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ABSTRACT. The stability of a low Reynolds number 
flow on an inclined plane is investigated with respect to 
modelling the initiation of transverse wave-like ridges which 
commonly occur on the surfaces of rock-glacier forms. In 
accordance with field observations indicating the presence of 
stratification in rock glaciers, two models of rock-glacier 
structure are considered, each stratified and possessing a 
lower layer which is treated as a Newtonian fluid . An 
upper, less compliant layer is treated, alternatively, as a 
Newtonian fluid of viscosity greater than that of the lower 
layer, or as an elastic solid under longitudinal compression 
induced by a decrease in the slope of the underlying 
incline. A linear stability analysis is used to examine the 
behaviour of each of the proposed models, and both are 
found to generate instabilities at wavelengths comparable to 
those associated with transverse surficial ridges on rock 
glaciers . The growth rates of a flow disturbance predicted 
by the viscous-stratified model appear to be too slow to 
account fully for the development of wave forms of finite 
amplitude, suggesting that other mechanisms are involved in 
the amplification of an initial disturbance . The results of 
the stability analysis of the elastic lamina model indicate 
that finite surficial ridges may develop on rock glaciers as a 
product of a buckling instability in the surface region if 
there is a decrease in the slope of the underlying incline . 
Both of the analyses illustrate that transverse ridges can 
occur on the surface of a rock glacier in the absence of 
any variations in debris supply to the system. The results 
further imply that the use of these features in the 
paleoreconstruction of Holocene climatic conditions must 
entail an assessment of the relative roles of external 
climatically driven forcing versus internal rheologically 
derived instability. 

I. INTRODUCTION 

Rock glaciers are depositional forms composed primarily 
of debris with some interstitial ice, which are found in 
periglacial environments, and which, while active, exhibit 
down-slope movement. They are generally either lobate or 
tongue-shaped in planform, and often possess a quite 
characteristic micro-relief consisting of tranverse ridges and 
furrows on their upper surfaces. A number of excellent 
photographic illustrations of these features are available in 
the literature, and the reader is referred particularly to the 
classic study of rock glaciers in Alaska by Wahrhaftig and 
Cox (1959), the photo-interpretive analysis of rock glaciers 
published by Outcalt and Benedict (1965), or the recent 
review of rock-glacier research by Barsch (I988) for 
pictorial examples of these forms. 

Active rock glaciers have been identified in a variety 
of alpine environments, including the Sierra Nevada 
(Kesseli , 1941), the Andes (Lliboutry, 1953; Corte, 1976), 
the Himalaya (Mayewski and others, 1981), the Swiss Alps 
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(Chaix, 1923), the Alaska Range (Wahrhaftig and Cox, 
1959), the Brooks Range, Alaska (Calkin and others, 1987), 
and throughout the American and Canadian Rockies (e.g. 
Brown, 1925; Richmond, 1952; Potter, 1972; Luckman and 
Crockett, 1978; Harris, 1981). Active forms are also found 
in certain polar environments such as Svalbard in Arctic 
Norway (Swett and others, 1980) and Victoria Land, 
Antarctica (Mayewski and Hassinger, 1981). The observed 
distribution of active rock glaciers indicates that their 
development is favored in mountainous areas characterized 
by temperature and moisture conditions which are sufficient 
for the production of an abundant supply of rock debris 
and the accumulation of interstitial ice, but which cannot 
support the formation of an ice glacier (Madole, 1972; 
Benedict, 1973; Morris, 1981 ; Olyphant, 1985). This is 
further corroborated by the presence of relict (fossil) rock 
glaciers in areas contiguous with the limits of late 
Pleistocene glaciation (e.g. Blagbrough and Farkas, 1968; 
Birkeland , 1973; Mahaney, 1980). 

The rock glaciers observed via both field and photo
gram metric studies are generally grouped into two classes. 
The first class includes the "lobate" or "valley-wall" forms 
which extend as single or multiple lobes from the bases of 
talus deposits along the sides of presently or previously 
glaciated valleys. They are commonly much wider than they 
are long and widths of up to 3000 m, with an associated 
length of 500 m, have been reported (Wahrhaftig and Cox, 
1959). Average widths, however, are more apt to be 
between 100 and 500 m (Madole, 1972; Barsch , 1977). The 
"tongue-shaped" or "valley-floor" forms which are generally 
found in cirques below end moraines or below existing 
glaciers constitute the second class of rock glacier. They 
exhibit average lengths of 350-1000 m and widths of 
40-150 m (Madole, 1972; Barsch, 1977), although forms 
having lengths of the order of 1600 m (e.g. Potter, 1972) 
are frequently observed. The distinction between the two 
classes of features is not necessarily entirely morphological, 
and numerous speculations regarding differences in the 
origin of each type have been presented. 

