hypothesis.)
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If γ = γ0 +1 and
˜
Qγ0

is a Pγ0
-name for Dn or Qn or PG, then [15, Theorem 3.5(2)]

applies. (Note that Pγ0
has the nice ⊖n-property by Theorem 2.4 and it has the n-

localization property by the inductive hypothesis.)
If γ is limit, then [15, Theorem 3.5(1)] applies.

The first immediate consequence of Corollary 2.6 is that if n < m, then the forcing
notions Dn and Dm differ in a strong sense: CS iterations of the former forcing do not

add generic objects for the latter forcing. A similar observation can be formulated for

the Silver forcing notions, as in the following.

Corollary 2.7 No CS iteration of S2 adds an S4-generic real.

Another application of Corollary 2.6 and the CS iteration of the Silver forcing

notion is related to covering numbers of some ideals.

Definition 2.8 Let 2 ≤ m < ω.

(i) For a function ϕ : <ωm → m, put

Aϕ = {c ∈ ωm : (∃k < ω)(∀ℓ ≥ k)(c(ℓ) 6= ϕ(c↾ℓ))}.

We let Dm = {A ⊆ ωm : A ⊆ Aϕ for some function ϕ : <ωm → m}.

(ii) We define

Pm = {A ⊆ ωm : (∀K ∈ [ω]ω)(∃ f ∈ K m)(∀c ∈ A)( f * c)},

Rm = {A ⊆ ωm : (∀ f ∈ Sm)(∃g ≥Sm
f )(∀c ∈ A)(g * c)}.

(iii) The covering number cov(I) of an ideal I of subsets of a space X is defined as

cov(I) = min
(

|B| : B ⊆ I and
⋃

B = X
)

.

Note that Dn+1 is a σ-ideal of subsets of ω(n + 1), moreover it is the σ-ideal gen-

erated by sets of the form [T] for n-ary trees T ⊆ <ω(n + 1). The ideals Dm appeared
implicitly in Mycielski’s proof of the determinacy of unsymmetrtic games on analytic

sets in [10] and later were studied, for instance, in [4, 12, 13].

Also Pn and Rn are σ-ideals of subsets of ωn. The ideal Pn is one of the ideals
motivated by the Mycielski ideals of [11]. It was introduced in [13] and later it was

studied, for example, in [1, 2, 8, 14, 16, 18]. Shelah and Steprāns [18] showed that
cov(Pn) = cov(Pn+1), cov(Rn) ≥ cov(Rn+1), and consistently the latter inequality is

strict. The consistency result in [18] was actually much stronger and it was obtained

by means of finite support iteration of ccc forcing notions. However, if we are inter-
ested in the consistency of “cov(Rn) > cov(Rn+1)” only, then a CS iteration of Sn will

do the following.

Corollary 2.9 Assume CH. Let 〈Pα,
˜
Qα : α < ω2〉 be a countable support iteration

such that 
Pα “
˜
Qα = Sn” (for all α < ω2). Then


Pω2
“ 2ℵ0 = cov(Rn) = cov(Pn) = cov(Pn+1) = ℵ2,

and cov(Rn+1) = cov(Dn+1) = ℵ1” .
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3 Proof of Theorem 2.5

Let
˜
τ be a P ∗

˜
Sn-name for a member of ωω. We may assume that for every P-name

˜
ρ we have 
P∗

˜
Sn

˜
τ 6=

˜
ρ. If G ⊆ P is generic over V, then we will use the same

notation
˜
τ for Sn-name in V[G] for a member of ωω that is given by the original

˜
τ in

the extension via P ∗
˜
Sn.

Let (p,
˜
f ) ∈ P ∗

˜
Sn and let st be a winning strategy of Generic in a⊖

n (p, P) which
is nice for the set K = {4 j + 2 : j ∈ ω} (see Definition 2.3(iii)).

By induction on i we are going to choose for each i < ω si , η̄
i, p̄i , q̄i,

˜
fi, and also

for mi, σ̄
i for odd i < ω such that the following conditions (⊠)1– (⊠)7 are satisfied.

(⊠)1 〈si , η̄
i , p̄i , q̄i : i < ω〉 is a play of a⊖

n (p, P) in which Generic uses st.

(⊠)2
˜
fi is a P-name for a condition in Sn, and we stipulate that

˜
f−1 =

˜
f .

(⊠)3 qi
η 
P

˜
fi−1 ≤

∗
i

˜
fi for each η ∈ max(si).

For odd i < ω:

(⊠)4 mi < mi+2 < ω, σ̄i
= 〈σi

ρ,η : η ∈ max(si) and ρ ∈ ⌊i/4⌋n〉, σi
ρ,η : mi → ω.

(⊠)5 (qi
η,

˜
fi ∗ ρ) 
P∗

˜
Sn

“
˜
τ↾mi = σi

ρ,η ” for ρ ∈ ⌊i/4⌋n and η ∈ max(si).

