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Abstract

We discuss the multiplicity of nonnegative solutions of a parametric one-dimensional mean curvature
problem. Our main effort here is to describe the configuration of the limits of a certain function, depending
on the potential at zero, that yield, for certain values of the parameter, the existence of infinitely many
weak nonnegative and nontrivial solutions. Moreover, thanks to a classical regularity result due to
Lieberman, this sequence of solutions strongly converges to zero in C1([0, 1]). Our approach is based
on recent variational methods.
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1. Introduction
The Minkowski curvature equation

−div
(

∇u√
1 + |∇u|2

)
= f (t, u) in Ω

u|∂Ω = 0,
(1.1)

plays, as is well known, a role in differential geometry and in the theory of relativity
(see, for instance, [4] and references therein).

The existence, nonexistence and multiplicity of positive solutions of problem (1.1)
have been discussed by several authors in recent decades. See, for instance, the papers
of Ni and Serrin [22–24] and Peletier and Serrin [30].

More recently, Obersnel and Omari in [27] studied the existence of positive
solutions of the parametric problem

−div
(

∇u√
1 + |∇u|2

)
= λ f (t, u) in Ω

u|∂Ω = 0,
(1.2)
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by comparing F(t, ξ) :=
∫ ξ

0 f (t, x) dx with ξ2 near zero and with ξ at infinity. This
procedure is motivated by the fact that the curvature operator behaves like the
Laplacian operator near zero and the 1-Laplace operator at infinity.

In the paper cited, the authors, requiring a specific configuration of the limits of
(F(t, ξ))/ξ2 at zero and of (F(t, ξ))/ξ at infinity, obtain the existence, multiplicity or, in
some cases, the existence of infinitely many solutions of (1.1). In particular, combining
the lower and upper solutions method, local minimization and critical values estimates,
it is proved that if

lim inf
ξ→0+

F(ξ)
ξ2 = 0 and lim sup

ξ→0+

F(ξ)
ξ2 = +∞,

then, for every λ > 0, the autonomous analogue of problem (1.2) admits an infinite
sequence of positive weak solutions.

We also observe that, treating the general case in [27, Theorem 3.15], one of the
key hypotheses is expressed by

lim sup
ξ→0+

∫
ω

F(x, ξ) dx

ξ2 = +∞, (1.3)

where ω is an open subset of Ω. Moreover, in [27, Theorem 3.16], studying problem
(1.1), the assumptions on the behaviour of the potential F at zero are replaced by some
conditions involving suitable spectral constants λ]1 and λ?1 .

Condition (1.3) has also been used by Coelho et al. as an ingredient in the one-
dimensional setting, ensuring the existence of a sequence of positive solutions (see
[10, Theorem 2.6]).

Further, the existence of infinitely many weak solutions, tending in the C1 norm
to zero, has been achieved in [28] via Lusternik–Schnirelmann theory provided the
nonlinearity is odd and its primitive is subquadratic at zero. The same thesis, for
the one-dimensional case, has been obtained in [25], exploiting a suitable generalized
Fučı́k spectrum and requiring different behaviour of the nonlinearity.

In addition, the one-dimensional problem has been rather thoroughly discussed,
using different methods, in recent papers by Bonheure et al. [6, 7, 14], Boreanu and
Mawhin [5] and Pan [29].

Motivated by this interest, the aim of this paper is to study the one-dimensional
prescribed curvature problem−

( u′
√

1 + u′2

)′
= λ f (t, u) in (0, 1),

u(0) = u(1) = 0,
(1.4)

where f : [0, 1] × R→ R is an L1-Carathéodory function and λ > 0 is a real parameter.
More precisely, the main goal here is to obtain some sufficient conditions to guarantee
that, for suitable values of λ, problem (1.4) has infinitely many nontrivial and
nonnegative weak solutions that converge to zero in C1. To this end, we require that
the potential F satisfies a suitable oscillatory behaviour at zero finding arbitrarily small
solutions (see Theorem 3.1).
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Our variational approach is mainly based on Ricceri’s variational principle (see
[33, Theorem 2.1]). We apply [33, Theorem 2.1] to a suitable regularized problem to
obtain a sequence of pairwise distinct critical points for the associated Euler–Lagrange
functional and successively we achieve the existence of infinitely many solutions for
the original problem by using an original and interesting trick due to Obersnel and
Omari (see [28]) and by means of a classical regularity result by Lieberman (see [18]).