Field observations of the internal structure of both 
classes of rock glacier indicate that they usually consist of 
an upper layer of coarse, blocky or angular debris , and a 
lower layer composed primarily of silt- and clay-sized 
particles (Wahrhaftig and Cox, 1959; White, 1971; Barsch 
and others, 1979). The coarse upper layer tends to be quite 
thin (sometimes no more than 2-3 m) compared to the total 
thickness of the rock glacier, which is often 35-50 m 
(Wahrhaftig and Cox, 1959). Interstitial ice appears to be 
present in both the upper and lower layers (White, 1971; 
Barsch, 1977; Barsch and others , 1979), and larger bodies of 
ice in the form of lenses or even possible ice cores have 
been observed in the lower layers of some features (e.g . 
Brown, 1925; Kesseii, 1941; Potter, 1972; Benedict, 1973; 
White, 1975). This latter characteristic has led many 
researchers to speculate that all rock glaciers are merely 
debris-covered ice glaciers and that their movement is 
derived solely from the creep of the ice core (e.g. Brown , 
1925; Kesseli, 1941; Whalley, 1974; Corte, 1976). Other 
researchers have suggested that "tongue-shaped" rock glaciers 
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represent debris-covered relict ice glaciers and/or ice-cored 
moraines, while the lobate forms are constructed entirely of 
rock debris cemented with interstitial ice (Outcalt and 
Benedict, 1965; Madole, 1972). Recent field evidence, 
however, fails to support fully either of these conjectures 
(e.g. Barsch and others, 1979; Johnson, 1981; Barsch, 1987; 
King and others, 1987) and suggests that, although ice cores 
may be present in some rock glacier-type features, they 
represent the exception rather than the norm. Additionally, 
many of the rock glaciers which were originally 
characterized as having massive ice cores, such as the 
Hurricane Basin rock glacier in the San Juan Mountains, 
Colorado (Brown, 1925), the Galena Creek rock glacier in 
the Absaroka Mountains, Wyoming (Potter, 1972), and the 
Grubengletscher rock glacier in the Swiss Alps (Whalley, 
1974), have subsequently been found to be composed 
primarily of rock debris and interstitial ice (Barsch and 
others, 1979; Haeberli and others, 1979; Barsch, 1987; King 
and others, 1987). 

Field and photogrammetric measurements indicate that 
active rock glaciers are currently moving down-slope at 
average speeds of 1-160 cm/year (0.3 x 10-9 - 5 x 10-8 m/s) 
(White, 1971; Barsch, 1977; Hassinger and Mayewski, 1983; 
Benedict and others, 1986). Various flow mechanisms have 
been suggested over the years and the reader is referred to 
discussion in the papers by Wahrhaftig and Cox (1959), 
Potter (1972), and Whalley (1974) for overviews of the early 
theories. In recent years, it has generally been the consensus 
that rock glaciers creep down-slope as a result of the 
deformation of the interstitial ice matrix driven by the 
weight of the rock debris. This hypothesis was seriously 
questioned by Whalley (1974), who proposed that the shear 
strength of a rock/ ice composite would far exceed the 
maximum shear stress associated with observed rock glaciers 
based on their thickness and the slope of their surface, thus 
indicating that substantial ice cores were necessary for 
rock-glacier movement. The results of Whalley's analysis 
appeared to provide some support for his proposition; 
however, they were based on rather inadequate data 
regarding the mechanical properties of rock debris/ ice 
mixtures and so he considered the analysis to be 
inconclusive. Furthermore, as mentioned above, recent 
investigtions have shown that some of the field examples of 
active rock glaciers which Whalley used to support his 
theory actually represent ice-cemented rather than ice-cored 
forms. Thus, current evidence continues to favor the 
hypothesis that many rock glaciers do move down-slope 
solely as a result of the continuous deformation of the 
rock/ ice composite material, although it is recognized that in 
some cases other mechanisms such as basal sliding (Fisch 
and others, 1978) or the creep of a remnant ice core 
(White, 1981) may also contribute to the movement. 

Perhaps the most distinctive characteristic of 
rock-glacier forms is the quite striking pattern of micro
relief which occurs on the upper surface. This micro-relief 
usually consists of a series of transverse ridges and furrows 
which occur parallel to the front of the rock glacier. These 
features often have heights of l-ti m (Wahrhaftig and Cox, 
1959; White, 1976), and the ridge crests are spaced from 2 
to 50 m apart (Wahrhaftig and Cox, 1959; Potter, 1972). A 
variety of mechanisms for the development of ridges has 
been proposed, including: (I) the differential movement of 
discrete layers of debris (Ives, 1940); (2) "shearing" or 
"compression" within the rock glacier which results from a 
decrease in basal slope and an associated increase in the 
thickness of the feature (Wahrhaftig and Cox, 1959; Potter, 
1972); and (3) debris-input variations resulting from changes 
in talus production (Barsch, 1977). It seems to be generally 
accepted that the ridges and furrows are to some extent an 
expression of the down-slope movement of a rock glacier 
due to the similarity of their appearance to surficial 
features observed on other very viscous flows such as lava 
flows and mud flows; however, their rh eo logical significance 
is still an unresolved issue. Although it is possible that 
external factors such as variations in debris input may 
contribute to the formation of surficial ridges, their 
ubiquitous presence demands that internal mechanisms for 
their development be considered. In the analysis that 
follows, we propose two rheological models for describing 
the structure of a rock glacier and evaluate the stability of 
parallel flow with respect to small-amplitude disturbances. 
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We will thereby assess the conditions under which an 
unstable flow configuration which is capable of generating 
wave forms of finite amplitude can exist in the absence of 
variations in debris supply. 

