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Abstract

Opportunities offered by precision medicine have long been promised in the medical and health
literature. However, precision medicine – and the methodologies and approaches it relies on –
also has adverse environmental impacts. As research into precision medicine continues to
expand, there is a compelling need to consider these environmental impacts and develop means
to mitigate them. In this article, we review the adverse environmental impacts associated with
precisionmedicine, with a particular focus on those associated with its underlying need for data-
intensive approaches. We illustrate the importance of considering the environmental impacts of
precision medicine and describe the adverse health outcomes that are associated with climate
change. We follow this with a description of how these environmental impacts are being
addressed in both the health and data-driven technology sector. We then describe the (scant)
literature on environmental impacts associated with data-driven precisionmedicine specifically.
We finish by highlighting various environmental considerations that precision medicine
researchers, and the field more broadly, should take into account.

Impact statement

Precision medicine advances have driven many welcome insights into mechanisms of disease
and means to treat them. However, these advances have an environmental footprint which in
turn can lead to adverse health impacts. Our article argues that precision medicine research
should have an interest in this environmental footprint not only because of international priority
setting, but also because of its commitment to health. We describe these impacts, focusing in
particular on data intensive approaches such as those associated with the energy required to
collect, store, process and analyse data, as well as the materials associated with the manufacture
of digital technologies, and the waste produced from them. We point to the scant discussions of
the impacts of data intensive approaches to date in the health research literature, despite a
growing awareness of the importance of the need for environmental sustainability within
healthcare. We highlight how the carbon footprint of certain data intensive approaches com-
pares to – for example, airline travel-and then point to various ways in which precisionmedicine
researchers can consider the adverse environmental and health impacts of their work. Relatively
simple interventions such as considerations around where, how, and when data is stored,
processed, and analysed can make a significant impact on the environmental footprint of these
activities. We hope our article will be of interest to a wide range of experts involved in precision
medicine including policy makers.

Introduction

Technological advances in our ability to create, link and store data relating to health have brought
promises and aspirations of personalising healthcare decisions for a given patient, so that they
can receive the most targeted, and therefore effective treatment (Ginsburg and Phillips, 2018).
All sorts of clinical-related data – including genomic, proteomic, other ‘omic’ and biochemical
analyses – can be linked with environmental exposure data, longitudinal information from
‘wearables’ and other patient-reported data, with the aim of improving care, reducing the need for
unnecessary investigations and targeting therapies more appropriately. Examples that have
already entered routine clinical practice are many and varied and include the treatment of certain
cancers, rare genetic conditions (e.g., cystic fibrosis and Duchenne muscular dystrophy), infec-
tious diseases (e.g., HIV) and drug responses (e.g., warfarin and codeine sensitivity) (Ashley,
2016; Ginsburg and Phillips, 2018).

These advances inevitably have a significant environmental footprint, which is sometimes
justified by using consequential narratives of being necessary to improve healthcare and/or that
health has intrinsic value so has a ‘free pass’ to not consider these issues (Samuel et al., 2022).
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Nevertheless, the adverse environmental impacts of data-driven
precision medicine include its effect on the climate, material envir-
onment, water and air pollution and (toxic) waste production and
thus question whether this ‘free pass’ is appropriate. This article
reviews the current literature associated with the environmental
impacts of precision medicine, particularly focussing on the under-
lying data-intensive approach. It highlights that while much con-
cern has focused on the environmental impacts of medicine more
generally, less attention has been paid to the data-driven aspects of
(precision) medicine. The review considers (1) the literature on
environmental impacts studied in medicine, (2) the literature on
environmental impacts associated with data-driven technologies
and (3) the [scant] literature on environmental impacts of data-
driven precision medicine. It concludes by highlighting various
environmental considerations that precision medicine researchers,
and the field more broadly, should take into account.

Climate change and the need to consider the environmental
impacts of (precision) medicine

Calls for an environmentally sustainable medicine have been made
for several decades (Pierce and Jameton, 2004, Dwyer, 2009, Brown
et al., 2012, Eckelman and Sherman, 2018, Richie, 2019, Health
Care Without Harm, 2021). Healthcare contributes to between 1%
and 5% of various global environmental impacts, including green-
house gas emissions, particulatematter, air pollutants, reactive nitro-
gen in water and water use (Lenzen et al., 2020). Healthcare is also a
massive emitter of waste, much of which is plastic, with single-use
plastic items (syringes, blood bags and tubing) saturating everyday
medical practice across the globe (Hodges, 2017). The recent
COVID-19 pandemic has exemplified the issue with the generation
of eight million tonnes of pandemic-associated plastic waste, pri-
marily from hospitals (Peng et al., 2021).