We point out that Faraci in [12, Theorem 1.1], using the same variational setting
but different technical arguments, ensured the existence of infinitely many solutions
for the one-dimensional prescribed curvature problem−

( u′
√

1 + u′2

)′
= h(t) f (u) in (0, 1),

u(0) = u(1) = 0,

where h : [0, 1]→ R is a positive bounded function with ess inft∈[0,1] h(t) > 0 and
f : R→ R is a continuous function. In this context the author assumes, among other
technical assumptions, that the following condition at zero holds:

−∞ < lim inf
ξ→0+

F(ξ)
ξ2 ≤ lim sup

ξ→0+

F(ξ)
ξ2 = +∞.

Instead of the above inequality, in Theorem 3.2 we require

lim inf
ξ→0+

max|x|≤ξ F(x)
ξ2 < κ lim sup

ξ→0+

F(ξ)
ξ2 ,

where

κ :=
7
√

2
∫ 3/4

1/4 h(t) dt

128‖h‖L1([0,1])
.

If h ≡ 1 in [0, 1], the above constant takes the value

κ :=
7

256

√
2.

A more precise comparison with the cited result is explained in Remark 4.2. A
special case of our main result is as follows.

Theorem 1.1. Let f : R→ R be a nonnegative and continuous function such that
f (0) = 0. Put F(ξ) :=

∫ ξ

0 f (t) dt (for every ξ ∈ R) assuming that

lim inf
ξ→0+

F(ξ)
ξ2 = 0 and 0 < B? := lim sup

ξ→0+

F(ξ)
ξ2 ≤ +∞.

Then, for every λ > 8/B?, the problem−
( u′
√

1 + u′2

)′
= λ f (u) in (0, 1),

u(0) = u(1) = 0
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admits a sequence of nontrivial and nonnegative weak solutions {un} ⊂C1([0,1]) which
satisfy

lim
n→∞
‖un‖C1([0,1]) = 0.

We emphasize that, if

lim sup
ξ→0+

F(ξ)
ξ2 < +∞,

Theorem 1.1 is not directly obtainable by the statements of the previously mentioned
contributions. In particular, we note that no symmetry assumption is required on the
nonlinearity term f .

Finally, for completeness, we cite the papers [8, 9, 11, 13, 16, 17, 19, 20, 26] for
some relevant contributions related to the subject of this work. See also [3] for other
results obtained by using our variational approach.

The plan of this paper is as follows. In Section 2 we introduce our notation
and a suitable abstract setting (see Theorem 2.1). In Section 3 our main result
(see Theorem 3.1) and some significant consequences (see Theorem 3.2 as well as
Corollaries 3.4 and 3.6) are presented. Section 4 is devoted to a special case (see
Theorem 4.1) of the main result. A concrete example of an application is given in
Example 4.4.

In conclusion, we cite a recent monograph by Kristály et al. [15] as a general
reference on the variational methods adopted here.

2. Preliminaries

We shall prove our theorems by applying the following version of Ricceri’s
variational principle [33, Theorem 2.1].

Theorem 2.1. Let X be a reflexive real Banach space and Φ,Ψ : X→ R be two Gâteaux
differentiable functionals such that Φ is sequentially weakly lower semicontinuous,
strongly continuous and coercive, and Ψ is sequentially weakly upper semicontinuous.
For every r > infu∈X Φ(u), put

ϕ(r) := inf
u∈Φ−1((−∞,r))

supv∈Φ−1((−∞,r)) Ψ(v) − Ψ(u)

r − Φ(u)
,

and δ := lim infr→(infX Φ)+ ϕ(r). Then, if δ < +∞, for each λ ∈ (0, 1/δ), the following
alternative holds: either (c1) there is a global minimum of Φ which is a local
minimum of Iλ := Φ − λΨ, or (c2) there is a sequence {un} of pairwise distinct critical
points (local minima) of Iλ which weakly converges to a global minimum of Φ, with
limn→∞Φ(un) = infu∈X Φ(u).

Remark 2.2. We also refer the interested reader to the papers [1, 2, 21] and references
therein, in which Ricceri’s variational principle and its variants have been successfully
used to obtain the existence of infinitely many solutions for different boundary value
problems.
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Denote by X the Sobolev space W1,2
0 (]0, 1[), endowed with the norm

‖u‖ :=
(∫ 1

0
|u′(t)|2 dt

)1/2
.