The simplest model of rock-glacier deformation is that 
of a single layer of fluid flowing down an inclined plane 
of infinite extent. This model was used by Wahrhaftig and 
Cox (1959) to assess the Newtonian viscosity of observed 
rock glaciers, and also by Olyphant (1983) to compare 
steady-state configurations obtained using Newtonian and 
non-Newtonian flow laws. However, the results of stability 
analyses of single-fluid layers using both Newtonian (e.g. 
Benjamin, 1957; Yih, 1963) and non-Newtonian (e.g. 
Thompson, 1979) constitutive assumptions indicate that such 
flows are stable to infinitesimal disturbances at the low 
Reynolds numbers associated with rock glaciers, implying 
that wave-like ridges could not be generated as an internal 
product of such flows. Furthermore, as mentioned 
previously, field investigations of the internal structure of 
rock glaciers indicate that they tend to be characterized by 
a stratified composition, which can most simply be resolved 
into two distinct layers of debris. In most cases, the upper 
layer is relatively thin and is composed of coarse material, 
while the lower layer represents the bulk of the mass of 
the rock glacier, and is made up of fine debris. These 
observations suggest the use of a flow model consisting of 
two discrete layers of material, each material having distinct 
physical properties. Therefore, in the succeeding analysis we 
will investigate the flow of a stratified system composed of 
two layers of fluid having similar densities but differing 
ViScosltles. We will also consider a flow configuration 
consisting of a single layer of fluid overlain by a thin 
elastic lamina. In both these models, the fluid will be 
specified as Newtonian in nature. An alternative approach 
would be the use of a power-law constitutive relationship 
such as the one employed by Olyphant (1983, 1987) in 
numerical simulations of rock-glacier behavior. However, 
there is no clear indication via laboratory or field evidence 
that a rock debris / ice composite material would behave as a 
non-Newtonian fluid at the extremely low shear rates found 
in rock glaciers. Therefore, we have chosen a Newtonian 
viscous model for describing the overall deformation of the 
features, as this represents the most simple and least 
arbitrary constitutive model of a continuously deforming 
medium. 

2. TWO-FLUID LAYER MODEL 

We will first consider the flow of a system consisting 
of two layers of fluid on an incline of constant declivity. 
In accordance with the observed internal structure of rock 
glaciers, the mass densities of the layers will be taken as 
equal, but their viscosities will be allowed to differ. As 
discussed in the preceding section, a linear viscous 
constitutive model is chosen to characterize the creep of the 
ice/ debris composite material. The stability of this flow 
configuration has been examined in detail by Loewenherz 
and Lawrence (1988, in press), so we will refrain from 
repeating that analysis in full. Only a general formulation of 
the stability problem and those conclusions of relevance for 
the modelling of rock glaciers will be presented here. 

The equations governing the flow of an incompressible 
Newtonian fluid are the Navier-Stokes equations. By 
specifying appropriate length, viscosity, velocity, body force 
per unit mass, time, and pressure scales (L,N,U ,F,T,P, 
respectively) of the form 

T 
L 

U 

u 
pgsin 9d~ 

112 
F gsin 9 

(2.1) 

in which d 2 is the thickness of the lower layer of the rock 
glacier (with reference to Figure I), g is the acceleration 
due to gravity, 112 is the viscosity of the lower layer, p is 
the density of the fluid, and 9 is the characteristic angle of 
inclination of the underlying slope, the Navier-5tokes 
equations can be written in dimensionless form as 
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Fig. I. Coordinat e system for two-fluid layer model. 

Re sin 9(ut + u· 'Vu) = -'Vp + IL'V2u + ex + cot ge y 

'V·u = 0 

where Re is the Reynolds number defined by 

Re 
pUL 

N 

(2.2) 

(2.3) 

u is the dimensionless material velocity of the fluid, p is 
the dimensionless pressure, IL is the dimensionless viscosity, 
and ex + e cot 9 is the dimension less body force due to 
gravity. Estimating the characteristic velocity of a rock 
glacier to be approximately 30 cm/ year (10-8 m/ s), its 
thickness to be about 40 m and its basal slope to be about 
0.2 rad, a typical Reynolds number for a rock glacier is 
found to be of the order of 10- 18 (dimensionless). The flow 
of a rock glacier is therefore a low Reynolds number flow 
and the left-hand side of Equation (2.2) may be neglected. 
The equations governing the flow field can consequently be 
written in the simplified form 

(2.4) 
'V·u=O. 

Upon imposition of boundary conditions requiring that 
the upper surface be stress-free, the lower surface has 
vanishing fluid velocity and the f1uid-fluid interface has 
continuous velocity and traction , the parallel-flow solution 
(hereafter referred to as the base flow) can be established 
to be 

(2.5) 

where the subscript C( takes values I and 2, respectively, 
for the upper and lower layers in which the dimensionless 
viscosities are III = M - I and 112 = I, u and v refer to the 
x- and y-components of fluid velocity, and M and D 
represent viscosity and thickness ratios defined as 

D M (2.6) 

The expression for the base pressure is the same in each 
fluid, i.e. 

p = cot 9(y + D) '" P (2.7) 

and is equivalent to a hydrostatic pressure distribution. 
Perturbations of the base-flow solution can now be 

considered by representing the flow field in the form 

uc( Ua + 

VC( EV~ 

PC( = P + 

EU~ 

EP~ 

(2 .8) 

(2.9) 

(2.10) 

where E « I measures the small disturbance from the base 
flow, the primed quantitites represent the perturbation, and 
a takes on the values I and 2, thereby indicating the fluid 
layer under consideration. Substitution of Equations 
(2.8)--(2.10) into the momentum Equation (2.4) yields 
equations for the perturbation given by 

EP~,X = ILa 'V
2(Ua + EU~) + I 

(P + Ep~),y = EIl0:'V2v~ + cot 9. 

