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paper dealt, and which, he says, was suggested to him by the
analysis used by Poisson in the article of his Zhéorie de la Chaleur,
quoted above.

Questions of priority are usually somewhat difficult to answer;
but while it seems clear that the theorem generally quoted as
Green’s was given independently of Green, yet the importance
which he rightly attached to it, and the splendid use to which he
put it, amply justify us in keeping to the customary mode of
citation.

Some noew Properties of the Triangle.
By J. 8. Maceay, M.A,, LL.D.
[The substance of this paper will be included in Dr Mackay’s

paper on the triangle in the first volume of the Proceedings, iow
about to be published.]

Second Meeting, 13th December 1889,

R. E. Arrarpice, Esq., M.A., Vice-President, in the Chair.

A special case of three-bar motion.
By Professor STEGGALL.

The questions involved in the consideration of three-bar motion
have attracted a good deal of attention (Proceedings of Mathematical
Society of London passim, and elsewhere); but I am not aware
of any complete account of the figures that can be derived from such
a motion. The present paper givesa complete list of all the different
kinds of curve that are obtained by a tracing point at the middle of
the middle bar, the two outer bars being equal.

It may be advisable to briefly obtain the general equation to the
curve traced by any point on the middle bar, without any condition
of equality in the lengths of the other two.

Let 2a be the distance of the fixed centres, b, 2¢, d the lengths
of the three bars in order, 4 the distance of the tracing point from
the middle of the middle bar measured from the bar b, 6, ¢, ¢ the

2Vol. 8
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angles which the bars in order make with the line joining the fixed
centres : take this line as axis of &, and a perpendicular through its
middle point as that of y.
‘We have at once, on reference to a diagram,

beos O+ (h+c)cos p=a+x,

bsind+ (h+c)singp= vy,

deos Y+ (h —c)cos p=x - a,

dsiny +(h—c)sinp= y.

‘Whence
bP=y*+(a+x)*+(h+c)
- 2(h+c){(x+ a)cos ¢+ ysin ¢},
Py + (@ 0+ (b -
~ 26k — c){(x — a)cos ¢ + ysin ¢}.
Whence

4{(hx + ac)cos ¢ + hysing } = 2(2* + ¥* + a* + h* + ¢*) - & - &,
4{(cx + ah)cos ¢ + cysing } = 4ax + 4he — b* + d°.

Now the eliminant of

Pcos p+Qsin =R
P'cos ¢+ Q'sin ¢ = R’

is

R} (P2 +Q?) + R*(P*+ Q%) - 2RR'(PP' + QQ')=(PQ - QP')"

‘Whence, on substitution, we easily obtain
(calling 207+ 217+ 2c* - B* - &%, A, and 4hc +d* - 0%, B)

™. 4c

—r'z . 8ach
+7t. 4{c(cA - kB) + a®/?}
- . 16a°¢?
-’z . 4a{B(c* - %) + 4a’ch}
+a3 . 32a%h
+23. {4a’h(hA - cB)+ (cA - AB)* - 16a*(c* — 4*)*}
+a* . 8a*{2a%" — ¢(cA — hB) - h(hA — cB) + 2(c* - A%}
+x . 2a(hA — cB)(cA — hB - 4a%)
+ a*(hA - cB)* =0.

It may be worth while to write this at full length : the result is
. 4c
-1z . 8ach
+04 . 4{d*(B® + 2¢%) + ¥ ~ B?) — B%e(c - ) — de(c + 1)}
— %% . 16a%*
+7% . 4a{(W* - ¢*)(the + &* - ¥*) — da’ch}
+2° . 32a’h
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+7° . {4028 + &) — @’[8(* — 1%) + 4b%(c — h)* + 4d¥(c + h)?]
+{2¢(c* - 1?) - b*(c — b) — d*(c + R)T*}
+a* ., 8a*{b*(c — h) + &*(c + h)® — 2a°R7)}
—x. 2a {2h(a* + 12 - ¢*) + b (c - k) - d(c + &)}
{2c(a®+ k% — )+ b¥c - h) + P{c +h)}
+a*{20(@ + B — c) + b¥c — h) — P(c + k) =

The same equation has been obtained by a slightly different
method of elimination by Professor W. W. Johnson (Messenger of
Mathematics, vol. V., 1875, p. 50).