It is well known that the space X is compactly embedded into C0([0, 1]) and ‖u‖∞ ≤
‖u‖, where ‖u‖∞ := maxt∈[0,1] |u(t)|.

Let f : [0, 1] × R→ R be an L1-Carathéodory function, which means that:

(a) t 7→ f (t, x) is measurable for every x ∈ R;
(b) x 7→ f (t, x) is continuous for almost every (a.e.) t ∈ [0, 1];
(c) for every ρ > 0 there exists a function lρ ∈ L1([0, 1]) such that

sup
|x|≤ρ
| f (t, x)| ≤ lρ(t)

for a.e. t ∈ [0, 1].

The potential F of f is defined by

F(t, ξ) :=
∫ ξ

0
f (t, x) dx,

for every (t, ξ) ∈ [0, 1] × R.
We say that a function u ∈ X is a weak solution of problem (1.4), if u satisfies∫ 1

0

u′(t)√
1 + u′(t)2

v′(t) dt − λ
∫ 1

0
f (t, u(t))v(t) dt = 0,

for every v ∈ X.

3. Main results

In this section we establish the main abstract result of this paper. Let

B0 := lim sup
ξ→0+

∫ 3/4
1/4 F(t, ξ) dt

ξ2 .

With the above notation we are able to prove the following result.

Theorem 3.1. Let f : [0, 1] × R→ R be an L1-Carathéodory function such that

(a1) f (t, 0) = 0 for a.e. t ∈ [0, 1];
(a2) F(t, ξ) ≥ 0 for all (t, ξ) ∈ ([0, 1

4 ] ∪ [ 3
4 , 1]) × R+.

Assume that there exist two sequences {an} and {bn} in (0,+∞), with limn→∞ bn =

0, such that, for a.e. t ∈ [0, 1] and every x ∈ [0, b1],

| f (t, x)| ≤ k,

for some real constant k > 0, and
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(a3) a2
n <

7
√

2
128 b2

n for each n ∈ N;

(a4) A0 := lim
n→∞

(
∫ 1

0 max|ξ|≤bn F(t, ξ) dt −
∫ 3/4

1/4 F(t, an) dt)/( 7
√

2
32 b2

n − 4a2
n) < B0

4 .

Then, for each

λ ∈
( 4

B0 ,
1
A0

)
,

problem (1.4) admits a sequence of nontrivial and nonnegative weak solutions {un} ⊂

C1([0, 1]) which satisfy
lim
n→∞
‖un‖C1([0,1]) = 0.

Proof. Our aim is to apply Theorem 2.1 to problem (1.4). More precisely, to this
end, following an idea of Obersnel and Omari in [28], we apply Theorem 2.1 to a
modified problem and then, by means of a regularity result (see either [18] or directly
[34, Proposition 3.7]), the critical points of the energy are actually solutions of the
original problem. Let s : [0,+∞)→ (0,+∞) be the C1,1 nonincreasing function defined
by

a(s) :=



1
√

1 + s
s ∈ [0, 1)

√
2

16
(s − 2)2 +

7
√

2
16

s ∈ [1, 2)

7
√

2
16

s ∈ [2,+∞).

Set, for every s ≥ 0,

A(s) :=
∫ s

0
a(t) dt.

We have
7
√

2
16
≤ a(s) ≤ 1

and hence
7
√

2
16

s ≤ A(s) ≤ s (3.1)

for every s ≥ 0. Further, as the function s 7→ sa(s2) is increasing, the function
s 7→ A(s2) is convex in [0,+∞). Note that a satisfies the structure and the regularity
conditions assumed in [18]. For a.e. t ∈ [0, 1], we truncate f as follows:

g(t, x) :=


0 x ∈ (−∞, 0),
f (t, x) x ∈ [0, b1),
f (t, b1) x ∈ [b1,+∞),

where b1 is from the sequence {bn}. The function g is L1-Carathéodory and if
G : [0, 1] × R→ R denotes its primitive, that is, G(t, ξ) :=

∫ ξ

0 g(t, x) dx for all (t, ξ) ∈
[0, 1] × R, then g and G satisfy the assumptions of the theorem. We now introduce the
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auxiliary problem {
−
(
a(|u′|2)u′

)′
= λg(t, u) in (0, 1),

u(0) = u(1) = 0. (3.2)