(2.11 ) 

(2.12) 

The incompressibility condition suggests the use of a stream 
function 1/1 which is defined so that 

I/Io:,y = u~; -v:x . (2.13) 

Using this representation for the components of the velocity 
perturbation, and recognizing that U C( and P identically 
satisfy the equations governing the base flow, Equations 
(2.11 )--(2.12) can be reduced to a pair of biharmonic 
equations 

(2.14) 

governing the stream function of the perturbation. 
At the lower boundary, given by the dimensionless 

coordinate y = I, a kinematic no-slip condition is applied, 
which in the terms of the stream functions is written as 

(2i) at y 

(2ii) at y I. 

At the interface between the two fluid layers, y = ~2' the 
kinematic interface continuity condition is DF / Dl = 0, with 
F = y - ~2(X.t) defined so as to vanish on the interface. 
As indicated in Figure I, ~2 represents the dimensionless 
displacement of the interface from its unperturbed location 
at y = O. The interface continuity condition may be 
expanded in Taylor series around y = 0 and linearized to 
order E and yields 

(2iii) 

(2iv) 

~2,1 + ~2,XU 2 

~2,1 + ~2,XU I 

at y = 0 

at y\ = o. 

Continuity of the x-component of material velocity across 
the interface becomes, upon a similar linearization, 

(2v) at y = O. 

The shear traction and normal traction continuity conditions 
are also linearized to give 

at y o 

(2vii) O. 

At the upper surface (y = -D + ~ I) the kinematic condition 
requmng continuity of the fluid / air interface is again 
applied. When linearized to order E, it yields 

(2viii) at y = -D. 

Finally, the linearized forms of the shear stress and normal 
stress boundary conditions at the free surface are 

(2ix) 

(2x) 

~PI,yy + I/II,yy - I/II,xx = 0 

~IP,y + P~ + 2ILI I/II ,XY = 0 

at y = -D 

at y = -D . 

A Fourier integral transform is now invoked to express 
the governing equations and boundary conditions in terms 
of a continuous superposition of Fourier modes. The 
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transform is defined such that each mode is of the form 

1/10: = tPo:(y)exp(ikx - iwt} 

p~ = qo:(y)exp(ikx - iwt} (2.15) 

where k is the dimensionless wave number and c is the 
dimensionless wave speed, with w = ck. The Fourier 
transforms of the governing Equations (2 .14) are 

(2.16) 

where the primes now indicate derivatives with respect to y . 
The solutions of these governing equations are of the 
general form 

tPo:(y) = Aacosh ky + B~inh ky + C~ycosh ky + D~ysinh ky 
(2.17) 

in terms of the eight as yet unspecified constants A 0:' Bo:, 

Co:' and Do:' 
The pressure perturbation can be described in terms of 

the stream-function perturbation by taking a Fourier 
transform of Equation (2.11) to obtain 

(2.18) 

Upon substitution of Equations (2.17) and (2.18) into 
conditions (2i-2x), and evaluation of the base-flow velocities 
and pressures as given by Equations (2.5) and (2.7), a linear 
system of ten equations in ten unknowns (i.e. the eight 
coefficients and the two interface displacements no:) is 
obtained: 

(2ia) A2cosh k + 8 2sinh k + C2kcosh k + D2ksinh k = 0 

(2iia) A2sinh k + 8 2cosh k + C2(cosh k + ksinh k) + 

(2iiia) 

(2iva) 

(2va) 

(2via) 

(2viia) 

(2ixa) 

M 

+ D 2(sinh k + kcoshk) = 0 

o 

o 

-D(M - I) 
+ Bl + Cl - B2 - C2 0 

k 
n2 

Al + Dl M(A 2 + D 2) 

Bl MB2 

--n l + Alcosh kD - Blsinh kD - Cl(sinh kD + kDcosh kD) + 
2k2 

+ Dl(cosh kD + kDsinh kD) = 0 

M 
(2xa) i--cot an l + Alsinh kD - Blcosh kD -

2k2 

This system of equations will have a non-trivial solution 
only if the determinant of its coefficients is equal to zero. 
The condition of vanishing determinant serves as the 
characteristic equation for c. By elimination of c between 
(2iii) and (2iv), it can be shown that the characteristic 
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equation is quadratic; for any specified k, M, D, and a 
there are exactly two roots (Loewenherz and Lawrence, 
1988, in press). These two roots correspond to two different 
traveling wave modes, either of which may govern the 
stability of the flow . 

The stability of the flow is determined by the 
imaginary parts of these roots, a positive imaginary part 
corresponding to an exponential growth exp[kIm(c}t]. Neutral 
stability, characterized by the condition Im(c} = 0, describes 
a surface in the space of parameters k, M, and D 
delimiting the regions of stability. Results indicate that the 
neutral stability locus is independent of a. Figure 2 shows 
the neutral stability curves obtained numerically after 

l'Jr-______________________ ---,l'J 

Stable 

= = =1--------------------------1= 

U? 

