Molecules in Damped Ly α Systems: Spatial Distribution

Hiroyuki Hirashita

Department of Physics, Nagoya University, Nagoya 464-8602, Japan

Andrea Ferrara SISSA, Via Beirut 4, 34014 Trieste, Italy

Keiichi Wada

National Astronomical Observatory of Japan, Tokyo 181-8588, Japan

Philipp Richter

Arcetri Observatory, Largo E. Fermi, 5, 50125 Firenze, Italy

Abstract. To interpret H₂ quasar absorption line observations in DLAs (damped Ly α clouds), we model the H₂ spatial distribution within a DLA. Based on numerical simulations of disk structures with parameters similar to those derived for such absorbers, we calculate the H₂ distribution as a function of ultraviolet background (UVB) intensity and dust-to-gas ratio. For typical values of these two quantities we find that the area in which the H₂ fraction exceeds 10^{-6} (typical observational detection limit) only covers < 10% of the disk surface, i.e., H₂ has a very inhomogeneous, clumpy distribution even at these low abundance levels. This explains the relative paucity of H₂ detections in DLAs. We also show the dependence of the covering fraction of H₂ on dust-to-gas ratio and UVB intensity and we comment on the physics governing the H₂ chemical network at high redshift. We finally comment on our implication on the statistics of the H₂ column density distribution.

1. Introduction

The important role of dust on the enhancement of the H₂ (hydrogen molecule) abundance in damped Ly α clouds (DLAs; QSO absorption line systems whose neutral hydrogen column density is > 1–2 × 10²⁰ cm⁻²) has been suggested by various observations (e.g., Ledoux et al. 2003). For the H₂ fraction (mass ratio of H₂ to all the hydrogen nuclei), stringent upper limits are laid on a significant fraction of DLAs in the range ~ 10⁻⁷–10⁻⁵. We should keep in mind that if the covering fraction of H₂-rich regions on a galactic surface is extremely small, it is natural that H₂ is not detected in DLAs. Therefore, the argument on the H₂ abundance in DLAs is strongly dependent on the geometry of H₂ distribution within those systems.

2. Molecular fraction map

In order to get a better understanding of the spatial distribution of H₂, we present our study based on high-resolution numerical simulations. We calculate the spatial structure of H₂ distribution in galactic disks under various conditions for the UVB intensity and dust-to-gas ratios (see Hirashita et al. 2003 for the details). A 50 pc \times 50 pc zoom of the distribution of molecular fraction ($f_{\rm H_2}$) is shown in Fig. 1 (left).

We plot the data of Ledoux et al. (2003) in Fig. 1 (right; crosses), where we adopt clouds those with $\log N({\rm H~I}) > 20.5$. The squares in the figure represent our theoretical prediction (the UVB intensity is assumed to be $J_{21} = 0.1$), where we have selected randomly five lines of sight on the simulated disk for each value of dust-to-gas ratio \mathcal{D} . In addition to the rough trend between the two quantities, we find the increase of $f_{\rm H_2}$ spread towards higher dust-to-gas ratios. This is caused by the inhomogeneous H₂ distribution.

Figure 1. Left: Distribution of molecular fraction $(\log f_{\rm H_2})$ zoomed on a region in a simulated "DLA". The UVB intensity and dust-to-gas ratio are assumed to be $J_{21} = 0.1$ and $\mathcal{D} = 0.001$, respectively. The grey scale bar show the levels of $\log f_{\rm H_2}$. Right: Molecular fraction $(f_{\rm H_2})$ and dust-to-gas ratio (\mathcal{D}) . The dust-to-gas ratio in the solar neighborhood is assumed to be $\mathcal{D}_{\odot} = 0.01$. The crosses are from Ledoux et al. (2003), while the squares are our theoretical prediction.

Acknowledgments. H. H. was supported by the Research Fellowship of the Japan Society of the Promotion of Science for Young Scientists.

References

Hirashita, H., Ferrara, A., Wada, K., & Richter, P. 2003, MNRAS, 341, L18 Ledoux, C., Petitjean, P., & Srianand, R. 2003, MNRAS, in press