Let the functionals Φ,Ψ : X → R be defined by

Φ(u) :=
1
2

∫ 1

0
A(|u′(t)|2) dt, Ψ(u) :=

∫ 1

0
G(t, u(t)) dt,

and put
Iλ(u) := Φ(u) − λΨ(u),

for every u ∈ X.
Due to (3.1), Φ is well defined on X, continuous and coercive. Moreover,

by the convexity of the function s 7→ A(s2) in [0, +∞), Φ is convex and then
sequentially weakly lower semicontinuous. The functional Ψ is well defined and
sequentially weakly (upper) continuous. Moreover, Φ and Ψ are continuously Gâteaux
differentiable with derivative given by

Φ′(u)(v) =

∫ 1

0
a(|u′(t)|2)u′(t)v′(t) dt

and

Ψ′(u)(v) =

∫ 1

0
g(t, u(t))v(t) dt,

for every u, v ∈ X.
Fix λ as in the conclusion. First of all, we show that λ < 1/δ. To this end, write

rn :=
7
√

2
32

b2
n (∀n ∈ N).

Then, for all u ∈ X with Φ(u) < rn, taking into account (3.1), we have

7
√

2
32
‖u‖2 ≤ Φ(u) < rn.

Thus
‖u‖∞ ≤ bn (∀n ∈ N)

for every u ∈ X such that Φ(u) < rn. Then, for every n ∈ N, it follows that

ϕ(rn) ≤ inf
Φ(u)<rn

∫ 1
0 max|ξ|≤bn G(t, ξ) dt −

∫ 1
0 G(t, u(t)) dt

7
√

2
32 b2

n −
1
2

∫ 1
0 A(|u′(t)|2) dt

.

Now, let wn be defined by

wn(t) :=


4ant t ∈ [0, 1/4],
an t ∈ (1/4, 3/4],
4an(1 − t) t ∈ (3/4, 1],

for each n ∈ N.
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Clearly, wn ∈ X and Φ(wn) ≤ 1
2‖wn‖

2 = 4a2
n. Hence, by (a3), we have Φ(wn) < rn.

Moreover, by (a2), we also have

Ψ(wn) ≥
∫ 3/4

1/4
G(t, an) dt,

for each n ∈ N. Therefore, it follows that

ϕ(rn) ≤

∫ 1
0 max|ξ|≤bn G(t, ξ) dt −

∫ 3/4
1/4 G(t, an) dt

7
√

2
32 b2

n − 4a2
n

,

for every n ∈ N. Hence, bearing in mind (a4), we can write

0 ≤ δ ≤ lim
n→∞

ϕ(rn) ≤ A0 < +∞.

Taking into account the above relation, since λ < 1/A0, we also have λ < 1/δ.
Now, we claim that the functional Iλ does not have a local minimum at zero.

Since 1/λ < B0/4, there exist a sequence {ηn} of positive numbers and τ > 0 such that
limn→∞ ηn = 0 and

1
λ
< τ <

1
4

∫ 3/4
1/4 G(t, ηn) dt

η2
n

,

for each n ∈ N large enough. For all n ∈ N, let sn ∈ X defined by

sn(t) :=


4ηnt t ∈ [0, 1/4],
ηn t ∈ (1/4, 3/4],
4ηn(1 − t) t ∈ (3/4, 1].

Note that λτ > 1. Then we obtain

Iλ(sn) = Φ(sn) − λΨ(sn)

≤ 4η2
n − λ

∫ 3/4

1/4
G(t, ηn) dt

< 4η2
n(1 − λτ)

< 0 = Φ(0) − λΨ(0)

for every n ∈ N large enough. Thus, the fact that ‖sn‖ → 0 implies that Iλ does not
have a local minimum at zero. This, together with the fact that zero is the only global
minimum of Φ, shows that the functional Iλ does not have a local minimum at the
unique global minimum of Φ. Therefore, by Lemma 2.1, there exists a sequence {un}

of pairwise distinct critical points of Iλ that converges weakly to zero. In view of the
fact that the embedding X ↪→ C0([0, 1]) is compact, we know that the critical points
converge strongly to zero. In particular,

lim
n→∞
‖un‖∞ = 0. (3.3)
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Let us prove that the critical points of the energy are nonnegative. Arguing by a
contradiction, assume that u is a critical point of Iλ and that the set