'" u = 
.~~ 
>= 

Unslable 

= 
'" 

=1..<::'---_--''--___ '--__ ----'-''-_--''-----' ___ -1._.:::....._-'= 
o 0.5 1.0 1.5 2.0 3.0 

k - Wavenumber 

Fig. 2. Stability diagram for two-fluid layer model. 

reduction to a 5 x 5 system. Both of the axes k = 0 and 
M = 0 represent curves of neutral stability for all values of 
D, as does the line at M = I. The remaining neutral curves 
indicated in Figure 2 divide regions of stability from those 
of instability in k - M space for the values of D specified. 
The results indicate that for M less than unity and all 
non-zero values of D instability is present in the long
wavelength limit. Additionally, for all values of the viscosity 
ratio M greater than unity (representing a fluid system in 
which the upper layer is less viscous than the lower layer), 
the configuration is linearly stable. Both of these results 
concur with those obtained previously by Kao (J 968) using 
a long-wave approximation. However, it is also clear from 
the stability diagram, that instability is present at finite 
wave numbers for all values of D considered (D = 0.1-1.0), 
and that, for viscosity ratios between about 0.5 and 1.0, the 
system is unstable at all finite wave numbers for that range 
of D. If ridge formation in rock glaciers is to be ascribed 
to these instabilities, it remains to ascertain how significant 
the instabilities are and at what wavelengths the fastest 
growing models will appear. In order to address this issue 
more fully, we must proceed to an examination of the 
growth rates associated with unstable waves. 

An investigation of the D, M , k, and 9 parameter 
space indicates that, although the value of the wave number 
exhibiting the maximum growth rate shows little variation 
with respect to M and 9, it does vary significantly with 
respect to D. These effects are partially demonstrated in 
Figure 3, which illustrates scaled growth rates as a function 
of the wave number for the specified values of D with 
M = 0.4 and 9 = 0.2. (For a more detailed discussion of 
the parameter space, the reader is referred to the full set 
of results presented in Loewenherz and Lawrence (J 988).) 
The imposed re-scaling is based on the total thickness of 
the rock glacier and the material velocity of the upper 
surface (which is approximately equal to the velocity of the 
unstable wave in the case of a thin layer), since these are 
readily observable quantities. As indicated in Figure 3, there 
are clearly two peaks in the growth rate as a function of k 
and this type of behaviour is apparent at all values of D 
and M considered. The peak associated with the faster 
growth rates is located in the region of greater wave 
numbers, and the wave number of the mode of faster 
growth is strongly dependent upon the thickness of the 
upper layer. As the thickness of the upper layer decreases, 
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Fig . 3. Scaled growth rate as a junctioll oj k with 
M = 0.4 al/d 9 = 0.2 . 

the value of the wave number exhibiting the maximum 
growth rate increases, scaling roughly with the inverse of D. 
Furthermore, the location of this major peak shows very 
little sensi ti vity to either 9 or M, although the magnitude 
of the growth rate does show substantial dependence on 
those parameters (Lowenherz and Lawrence, 1988, in press). 
We can, therefore , conclude that for the region of the 
parameter space of interest (M = 0.1--0.9; D = 0.1-1.0; and 
8 = 0.1-1.5), instability will be manifes ted in waves of 
wavelengths which are approximately three to four times the 
thickness of the upper layer. In the case of a rock glacier, 
this corresponds to wavelengths of 3-30 m or more, 
depending on one's estimate for the thickness of the upper 
la yer of coarse material. This res ult generally agrees with 
reported rock-glacier ridge spacings (which are of the order 
of 2-50 m as mentioned above), suggesting that surficial 
ridge formation on rock glaciers may indeed be a product 
of viscosity stratification . 

The actual growth rates associated with the flow 
instability, however, appear to be too slow for the 
formation of surficial ridges on roc k glaciers independent of 
other mechanisms. Figure 4 illustrates the var iation in the 

~ ~ 
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~~ 
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= 
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Fig . 4 . S caled maximum growth rate as a jUllction oj M 
with 9 = 0.2 jar values oj D illdicated. 

maximum growth rate (determined by sea rching in k) as a 
function of M for specified values of D with 8 = 0.2 rad, 
and indicates that for all values of those parameters 
considered, the maximum growth rate occurs for a viscosity 
ratio of about 0.3. It should be noted that the scaled 
growth rates of these maximally unstable modes are small, 
i.e. never more tha n 0.03 . Additionally, throughout the 
entire parameter space , growth rates are generally found to 
be of this order of magnitude. The value of 0 .03 
corresponds to a rate of growth of only 3% per unit of 
scaled time, which is the amount of time required for the 
rock glacier to creep down-slope through a distance equal 

to its thickness. Therefore, the development of finite wave 
forms from an initially small disturbance would require a 
substantial amount of time, or alternatively, distance. More 
specifically, for a growth rate of 0.03, the rock glacier 
would have to flow a distance which is roughly equivalent 
to 30 times its thickness before the unstable wave forms 
would grow by even a factor of e. For a rock glacier 
exhibiting a thickness of 20-50 m, such a distance would be 
of the order of 500-2000 m, the latter of which exceeds the 
length of many rock glaciers. 

It is possible that a decrease in the slope of the 
underlyi ng incline could effectively amplify incipient 
instability, thereby producing waves of finite amplitude in 
the lee of the change in slope . This suggestion has been 
briefly considered by Loewenherz and Lawrence (1988), 
although a full anal ysis of the associated scattering problem 
has not been attempted . For the purposes of this discuss ion , 
howeve r , the above results do allow us to conclude that a 
disturbance to the flow of a stratified sys tem consisting of 
two fluid layers, in whic h the upper layer is more viscous 
than the lower layer, will be manifested in wave forms 
having wavelengths comparable to those observed on the 
surfaces of rock glaciers. The actual mecha nisms associated 
with the amplification of a flo w instability do , therefore, 
deserve further consideration. 