(⊠)6 If η ∈ max(si) and ρ, ρ ′ : ⌊i/4⌋ → n are distinct but σi
ρ,η = σi

ρ ′,η , then for

every q ≥ qi
η and a P-name

˜
g for an n-Silver condition and m, σ, σ ′ such that

q 
P

˜
fi ≤

∗
i

˜
g, (q,

˜
g ∗ ρ) 
P∗

˜
Sn

˜
τ↾m = σ, (q,

˜
g ∗ ρ ′) 
P∗

˜
Sn

˜
τ↾m = σ ′

we have σ = σ ′.

(⊠)7 If η, η ′ ∈ max(si) are distinct, ρ, ρ ′ : ⌊i/4⌋ → n, then σi
ρ,η 6= σi

ρ ′,η ′ .

So suppose that i < ω is even and we have already defined si−1, q̄i−1, mi−1 and

˜
fi−1 (we stipulate s−1 = {〈〉}, q−1

〈〉 = p,
˜
f−1 =

˜
f and m−1 = 0). Let j = ⌊i/4⌋ (so

either i = 4 j or i = 4 j + 2).

The strategy st and demand (⊠)1 determine si and η̄i
= 〈ηi

k : k < ki〉. To define

p̄i , q̄i and
˜
fi we consider the following run of the subgame of level i of a⊖

n (p, P).

Assume we are at stage k < ki of the subgame. Now, pi
ηi

k

is given by the strategy st

(and (⊠)1, of course). Suppose for a moment that G ⊆ P is generic over V, pi
ηi

k

∈ G.

Working in V[G] we may choose ℓ̄, L̄, g∗, σ̄∗, M such that

(⊠)α
8 M = n j , ℓ̄ = 〈ℓm : m ≤ M〉 and j = ℓ0 < · · · < ℓM , L̄ = 〈Lm : m ≤ M〉 and

mi−1 < L0 < · · · < LM ,

(⊠)
β
8 g∗ ∈ Sn,

˜
fi−1[G] ≤∗

i g∗ and σ̄∗
= 〈σ∗

ρ : ρ ∈ ℓM n〉, σ∗
ρ ∈ LM ω (for ρ ∈ ℓM n),

(⊠)
γ
8 g∗ ∗ (ρ↾ℓm) 
Sn

“
˜
τ↾Lm = σ∗

ρ ↾Lm ” for each m ≤ M and ρ ∈ ℓM n,

(⊠)δ
8 if ρ0, ρ1 ∈ ℓM n, ρ0↾ j 6= ρ1↾ j but σ∗

ρ0
↾L0 = σ∗

ρ1
↾L0, then there is no condition

g ∈ Sn such that g∗ ≤∗
i g and for some L < ω and distinct σ0, σ1 ∈ Lω we have

that g ∗ ρ0 

˜
τ↾L = σ0, g ∗ ρ1 


˜
τ↾L = σ1,

(⊠)ε
8 for each m < M and ρ0 ∈ ℓm n the set {σ∗

ρ ↾[Lm, Lm+1) : ρ0 ⊳ ρ ∈ ℓM n} has at

least n j · ki + 777 elements.
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It should be clear how the construction is done. (First we take care of clause (⊠)δ
8

by going successively through all pairs of elements of jn and trying to force distinct

values for initial segments of
˜
τ , if this is possible. Then we ensure (⊠)ε

8 basically by
deciding longer and longer initial segments of

˜
τ on fronts/levels of a fusion sequence

of conditions in Sn and using the assumption that
˜
τ is forced to be “new”.) Now,

going back to V, we may choose a condition qi
ηi

k

∈ P stronger than pi
ηi

k

and a P-name

˜
g∗,k for a condition in Sn and objects ℓ̄k, L̄k, σ̄∗,k such that

qi
ηi

k

P “ ℓ̄k, L̄k,

˜
g∗,k, σ̄∗,k, n j satisfy clauses (⊠)α

8 – (⊠)ε
8 as ℓ̄, L̄, g∗, σ̄∗, M there ”.

The condition qi
ηi

k

is treated as an inning of Antigeneric at stage k of the subgame of

a⊖
n (p, P) and the process continues.

After the subgame of level i is completed, we have defined p̄i and q̄i . We also
choose

˜
fi to be a P-name for an element of

˜
Sn such that 
P “

˜
fi−1 ≤∗

i
˜
fi ” and

qi
ηi

k


P “
˜
fi =

˜
g∗,k ” for all k < ki (remember that st is nice, so the conditions qi

ηi
k

are

pairwise incompatible). This completes the description of what happens at the stage
i of the construction (one easily verifies that (⊠)1– (⊠)3 are satisfied) and we proceed

to the next, i + 1, stage. Note that ⌊(i + 1)/4⌋ = j.