A :=
{
t ∈ [0, 1] : u(t) < 0

}
is nonempty and of positive Lebesgue measure. Put v := min{0, u}. Clearly, v ∈ X and,
taking into account that u is a critical point, we have

0 = Φ′(u)(v) − λΨ′(u)(v)

=

∫ 1

0
a(|u′(t)|2)u′(t)v′(t) dt − λ

∫ 1

0
g(t, u(t))v(t) dt

=

∫
A

a(|u′(t)|2)|u′(t)|2 dt

≥
7
√

2
16

∫
A
|u′(t)|2 dt,

since a(s) ≥ (7
√

2)/16 for all s ≥ 0 and g(t, s) = 0 for a.e. t ∈ [0, 1] and every s < 0.
Hence, since u|A ∈W1,2

0 (A), u ≡ 0 on A which is absurd. Hence, if un is a critical point
of Iλ, then it is a weak solution of the auxiliary problem (3.2), it is nonnegative and by
(3.3), for n big enough, un(t) ≤ b1 for every t ∈ [0, 1]. Thus

‖un‖∞ ≤ b1, (3.4)

for n sufficiently large. On the other hand, by our assumption on f in [0, 1] × [0, b1],
and bearing in mind the definition of g, it follows that

|g(t, x)| ≤ k, (3.5)

for a.e. t ∈ [0, 1] and x ∈ R. Now, by (3.4) and (3.5), the regularity theory for problem
(3.2) (see either [18] or directly [34, Proposition 3.7]) implies that there are constants
β ∈ (0, 1) and κ > 0 such that, for every n ∈ N, un ∈ X ∩C1,β([0, 1]) and

‖un‖C1,β([0,1]) ≤ κ.

Let us prove now that
lim
n→∞
‖un‖C1([0,1]) = 0.

Indeed, assume by contradiction that there exists a subsequence {unh} such that

lim
h→∞
‖unh‖C1([0,1]) > 0.

Then, since (3.3) holds, we must have

lim
h→∞
‖u′nh
‖∞ > 0. (3.6)

The Arzelà–Ascoli theorem yields the existence of a subsequence, still denoted
by {unh}, such that {u′nh

} is uniformly convergent to zero, in contradiction to (3.6).
Accordingly we conclude that, for n big enough, ‖un‖C1([0,1]) ≤ 1. This completes the
proof. �
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We now point out some consequences of Theorem 3.1. First, by setting

A0 := lim inf
ξ→0+

∫ 1
0 max|x|≤ξ F(t, x) dt

ξ2 ,

we get the following result.

Theorem 3.2. Let f : [0, 1] × R → R be an L1-Carathéodory function such that
assumptions (a1) and (a2) in Theorem 3.1 are satisfied. Assume also that

(a5) there are two real positive constants σ and k such that, for a.e. t ∈ [0, 1] and
every x ∈ [0, σ], we have

| f (t, x)| ≤ k;

(a6) A0 <
7
√

2
128 B0.

Then, for each

λ ∈
( 4

B0 ,
7
√

2
32A0

)
,

problem (1.4) admits a sequence of nontrivial and nonnegative weak solutions {un} ⊂

C1([0, 1]) which satisfy
lim
n→∞
‖un‖C1([0,1]) = 0.

Proof. Let {bn} be a sequence of positive numbers which goes to zero such that

lim
n→∞

∫ 1
0 max|ξ|≤bn F(t, ξ) dt

b2
n

= A0.

Taking an = 0 for every n ∈ N, by Theorem 3.1 the conclusion follows.

Remark 3.3. Theorem 1.1 immediately follows by Theorem 3.2.

A special case of Theorem 3.2 is stated in the following corollary.

Corollary 3.4. Let f : [0, 1] × R→ R be an L1-Carathéodory function such that
assumptions (a1) and (a2) in Theorem 3.1 and (a5) in Theorem 3.2 are satisfied.
Assume that

A0 <
7
√

2
32

and B0 > 4.

Then, the problem −
( u′
√

1 + u′2

)′
= f (t, u) in (0, 1),

u(0) = u(1) = 0,

admits a sequence of nontrivial and nonnegative weak solutions {un} ⊂C1([0,1]) which
satisfy

lim
n→∞
‖un‖C1([0,1]) = 0.
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Remark 3.5. When f is a nonnegative function, condition (a6) becomes

(a′6) A′0 := lim infξ→0+ (
∫ 1

0 F(t, ξ) dt)/ξ2 < 7
√

2
128 B0.