3. THIN ELASTIC LAMINA MODEL 

The mechanisms proposed in the literature for 
explaining the development of transverse ridges include the 
suggestion that the features develop in the presence of 
compression resulting from a decrease in the slope of the 
underl ying incline (Wahrhaftig and Cox, 1959; Potter, 1972) . 
This proposal, together with observations indicating 
stratification in the st ructure of a rock glacier, can be 
formulated in a precise model consisting of a thick viscous 
fluid substrate overlain by a th in elastic lamina. Since we 
characterize the upper layer as inextensible and retai n the 
fluid flow model for describing the deformation of the 
entire configuration, a change in declivity necessari ly 
produces differen tial movement within the system with a 
consequent development of compressive loads. Such 
compression, if of a sufficient magnitude, would be 
manifested as a buckling instability of the elastic lamina. 

In order to develop the model, we will first consider 
the base flow of a single fluid layer in a semi-infinite 
domain, -L < x < "', which is supplied by a constant 
influx of material at x = -L . We will assume that a 
decrease in the slope of the incline occurs at x = 0, and 
that the regions away from x = 0 are of constant slope. 
The behaviour of the sys tem far from x = 0 will be of 
particular interest, partly by virtue of its simplicity, but 
most ly inasmuch as it will provide the components for a 
global so lution and will ultimately determine the manner in 
which compression develops in the surface lamina. After 
constructing a global base-flow solution, a stability analysis 
will be conducted by considering the stability of the global 
base flow in a region where the surficial compress ive load 
and the slope of the underl ying incline ca n be assumed to 
be approximately constant. 

A. Global base flow 
[n the region of constant basal slope (either 

-L < x < 0 or 0 < x < "'), the governing equations are 
similar to those presented in the previous section. However, 
the upper laye r of fluid must now be replaced with 
appropriate boundary conditions which represent the effects 
of the thin surface lamina and are applied at y = ~ (see 
Fig. 5). These new conditions requi re no slip at the upper 
surface due to the prese nce of the lam ina and additionally 
specify the continuity of the traction on the lamina, i.e. 

and 

where 
lamina, 

U = V at y = ~ (3.1 ) 

n ' eT = T at y = ~ (3 .2) 

V is the dimensionless material velocity of the 
eT is the stress tensor in the fluid and T is the 
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Fig. 5. Coordinate system for elastic lam ill a model. 

dimension less stress on the lamina. The kinematic interface 
continuity condition is retained in the form 

DF 

Dt ° at y 

as is the no-slip condition at the bottom, i.e. 

u = v = ° at y = I . 

(3.3) 

(3.4) 

In the case of the base flow, we can assume that 
~ = 0, V = Ve,p and T = exT,x where T is the 
dimension less tension per unit width of the lamina (scaled 
with pgd2sin a). The solution for the base flow can be 
readily obtained and is of the form 

where u and 

u [v+H(I- Y) 
v = ° 
p = cot ay 

I 
V -

2 

(3.5) 

refer to the dimensionless velocity 
components and p represents the dimensionless pressure 
field . It should be recognized that had a lamina velocity of 
V = t been imposed, no tension or compression would 
develop. This case represents what might be thought of as 
the "natural" state of a fluid layer overlain by a thin elastic 
plate. We are, however, interested in the general case 
V ~ t, which corresponds to the differential movement of 
the layers. 

We can construct a global solution by considering the 
case in which the underlying slope exhibits a decrease in 
declivity, and by assuming that there is no tension in the 
lamina at the up-stream point of origin of the flow and 
that at large distances down-stream, below the decrease in 
slope, the tension in the lamina is constant. These 
assumptions imply that the velocity of the lamina in the 
down-stream part of the flow must be consistent with the 
"natural" velocity of the down-stream flow field, so that the 
tension in the lamina is bounded in the far down-stream 
limit. It is expected that stress will be generated in the 
lamina as it passes through the region of variable slope. 
Using a and b to refer respectively to points far up-stream 
and down-stream from the region of variable slope, and 
invoking a constraint requiring a constant discharge through 
the system, an equation relating the up-stream and 
down-stream regions of the flow is obtained, i.e. 

Vdb pgdbsin ab 
-+ 

2 12jL 
(3.6) 

2 12jL 

388 

where dimensional forms of variables (denoted by') are 
now being used" to facilitate the physical argument being 
presented. As V must be equal to the natural lamina 
velocity at point b, we have 

" V = (3.7) 

which when substituted into Equation (3 .6) produces a cubic 
equation for the ratio of the up-stream and down-stream 
depths 

o. (3.8) 

This equation has one real root given by 

Sl/3 [((S + 4)~ + 2) 1/3 - Us + 4)12 - 2 f/3] 

(3 .9) 

where S reflects the relative change in the angle of 
inclination 

S 
sin ab 

s in aa 
(3.10) 

As in Equation (2 .1), the velocity scale U is proportional to 
the square of the depth and to the sine of the angle of 
bed inclination; therefore, the ratio of up-stream and 
down-stream velocity scales is given by 

(3.11) 

Furthermore, because the lamina is assumed inextensible, its 
material velocity must be identical in both the up-stream 
and down-stream regions of the flow field . Therefore, the 
dimension less lamina velocities must be in a ratio inverse to 
that given in Equation (3.11). As the dimensionless lamina 
velocity is based on down-stream quantities, corresponding 
to the natural velocity there, the dimensionless velocity 
based on up-stream quantities is: 

Va [dbf ~. 
d a 2 

(3.12) 

If S is close to unity, Va is approximately 

I I 
Va - + -(S - I). 