While the consideration of all types of environmental impacts is
important, the recent categorisation of the climate emergency
(Pidgeon, 2021) has driven particular and urgent attention to
environmental impacts, such as carbon dioxide and greenhouse
gas emissions, that contribute to climate change. There is now no
doubt that climate change is caused by human factors, resulting in
an increased frequency and severity of extreme temperatures,
flooding, cyclones, droughts and fire weather (IPCC, 2022). Health-
care industries contribute approximately 5.5% of a country’s total
emissions (as of 2014; e.g., the United States, the Netherlands,
Belgium and Japan all emit approximately 8% of the country’s total
emissions; it is 3.3% for Mexico and 6% for Great Britain1) (Pichler
et al., 2019). Without measures to tackle these consequences, we
will see the extinction of species on land and in the ocean, as well as
the devastation of environments (IPCC, 2022). Climate change also
directly affects the social and environmental determinants of health
– clean air, safe drinking water, sufficient food, water and secure
shelter (cities, settlements and infrastructure) (World Health
Organisation, 2021; IPCC, 2022). Climate events (heat, floods
and cyclones) have affected food production and nutrition levels
(what can be grown and the time that land can be farmed) –
particularly in Africa and Central and South America (Romanello
et al., 2021; IPCC, 2022). Increased exposure to extreme heat,
wildfire smoke, atmospheric dust and aeroallergens have been
associated with climate-related cardiovascular and respiratory dis-
tress resulting in increased morbidity and mortality (Romanello
et al., 2021, IPCC, 2022). High temperatures can also reduce the
frequency, duration and motivation to be physically active, in turn,

a known factor in the risk of cardiovascular disease, diabetes,
cancer, cognitive decline and all-cause mortality (Romanello
et al., 2021). Effects on mental health have also been documented
from loss of livelihoods and culture through climate events
(Romanello et al., 2021). The occurrence of malaria, dengue fever
and Zika are all on the rise because increasing climate temperatures
mean the geographical area where mosquitos can survive is
extended, as well as their annual season, resulting in
greater disease transmission (Romanello et al., 2021; IPCC, 2022).
The World Health Organisation (WHO) predicts that between
2030 and 2050, climate change will cause approximately 250,000
additional deaths per year from malnutrition, malaria, diarrhoea
and heat stress (World Health Organisation, 2021). While inter-
national efforts aim to limit global warming to 1.5°C, evidence shows
that we must be prepared for warming up to 4°C (UK Government,
2022). In the UK, for example, the surface temperature has already
risen by 1.2°C since pre-industrial times (UK Government, 2022).

Reducing carbon emissions and other environmental impacts
of (precision) medicine

A group of 60 countries has already committed to developing
climate-resilient and/or low-carbon health systems, and nine coun-
tries have nowpledged tomake their healthcare systems net-zero by
20402 (Indonesia, Malawi, Sierra Leonne, Kenya, Liberia, Ivory
Coast, Burkina Faso, Nigeria and UK). Various hospitals inter-
nationally have also signed up for the United Nation-backed ‘Race
to Zero’ initiative.3 For example, in England, since 2007, the
National Health Service (NHS) has reduced the carbon footprint
of health and social care by 18.5% (equating to the annual emissions
from a small country such as Cyprus). Carbon and energy reduction
initiatives have focused on a number of levels including buildings,
estates and facilities; medical infrastructure, including disposable
containers (McPherson et al., 2019); travel; and electronic devices
such as freezers, lights and computers (NHS England, 2018).

Examples of areas in which the environmental impacts of spe-
cific health procedures and devices can be reduced include: imaging
(Alshqaqeeq et al., 2020), anaesthetics (Ryan and Nielsen, 2010),
inhalers (Wilkinson et al., 2019), dialysis (Moura-Neto et al., 2019),
eye care (Buchan et al., 2022) and surgery (Namburar et al., 2018;
Thiel et al., 2018), all of which can have particularly high environ-
mental impacts.