The equation is so unmanageable in this form that some special
assumption seems necessary in order to be able to trace the sextic
curve ; and the assumption in this paper is that b=d, A=0; in
other words, the tracing point bisects the free link, while the fixed
links are of equal length.

The curve now becomes

78 4 2r¥(a’ + € — V%) - 4r%2%a?
+ r*{a¥(a® — 2¢* - 2b%) + (& - b%)}
+4a?b?2*=0.

This equation may be readily solved to give r in terms of 6, the
vectorial angle, and the result (which may be easily obtained in
other ways) is

r*=alcos2 0+ b~ c* + 2asin 0 ,/c* — a’cos? 0,
or sin 8 = (a® — ¢ + b* — r*)/2a J(B* - *).

The minimum values of #* are when cos § =0,sin §=1,c0s2 8= — 1,
and in this case * =5~ (@ +¢)®. This expression being only positive
if 5> (a + ¢) the division is at once suggested into the cases

L b>a+ec
II. b=a+c
IIL. b<a+ec.
Before proceeding to the separate cases, we may notice that the
maximum and minimum values of 7* are given by the equation
rdr/df =0= — a’sin2 0 + acos 6(c* - a*cos2 0)/ ,/(c* — a*cos® 0),
whose only solution is cos §=0; and those of y* by the equation
sin fcos 6{4a’os® 6 + b* — ¢* — 3a®
+asin 6(3¢* + a® — 4a’cos’ 0)/ /(c* — a®cos? 6)} =0,
whose solutions are cos 8 =0,sin 8 =0, and
8atbcos' 6 + a"’bz{b2 10¢* — ba’}cos® 6+ {(a - c)’+b’~'a} {(a+c)-b%} =0
. (1)
or 16a cos® 0 10c + 6a.2 B+ ‘b'+ 2(c* - 2); 1 +8(¢ —a?)/b (2)
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L d>a+ec

We notice that if a}e¢, 6 can have every value, otherwise the

maximum value of cos 8 is ¢/a : we therefore divide this case into
(i) a<e, (i) a=¢, (iii) a>ec.
(i) a<e.

Here 6 may have every value giving always two values of +*
except at §=0. We get two detached but intersecting ovals which
must be separately described, as may be at once seen on drawing
a diagram.

On referring to equation (1) we see that if 42> (a + c)/c, the pro-
duct of the values of cos® § is negative, and the negative value of cos® §
is inadmissible, while from equation (2) it is clear that the positive
value of cos?@ is greater than unity. Thus the only maximum and
minimum heights are on the axis of y. The form of one branch of
the curves is given in figure i. 1In this, and in all the other figures,
the three numbers affixed denote the values of the constants a, b. ¢,
taken in that order. As a rule the standard value of b is 12, but
for clearness it is taken of various convenient magnitudes.

If B*< (a+ c)*/c, both values of cos’d are positive, and the smaller
value is less than unity. This gives two maximum values of ¥ on
each loop, symmetrically situated with regard to the axis of y;
while if 4?=(a +c)’/c these two maxima coalesce with the minimum
between them, giving a flattish figure to the curve (see figures ii.
and iii.), and a point where the tangent meets it in four coincident
points.

(i) c=a.

In this case, since the two loops in general make (on opposite
sides) an angle with the axis of x, where they cut, of

tan-{(a* + 5~ )/ /(¢ - @)}

the two loops cut the axis of = at right angles, and thevefore
touch and may each be continued from the other, since the lines
BC, AD when they lie along AB may be made to cross ot not cross
in continuing their motion, as may be desired.

The equation reduces to

72 =b? — 2a%sin® @ + 2a%in 0 /(1 ~ cos? ),
which, by taking the top half of each with the bottom of the other,
becomes
,7.'.’ = b?

r?=b% — 4a’sin® 6.
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The latter is the inverse of an ellipse with regard to its centre,
since 6> 2a ; ard it becomes two circles if 4 = 2a.

This curve being written

yr={b* - (b - 2¢%)*} /164

the least value of #* is 8°—4a%0==/2; and if thisis >5%2, the
greatest value of #® is when #* has this least value ; this requires &?
to be >8a’; but if 6°< 8a?% and therefore */2>0% - 4a?% 7 can be as
small as 5?/2, and this then gives a maximum value of y—viz.,
b*/4a,sin’0 = b*/8a* ; and a minimum value of y when §==/2. Also
when b* =8a? these two coalesce giving a masked point of inflexion
on the axis of . See figures iv., v., vi.