2 3 
(3.13) 

For a decrease in slope, i.e. when S < I, Va will be less 
than t . Referring to Equation (3.5), it can therefore be 
concluded that in the region -L < x < 0, compression 
increases as one moves down-stream, and that compression 
develops to a maximum value of order i(l - S)L, where L 
is the extent of the up-stream part of the rock glacier, 
scaled by the depth . 

B. Stability analysis 
Having presented a base-flow field which exhibits the 

development of compression, the issue arises as to whether 
that flow is stable against the buckling of its surface layer. 
A linear stability analysis of the base flow as described in 
Equation (3 .5), with an assumed compressive load in the 
surface layer, is therefore indicated. As in section 2, the 
equation governing the stability of the perturbed flow field 
is 

v41/1 = ° (3.14) 

where 1/1 is again the stream function for the perturbation 
to the base-velocity field. The conditions which are applied 
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to the perturbed flow field at the lower boundary are the 
kinematic no-slip conditions given by 

(3i) u = I/J,y = 0 at y 

(3ii) v = -I/J,x = O. at y I. 

The kinematic interface continuity condition (3.1) when 
linearized to first order in E is 

(3iii) at y o. 

A normal stress condition can be derived from Equation 
(3.2) of the general form 

(3 .15) 

where Be is the dimensionless bending stiffness of the 
lamina (scaled with pgd4sin e). More specifically, upon 
evaluating the components of the stress tensor u, this 
condition becomes 

(3iv) 

at y = 0 

when simplified to include only those terms which are 
linear in E . The kinematic condition (3.3) defining the 
surface displacement takes a form which is similar to that 
used in section 2, i.e. 

(3v) at y = 0 

In order to transform the equations using a Fourier 
integral, it must additionally be assumed that the 
unperturbed tension in the plate may be approximated by a 
constant. It is thus being posited that variations in the 
tension occur over a much larger length scale than that 
associated with the perturbed flow field. This assumption 
can be justified a posteriori. The transformed boundary 
conditions are 

(3ia) 41' 0 at y 

(3iia) 41 0 at y 

t - V 
(3iiia) --41 + 41 ' 0 at y 0 

c - V 

(3iva) 

+ 2ik [~ - v] + k 2T + k4B ]_41- = -3ikq,' + ~ q,~ 
2 e c-V k 

at y = 0 

where the perturbed pressure has been eliminated from the 
equations by the use of a form of the governing equation 
similar to that given in Equation (2.18), and where the 
transformed displacement n(k) has been eliminated by 
considering the transform of condition (3v) above . A general 
solution to the governing Equation (3 .14) is of the form 

41 = Acosh ky + Bsinh k y + Ckycosh ky + Dkysinh ky . 

(3.16) 

The dispersion relation associated with the perturbed field is 
then obtained by evaluating the determinant of the 
following system of linear equations: 

Asinh k + Bcosh k + C(ksinh k + cosh k) + 

+ D(kcosh k + sinh k) = 0 

Acosh k + Bsinh k + Ckcosh k + Dksinh k o (3.17) 

(t - VJ 
A + Bk + Ck 

(c - V) 
o 

The determinant of the above system will vanish if 

c V + 
( t - V)(2ksinh2 k) - iW(sinh2 k - k2 ) 

2k2 (k + sinh k cosh k) 

where W has been defined as 

(3 .18) 

(3 .19) 

As sinh 2 k is always greater than or equal to k2 for all k, 
the system will be linearly stable if and only if W is 
greater than zero. Furthermore, since both cot e and the 
bending stiffness Be are positive, instability can occur only 
if T is negative, i.e . when the surface lamina is under 
compression . 

The results indicate that, if the magnitude of the 
compression developed in the surface lamina exceeds a 
critical value, the upper surface of the fluid system should 
exhibit buckling. This critical tension can be obtained by 
minimizing W with respect to k 2 , 

o (3.20) 

which allows the identification of the wave number, kmin , 

associated with the least stable (or most unstable) mode, i.e . 

(3.21 ) 

W is negative at that point if 

(3 .22) 

where Tc is the critical tension associated with the onset of 
instability. The critical wavelength , }.C' of this instability is 
then given by Equation (3 .21) evaluated at the critical 
tension, 

211 

[ 

2B ]~ 
211 - T: [

Be ])4 
211-

cot e . (3.23) 

This represents the wa velength which will be observed in 
the surface buckling. The distance, xc' mecessary to develop 
the critical compress ive load from an initial load of zero in 
the base flow can be estimated as 

(3 .24) 
t - V 

where the base - flow solution for the tension given by 
Equation (3.5) has been used. [n dimensional form the three 
critical Quantities are given by 

(3.25) 

(3.26) 

2 [Becosel~ 
vJsin e pg . 