In this case, (a′6) ensures that for each

λ ∈
( 4

B0 ,
7
√

2
32A′0

)
,

problem (1.4) admits a sequence of nontrivial and nonnegative weak solutions {un} ⊂

C1([0, 1]) which satisfy
lim
n→∞
‖un‖C1([0,1]) = 0.

The next result is a consequence of Theorem 3.1 and guarantees the existence of
infinitely many solutions to (1.4) for each λ lying in a precise half-line.

Corollary 3.6. Let f : [0, 1] × R→ R be an L1-Carathéodory function such that
assumptions (a1) and (a2) in Theorem 3.1 are satisfied. Assume that there exist a
real sequence {an} and a sequence {bn} in (0,+∞), with limn→∞ bn = 0, such that, for
a.e. t ∈ [0, 1] and every x ∈ [0, b1], have

| f (t, x)| ≤ k,

for some real constant k > 0, and (a3) holds. Further, let

(a7)
∫ 3/4

1/4 F(t, an) dt =
∫ 1

0 max|ξ|≤bn F(t, ξ) dt.

If B0 > 0, then, for each λ > 4/B0, problem (1.4) admits a sequence of nontrivial and
nonnegative weak solutions {un} ⊂ C1([0, 1]) which satisfy

lim
n→∞
‖un‖C1([0,1]) = 0.

Proof. By (a7) we obtainA0 = 0. Hence, since B0 > 0, condition (a4) of Theorem 3.1
holds and the proof is complete. �

4. A special case

The following theorem is a significant consequence of Theorem 3.1 that is not
directly obtainable by the statements of [12, 25, 27, 28].

Theorem 4.1. Let f : R → R be a continuous function such that f (0) = 0 and
infξ≥0 F(ξ) = 0. Further, let h ∈ L∞([0, 1]) with ess inft∈[0,1] h(t) > 0. Suppose that
there exist two sequences {an} and {bn} in (0,+∞), with an < bn for every n ∈ N, and
limn→∞ bn = 0, such that:

(a8) limn→∞(bn)/(an) = +∞;
(a9) maxx∈[an,bn] f (x) ≤ 0 for every n ∈ N;

(a10) 4/
∫ 3/4

1/4 h(t) dt < lim supξ→0+(F(ξ))/(ξ2) < +∞.
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Then the problem −
( u′
√

1 + u′2

)′
= h(t) f (u) in (0, 1)

u(0) = u(1) = 0
(4.1)

admits a sequence of nontrivial and nonnegative weak solutions {un} ⊂C1([0,1]) which
satisfy

lim
n→∞
‖un‖C1([0,1]) = 0.

Proof. Our aim is to apply Theorem 3.1. If {an} and {bn} are two real sequences
satisfying our assumptions, we have

a2
n

b2
n
<

7
√

2
128

,

for every n sufficiently large. Hence condition (a3) in Theorem 3.1 holds. Now, in
order to prove also condition (a4), let us define the real sequence {hn} given by

hn := ‖h‖L1([0,1])
max|ξ|≤bn F(ξ)

a2
n

−

(∫ 3/4

1/4
h(t) dt

)F(an)
a2

n
,

for every n ∈ N. At this point observe that hypothesis (a9) yields

max
|ξ|≤bn

F(ξ) = max
|ξ|≤an

F(ξ). (4.2)

Thus, since ∫ 3/4
1/4 h(t) dt

‖h‖L1([0,1])
≤ 1 and F(an) ≥ 0,

and bearing in mind (4.2), we can write

max|ξ|≤bn F(ξ)
a2

n
=

max|ξ|≤an F(ξ)
a2

n

≥
F(an)

a2
n

≥

∫ 3/4
1/4 h(t) dt

‖h‖L1([0,1])

F(an)
a2

n
.

for every n ∈ N. Hence, since hn > 0 for every n ∈ N, we have

0 ≤ lim sup
n→∞

hn.

Further, by (a10) we clearly have

0 < lim sup
ξ→0+

F(ξ)
ξ2 < +∞, (4.3)
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and consequently (note that an ↘ 0+ as n→∞) we obtain

0 < lim sup
n→∞

F(an)
a2

n
< +∞.