We let mi+1 = max(Lk
M : k < ki) + 5 and let ℓ = max(ℓk

M : k < ki) + 5. Similarly

as at stage i, si+1 and η̄i+1
= 〈ηi+1

k : k < ki+1〉 are determined by the strategy st and
(⊠)1; note that max(si+1) = {ν⌢〈n〉 : ν ∈ max(si)} so ki+1 = ki . To define p̄i+1, q̄i+1

and
˜
fi+1 we consider the following round of the subgame of level i + 1 of a⊖

n (p, P).

At a stage k < ki+1 of the subgame, letting η = ηi+1
k , the condition pi+1

η is given by the

strategy st. Suppose for a moment that G ⊆ P is generic over V, pi+1
η ∈ G. In V[G]

we may choose a condition h∗ ∈ Sn such that

(⊠)9
˜
fi[G] ≤∗

4ℓ h∗ and for every ρ ∈ ℓn the condition h∗ ∗ ρ decides the value of

˜
τ↾mi+1, say h∗ ∗ ρ 
Sn

“
˜
τ↾mi+1 = σρ ”.

Then, going back to V we choose a P-name
˜
h∗,η for a condition in Sn, a sequence

σ̄η
= 〈ση

ρ : ρ ∈ ℓn〉 and a condition qi+1
η ≥ pi+1

η such that

qi+1
η 
P “

˜
h∗,η, σ̄η are as in (⊠)9 ”.

The condition qi+1
η is treated as an inning of Antigeneric at stage k of the subgame of

a⊖
n (p, P) and the process continues.

After the subgame of level i + 1 is completed, we have defined p̄i+1 and q̄i+1. Since

for every η ∈ max(si+1) we have that pi+1
η ≥ qi

η↾(i+1), we may use (⊠)ε
8 and choose

ρ(η) : [ j, ℓ) → n (for η ∈ max(si+1)) such that

(⊠)10 if η, η ′ ∈ max(si+1) are distinct and θ, θ ′ ∈ jn, and ρ = θ⌢ρ(η), ρ ′
=

θ ′⌢ρ(η ′), then ση
ρ 6= ση ′

ρ ′ .

Let
˜
fi+1 be a P-name for a condition in Sn such that 
P

˜
fi ≤

∗
i+1

˜
fi+1 and

qi+1
η 
P “

˜
h∗,η ≤∗

i+1
˜
fi+1 and (∀θ ∈ jn)

(

˜
fi+1 ∗ θ =

˜
h∗,η ∗ (θ⌢ρ(η))

)

”.
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Also, for η ∈ max(si+1) and ρ ∈ jn, we let σi+1
ρ,η = ση

ρ⌢ρ(η). This completes the
description of what happens at the stage i + 1 of the construction (one easily checks

that (⊠)1– (⊠)7 are satisfied). Thus we have finished the description of the inductive
step of the construction of si , η̄

i, p̄i , q̄i ,
˜
fi (for i < ω).

After the construction is carried out we may pick a condition q ∈ P stronger than
p and such that for each i < ω the family {qi

η : η ∈ max(si)} is predense above q

(possible by (⊠)1).

Suppose that G ⊆ P is generic over V, q ∈ G. Then there is η ∈ ω(n + 1) such that

η↾(i + 1) ∈ max(si) and qi
η↾(i+1) ∈ G for each i < ω. Therefore we may use (⊠)3 to

conclude that there is a condition g ∈ Sn stronger than all
˜
fi[G]. Going back to V,

we may choose a P-name
˜
g for a condition in Sn such that q 
P (∀i < ω)(

˜
fi ≤

˜
g).

Note that for each i < ω the family {(qi
η,

˜
fi ∗ ρ) : η ∈ max(si) and ρ ∈ ⌊i/4⌋n} is

predense in P ∗
˜
Sn above (q,

˜
g), and hence (by (⊠)5)

(q,
˜
g) 
P∗

˜
Sn

“
˜
τ↾mi ∈ {σi

ρ,η : η ∈ max(si) and ρ ∈ ⌊i/4⌋n} for every odd i < ω ”.

Also,

(⊠)11 if i ≥ 3 is odd, η ∈ max(si), ρ ∈ ⌊i/4⌋n and η ′
= η↾(i − 1) and ρ ′

=

ρ↾⌊(i − 2)/4⌋, then η ′ ∈ max(si−2) and σi−2
ρ ′,η ′ = σi

ρ,η↾mi−2.