(3.27) 
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" For a thin plate , the bending stiffness, Be' is evaluated 
usi ng the plane-s train formula, which for the purposes of 
this analysis can be approximated by 

El~ 

12 
(3 .28) 

where E is the Young's modulus of the elastic lamina and 
lh is its thickness. We introduce units which are chosen so 
that the rock-glacier parameters have numerical values of 
order unity, i.e . the Young's modulus is scaled in units of 
108 Pa 

E = E8 x 108 Pa, 

the flow depth in units of 20 m 

d = d
20 

x 20 m, 

the lamina thickness in units of I m 

and the density in units of 2500 kg/ m3 

P = P2 .5 x 2500 kg / m3 
. 

The expressions for the critical tension, wavelength, and 
distance become 

'" >"c 

-106(cos e)~E~l3/2p~ N/ m 
8 1 2 .5 

30(cos e) -l4El4l~p -l4 m 
8 1 2 . 5 

The selection of a value for Young's modulus is speculative 
and represents the most uncertain parameter specified. Due 
to the paucity of adequate data regarding the material 
properties of a rock/ ice composite, it is difficult to make a 
reliable estimate. 108 Pa is much less than that commonly 
associated with pure rock and reflects the relatively loose 
packing of the upper layer. Based on the above estimates 
for rock-glacier parameters, one can conclude that, for a 
change in slope of about 20% on a plane inclined at 
0.2 rad, the critical distance for developing a compressive 
load sufficient to cause buckling is on the order of 100 m 
from the origin of the rock glacier to its decrease in slope, 
which is well within the range of observed rock-glacier 
extents. The wavelength associated with that buckling would 
be, for lamina thicknesses of 1-3 m, on the order of 
30-70 m, which is roughly within the range of observed 
ridge spaci ngs. For a Young's modulus of 107 Pa , these 
estimates would be reduced by a factor of two. These 
values are based on rather crude estimates, but nonetheless 
indicate that it is possible to develop compressive loads 
within rock glaciers which are capable of generating surface 
instabilities , and that the finite wave forms arising from 
that instability will have wavelengths which are similar to 
those observed in the field. A full analysis of rock-glacier 
development based on this model would require more 
complete information regarding the material properties of a 
rock / ice composi te medium than is presently available. 

4. CONCLUSIONS 

In a single-layer, free surface flow at low Reynolds 
numbers is known to be stable to small perturbations (Yih , 
1963; Thompson, 1979), so that neither of the instabilities 
discussed herein could be present in the rock-glacier flow 
models suggested by Wahrhaftig and Cox (I959) or more 
recently by Olyphant (I983). Based on those models, one 
might negatively conclude that transverse surficial ridges can 
only be derived from periodic variations in debris supply or 
other external forcing to the system. The two models 
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proposed in this paper, though , provide more realistic 
representations of rock-glacier structure than do the single
layer models in that they characterize the stratified nature 
of rock-glacier forms. Furthermore, the results of our 
linear-stability analyses clearly impl y that this stratification 
can generate instabilities which would be manifested in 
surficial wave forms. Both of the instabili ties identified (i.e. 
the flow instabilities associated with the two-fluid layer 
model and the buckling instability in the elastic lamina 
case) will occur in the absence of climatically driven 
varIatIOns in source material. Thus, the results provide 
strong support for the suggestion made by Ives (I940) that 
transverse surficial ridges are the product of the differential 
movement of discrete layers of debris. Additionally, in the 
case of the elastic lamina model, our analysis indicates that 
a decrease in the slope of the underlying incline contributes 
to the development of a compressive load in the upper 
surface, which is necessary for surface buckling . This latter 
result tentatively verifies assessments by Wahrhaftig and Cox 
(1959) and more recently by Potter (1972) that surface 
ridges are generated as a product of "compression" induced 
in the flow field via a change in the slope of the 
underlying surface. However, further constitutive modelling 
which is based on field data and laboratory experimentation 
and is designed to characterize the viscosity of rock-glacier 
material as a function of particle size and temperature is 
necessary in order to assess completely the factors 
determining rock-glacier rheology. 

With respect to the long-term development of 
rock-glacier forms, the two models illustrate that transverse 
ridges can develop under conditions of constant debris 
influx. This has significant implications concerning the 
feasibility of employing rock-glacier forms in the 
reconstruction of paleoclimatic conditions. It has been 
proposed that active rock glaciers could provide information 
regarding variations in climatic conditions throughout the 
Holocene (Hassinger and Mayewski, 1983; Olyphant, 1987; 
Thorn and Loewenherz, 1987). In principle, this seems quite 
like ly as many of the large, active rock glaciers are at least 
3500 and may be up to 10 000 years old (Haeberli and 
others, 1979; Evin and Assier, 1982). However, from our 
analyses, it is clear that visible perturbations on the surface 
of a rock glacier are not necessarily solely a product of 
fluctuations in debris supply. In fact, it is quite likely that 
spatially periodic transverse ridges develop as a result of 
either or both of the internal mechanisms considered herein, 
and that variations in external forcing arISIng from 
climatically driven rates of debris production would be 
manifested on a larger scale and thus are superimposed on 
the instability of the flow configuration. If this is the case, 
then the use of rock-glacier forms in a detailed recon
struction of Holocene climatic conditions may be much more 
difficult than has been anticipated. A thorough identification 
of the relative roles of climatic forcing versus rheologically 
derived instability and the response time of the rock-glacier 
form to either of these mechanisms would be necessary 
before such a task could be seriously considered . 
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