It is interesting to notice that as a approaches ¢ two disconnected
equal portions of the laops become the circle, and the inverse of the
conic ; so that each loop degenerates into a semi-circle, and half of
the inverse of the conic.

(iii.) a>e.

In this case cos 0 is limited, its maximum value being ¢/a.

If 62> (a+c)/c, we find that the values of cos? § in equation (1)
are one positive and less than ¢%/a’ (as may be at once verified by
substituting c/a for cosf in the expression in the left which is then
positive, while it is negative if cos @ is put equal to zero), and the
other negative. This gives us one minimum value of %?% and its two
positions are on the lower part of the upper loop and wice versa.
See figure vii.

It is noteworthy that to pass from the case a=c, to the case
a>c, we may regard the wupper half of the circle as combined with
the upper half of the inverse curve, whereas in passing to the case
a<c, as seen above, the upper half of the circle is combined with
the lower half of the inverse curve.

If b*=(a + c)*/c the equation for cos® § becomes

8afcos 40 + (b* — 10¢* - 6a®)cos 26 = 0,

giving cos 260 =0 or (a*+ 3¢*)(3c — a)/8a’c,

the last value is always less than ¢*/a% and we thus have, in this
case, an additional zero value of cos® 6, and the tangent at the vertex
meets the curve in four coincident points. If 3¢>a there are two
other symmetrical minima on each loop (fig. viii.), if 3c=a these
also move up to the vertex where the tangent now meets the curve
at six coincident points (fig. ix.), and if 3c>a, these minima dis-
appear (fig. x.).
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The equation to the curve of fig. ix. is
2® + 3aA(y® — 48¢%) + 3a2(y® - 48S%)(y* - 36¢%) + y*(y* — 48¢*)(y* - 60c*) =0
from which it appears that the lines y* = 48¢* each meet the curve in
six coincident points, and the lower part of the curve approaches very
closely to a straight line.

If 3*<(a+c)’/c clearly no other maxima or minima exist unless
B <10 + 6a® (fig. xi); if 5 < 10¢® + 64% we have to divide the cases
into, from equation (2), (i.) 4*>8(a*~ ¢*) in which case both values if
cos? @ are real and admissible giving four )symmetrical) maxima or
minima heights on each loop (fig. xii.); (iL.) 6*= 8(a® - ¢*) in which case
these coalesce two and two giving a point of inflexion with a hori-
zontal tangent (fig. xiii); (iii) 5*°<8(a®-¢?), in which case the
points of inflexion are left but the horizontal tangent becomes
oblique (fig. xiv.).

II. b=a+e.
This case naturally divides like the last into
(i) a<e, (ii.) a=¢, (ill) a>¢c;
and in each case
7% = 2(a’0s *0 + ac + asin @ /¢ — a’cos *0),
or r=,/a(l+cos 6)(c+acos )+ ,/a(l - cos 6)(c - acos 6).
The equation to obtain the maximum height is now, besides

cos 6=0, 16a%cos® = 9¢* — 2ac + 5a* £ (3¢ — a) J(c + a)(9¢ - Ta).

Case (i.) a<ec.

Here the upper sign gives a value of cos® ¢ greater than unity,
and the lower sign gives a positive root less than unity, as may be
seen from the more general case I. (i), or by comparing (9¢* — 2ac +
5a%, and (9¢* - 2ac — 114°)* with (3¢ — a)*(9¢* + 2ac — Ta?).

Hence in this case there is one maximum height besides that on
the axis (fig. xv.). The two minima heights on the axis here become
zero, the two loops meet one another at the origin with a common
vertical tangent there, so that there is a choice of path at the central
point.

Case (ii.) a=c.

Here the pairs of tangents at the points of intersection on the
axis of x, which were inclined to that axis, become coincident, and
we simply get three circles (fig. xvi.).
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Case (iii.) a>c,

In this case we have, as in I. (iii.), the condition cos *0}c*/a’;
subject to this both values of #* are real. For the maximum height
we have the same equation as in case (i.), namely, 16a’cos *0 =9¢* —
2ac + 5a® £ (3¢ - a) /(¢ + a)(9¢c — Ta), and the values of cos *# are real
if 9¢ is equal to or greater than 7a, or if 3c=a. Now if Ta<9¢, it
is easily seen that both values of cos 20 are admissible, and we have
(fig. xvii.) four (symmetrical) maxima and minima : if 7a=9¢, these
coincide pair and pair, giving a point of inflexion with a horizontal
tangent (fig. xviii.).