[ Why? Since st is a nice strategy, η↾i ∈ max(si−1) and η ′ ∈ max(si−2). It follows
from (⊠)1 that qi−2

η ′ ≤ qi−1
η↾i ≤ qi

η and by (⊠)3 we have qi
η 
P

˜
fi−2 ≤

∗
i−1

˜
fi. Therefore

qi
η 
P

˜
fi−2 ∗ ρ ′ ≤

˜
fi ∗ ρ and (qi−2

η ′ ,
˜
fi−2 ∗ ρ ′) ≤ (qi

η,
˜
fi ∗ ρ), so using (⊠)5 we may

conclude that σi−2
ρ ′,η ′ = σi

ρ,η↾mi−2. ]

Let T =
{

ν ∈ ω>ω : (∃i < ω odd)(∃η ∈ max(si))(∃ρ ∈ ⌊i/4⌋n)(ν E σi
ρ,η)

}

.
Then T is a perfect tree and (q,

˜
g) 
P∗

˜
Sn

˜
τ ∈ [T]. So the theorem will readily follow

once we show that T is n-ary. To this end we are going to argue that

(⊠)12 if i ≥ 3 is odd, η ∈ max(si), ρ ∈ ⌊i/4⌋n, then

∣

∣

{

σi
π,ν : ν ∈ max(si) and π ∈ ⌊i/4⌋n & σi

ρ,η↾mi−2 = σi
π,ν↾mi−2

}
∣

∣ ≤ n.

Case A: i = 4 j + 1 for some j < ω. Suppose that η, ν ∈ max(si), ρ, π ∈ ⌊i/4⌋n are
such that σi

ρ,η 6= σi
π,ν but σi

ρ,η↾mi−2 = σi
π,ν↾mi−2. The latter and (⊠)7 (and (⊠)11)

imply that η↾(i−1) = ν↾(i−1), and since i−1, i /∈ K we get that η(i−1) = ν(i−1) =

n = η(i) = ν(i) (remember that st is nice for K), so η = ν. If ρ↾( j − 1) 6= π↾( j − 1),
then let ρ ′

= ρ↾( j − 1)⌢〈π( j − 1)〉, otherwise ρ ′
= π.

Suppose ρ ′ 6= π. Let
˜
g be (a P-name for)

˜
fi ∪{(FP j−1(

˜
fi), π( j − 1))} and q = qi

η .

Then q ≥ qi−2
η↾(i−1), q 


˜
fi−2 ≤

∗
i−2

˜
g, and

q 
 “
˜
g ∗

(

ρ ′↾( j − 1)
)

=

˜
fi ∗ ρ ′ and

˜
g ∗

(

π↾( j − 1)
)

=

˜
fi ∗ π ”.

Hence

(q,
˜
g∗

(

ρ ′↾( j−1)
)


 “
˜
τ↾mi = σi

ρ ′,η ” and (q,
˜
g∗

(

π↾( j−1)
)


 “
˜
τ↾mi = σi

π,η ”.
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Now we use our assumption that σi
ρ,η↾mi−2 = σi

π,η↾mi−2 (and (⊠)11) to conclude

that σi
ρ ′,η↾mi−2 = σi

π,η↾mi−2. Consequently, σi
ρ ′,η = σi

π,η (remember (⊠)6 for i − 2,
η↾(i − 1), ρ ′↾( j − 1) and π↾( j − 1)). Trivially the same conclusion holds if ρ ′

= π,

so we have justified that

{σi
π,ν : ν ∈ max(si) and π ∈ ⌊i/4⌋n and σi

ρ,η↾mi−2 = σi
π,ν↾mi−2}

⊆ {σi
π,η : π ∈ jn and ρ↾( j − 1) = π↾( j − 1)}

and the latter set is of size at most n.

Case B: i = 4 j + 3 for some j < ω. Again, let us assume that η, ν ∈ max(si),
ρ, π ∈ ⌊i/4⌋n are such that σi

ρ,η 6= σi
π,ν but σi

ρ,η↾mi−2 = σi
π,ν↾mi−2. Then, as in the

previous case, (⊠)7 implies η↾(i − 1) = ν↾(i − 1). Also ⌊i/4⌋ = j = ⌊(i − 2)/4⌋,

so ρ↾⌊(i − 2)/4⌋ = ρ, π↾⌊(i − 2)/4⌋ = π. Now, if ρ = π, then trivially σi
π,ν = σi

ρ,ν .

If ρ 6= π, then we use (⊠)6 (with i − 2, ρ, π, qi
η,

˜
fi here in place of i, ρ, ρ ′, q,

˜
g there,

respectively) to argue that σi
π,ν = σi

ρ,ν . Consequently

{σi
π,ν : ν ∈ max(si) and π ∈ ⌊i/4⌋n and σi

ρ,η↾mi−2 = σi
π,ν↾mi−2}

⊆ {σi
ρ,ν : ν ∈ max(si) and η↾(i − 2) = ν↾(i − 2)}

and the latter set is of size at most n.

Now in both cases we easily get the assertion of (⊠)12, completing the proof of the

theorem.

References
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