On the other hand, let ξn ∈ (0, an] be a sequence such that F(ξn) := max|ξ|≤an F(ξ) for
every n ∈ N. Thus

lim sup
n→∞

max|ξ|≤bn F(ξ)
a2

n
= lim sup

n→∞

max|ξ|≤an F(ξ)
a2

n

= lim sup
n→∞

F(ξn)
a2

n

≤ lim sup
n→∞

F(ξn)
ξ2

n
.

The above relations and (4.3) yield

0 ≤ lim sup
n→∞

max|ξ|≤bn F(ξ)
a2

n
≤ lim sup

n→∞

F(ξn)
ξ2

n
< +∞.

Hence, there exists β such that

0 ≤ lim sup
n→∞

hn = β. (4.4)

Then, by (a8) and (4.4), we have

A0 = lim sup
n→∞

hn

(7
√

2
32

b2
n

a2
n
− 4

)−1
= 0.

In conclusion, condition (a4) holds. Finally, bearing in mind (a10), we have

1 ∈
( 4

B0 ,+∞
)
.

Thanks to Theorem 3.1, the theorem is proved. �

Remark 4.2. We observe that, in contrast to Theorem 4.1, studying problem (4.1), one
of the key assumptions required by Faraci, is that

lim sup
ξ→0+

F(ξ)
ξ2 = +∞;

see [12, Theorem 1.1]. Moreover, we do not assume here that

lim sup
n→∞

maxξ∈[0,an] F(ξ)
b2

n
<

7
√

2
32‖h‖L1([0,1])

,

see [12, Remark 2.2].

The next result is a direct consequence of Theorem 4.1.
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Proposition 4.3. Let h ∈ L∞([0,1]) with ess inft∈[0,1] h(t) > 0 and consider {an} and {bn}

to be two sequences in (0,+∞) such that bn+1 < an < bn for every n ∈ N, limn→∞ bn = 0,
and limn→∞ bn/(an) = +∞. Moreover, let ϕ ∈ C1([0, 1]) a nonnegative function such
that ϕ(0) = ϕ(1) = ϕ′(0) = ϕ′(1) = 0 and

max
s∈[0,1]

ϕ(s) >
4∫ 3/4

1/4 h(t) dt
.

Further, let g : R→ R be the function defined by

g(t) :=


ϕ
( t − bn+1

an − bn+1

)
i f t ∈

⋃
n≥n0

[bn+1, an],

0 otherwise.

Then, the problem −
( u′
√

1 + u′2

)′
= h(t)y(u) in (0, 1),

u(0) = u(1) = 0,
(4.5)

where
y(u) := |u|(2g(u) + ug′(u)),

admits a sequence of nontrivial and nonnegative weak solutions {un} ⊂C1([0,1]) which
satisfy

lim
n→∞
‖un‖C1([0,1]) = 0.

Proof. Let {an} and {bn} be two positive sequences satisfying our assumptions. We
claim that all the hypotheses of Theorem 4.1 are verified. Indeed, we have

F(ξ) :=
∫ ξ

0
y(t)dt = ξ2g(ξ), ∀ξ ∈ R+.

Moreover, direct computations ensure that

max
x∈[an+1,bn+1]

y(x) = 0,

for every n ∈ N, and

lim sup
ξ→0+

F(ξ)
ξ2 = lim sup

ξ→0+

g(ξ) = max
s∈[0,1]

ϕ(s) >
4∫ 3/4

1/4 h(t) dt
.

The conclusion follows by Theorem 4.1. �

Finally, we present a concrete example of the application of Proposition 4.3.

Example 4.4. Let h ∈ L∞([0, 1]) with ess inft∈[0,1] h(t) > 0 and take

an :=
1

n!n
and bn :=

1
n!
,
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for every n ≥ 2. Define ϕ ∈ C1([0, 1]) by

ϕ(s) := αe4e1/s(s−1), (∀s ∈ [0, 1])

and set

g(t) :=

ϕ
( t − 1/(n + 1)!
1/(n!n) − 1/(n + 1)!

)
if t ∈ A,

0 otherwise,

where A :=
⋃

n≥2[1/(n + 1)!, 1/(n!n)]. If

α >
4∫ 3/4

1/4 h(t) dt
,

then problem (4.5) admits a sequence of nontrivial and nonnegative weak solutions
{un} ⊂ C1([0, 1]) which satisfy

lim
n→∞
‖un‖C1([0,1]) = 0.

Remark 4.5. For some nice and interesting applications related to certain nonlocal
problems, see the papers [31, 32].
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