If 7a>9c (fig. xix.) these points disappear, while if a =3¢, the
values of cos?d though real give imaginary values of #% and the
figure resembles that just referred to.

IIL b<a+e.
‘Writing our original equations in the form
7 =a? 4 b* — & - 2asin asin 0 + ,/c* — a’cos *0),
sin 0= {¢® — (a? + b%) + 12} /2a J&? — 1,
we shall ind a sub-division > = < a?+ b® convenient ; but we shall
keep to the other division of a > = <¢ as before.

Case (i) a<ec. .

If a®48%<c? sin 0 increases with r, and lies between {¢* - a? —
5'}/2ab and 1, and each value of sin 6 gives only one positive
value of 7* : the least value of +? is zero, sin = {¢® - a® - %} /2ab, and
the greatest is 5%~ (a —¢)? sin §=1: the curve consists of a simple
figure of 8 (fig. xx.).

If a® 4 b* = ¢% the two loops touch with the axis of « for common
tangent meeting the curve in six coincident points as in fig. xxi. : the
equation in fact reduces to 4a%2(b? - 7*) =18 = (2 + *)".

If &® + 52 >¢*, the values of #* are sometimes both positive, some-
times not : the limiting value of @ is clearly given by

a’ + b% - c*< 2asin G(asin 6 + N/5’——&7(?’0),
or, in other words, sin 6 must not be greater than the value of § that
makes 72 vanish : thus one available value of r* exists for all values
of 8 and two values form sin =0 to sin 6 = (a®+ b* — ¢*)/2ab.

The maximum height is found as before, and refers to the loop
(fig. xxi.). In this case the curve is described by a single operation
without any choice of direction at any point, or break of continuity.
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Cdse (ii.) a=c.
Here we get at once the equations
7*=b% and r?=b% - 4a’in %6,
which last, since &< 2a, is the inverse of a hyperbola that becomes
rectangular when §*=2q* (fig. xxiii.).

Case (iii.) a>c.
In this case cos 0<c/a,sin 6> /1 - ¢*/a’, and since we have
sin 6= {(a®— ®) + (0~ 1)} /20 JB* = 1%,
we soe that sin @ decreases with %2 until, if possible, 52— r*=
a® - ¢% at which point it begins to increase again until sin §=1.

When r=0,sin § = (a® + §* - ¢*)/2ab, which is always an admissible
value: and between sin 6 = (a® + 7 - ¢*)/2aband sin 6 = ,/1 — ¢*/a’ there
are always two values of 7% it only remains to see whether 7* can
ever become b%+ ¢ — 22 : this of course depends on whether a’< = >
b+

If a®< (b°+¢*) thereare two real values of r between these limits,
and one beyond, i.e., from sin 6=(a®>+b*~¢?)/2ab to sinf=1. On
referring to the equations (1) and (2) we find that if 5°>8(a®-c*)
(and therefore %+ ¢*>a?) there are four symmetrical maximum and
minimum heights (fig. xxiv.); if 5*=8(a®-c?) there are only two,
through the coincidence of two pairs forming a point of inflexion
with a horizontal tangent (fig. xxv.), while if 6*<8(a® -~ ¢*) there are
none (fig. xxvi.).

If a®=b%+ ¢? the two limits coincide and we have & curve with a
very approximately straight portion near the node : this, in fact, (fig-
xxvil.) is Watts’ parallel motion.

If a?> b? + ¢ the value of 6 decreases till #2 =0, but cannot decrease
further (fig. xxviii.) through the disappearance of the limit sin 6=

JT=

In all the descriptions of these curves the upper half only has
been referred to ; and from the obvious symmetry it has only been
necessary to discuss values of 8 less than =/2. Itis clear that we might
from the beginning have proceeded under the heads a<¢,a=c,a>¢;
but some consideration has led to the adoption of the process of this
paper. There being two independent ratios, there are numerous
cross connections between the curves, but these are best seen by the
help of the diagrams.
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