Perhaps more pertinent to precision medicine research and
manufacturing, global healthcare and technology companies are
similarly decarbonising their biomedical research, as well as their
manufacture of medical devices and pharmaceuticals (Pierce and
Jameton, 2004; Hawkes, 2012; NHS England, 2018; Kmietowicz,
2021).4 This is important, since a recent analysis has identified
the pharmaceutical industry to be significantly more emission-
intensive than the automotive industry (Belkhir and Elmeligi, 2019).
Emissions are related to upstream manufacturing and research
transportation costs for drug distribution, as well as downstream
prescribing (Richie, 2021).

Developing environmentally sustainable healthcare means
going beyond climate considerations to ensure natural resources
are not harvested faster than they can be regenerated, or emitting
waste faster than what can be assimilated by the environment
(Mensah, 2019). The effects on biodiversity must be considered
(Bull et al., 2022), as must water consumption. For example, health
services in various countries are reducing their water
consumption,5 for example, NHS England has reduced its water
footprint by 21% since 2010 – the same water volume as 243,000
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Olympic swimming pools (NHS England, 2018). Precision medi-
cine research must also attend to waste from its research labora-
tories. Various international initiatives have encouraged
laboratories to reduce consumption, and reuse and recycle mater-
ials6 (e.g., see Rae et al., 2022 who reviewed the environmental
sustainability of neuroscience research).

Environmental impacts of data-driven technologies

One aspect of precision medicine is data-driven research. Data-
driven initiatives have resulted in an exponential increase in com-
puting storage and processing power that has allowed precision
medicine researchers to collect and collate myriad types of health-
related data sets for analysis. Data-linkage studies, using a range of
complex algorithms, such as machine learning and other artificial
intelligence technologies are driving this ‘datafication’
(Ruckenstein and Schüll, 2017) of health (Erikainen and Chan,
2019), making it the fastest growing sector in the datasphere
(Reinsel et al., 2018). Proteomics, metabolomics and genomics
are all data-intensive solutions used by precision medicine
researchers. Hogan (2020) has emphasised that by 2025, it is
predicted that between 100 million and 2 billion human genomes
will have been sequenced globally, using some 40 exabytes of data
(Hogan, 2020). The UK 100,000 genomes project uses 21 petabytes
of storage, which is equivalent storage to some 40,000 years of
playback on an MP3 player (Davies, 2017). By 2025, the UK
Biobank database – a leading international biobank – is expected
to grow to 15 petabytes – an amount of data equivalent to that
created annually by the LargeHadronCollider, though likely will be
much greater than this as it continues to analyse the data it has
already collected, as well as collect new data from various imaging
studies.7 Furthermore, precision medicine research of electronic
health records by ML/AI techniques uses petabytes of storage
(Nelson and Staggers, 2018).8

Whilst the hypothesised and proven benefits are varied, the
adverse consequences of precision medicine’s environmental foot-
print require recognition and consideration. Digital and data-
driven technologies are often described using metaphors of imma-
teriality (connecting ‘virtually’) or fluffiness and transparency
(computing in a ‘cloud’), yet their physical presence is real, com-
prised of a multitude of computers, servers, cables and wires (Holt
and Vonderau, 2015; Lucivero, 2020). Large and expansive data
centres house data servers, and physical digital infrastructures
supply information and communication technologies (ICTs).
And, while data centres are often portrayed in environmentally
friendly ways (e.g., surrounding trees, images of clean and shiny
servers) (Holt and Vonderau, 2015), this may obscure the fact that
data consumption has adverse environmental impacts (Lucivero,
2020). To understand these adverse environmental impacts and
how they relate to precision medicine, we start with a review of the
broader literature on the environmental (and adverse health)
impacts of digital technologies.

Carbon emissions

Heavy carbon dioxide emissions result from the energy required to
generate and process large amounts of data. The most recent
estimate of the digital sector’s contribution to global carbon emis-
sions has been calculated between 2.1% and 3.9% (Freitag et al.,
2021). This range reflects some of the uncertainties, controversies
and complexities that perplex carbon accounting in the digital

sector. This includes the lack of transparency about data centre
carbon emissions and the speed of technological innovation which
in turn means that calculations may be based on old hardware
efficiency figures. It also includes the fact that digital technologies
are networks and infrastructures rather than discrete entities,
meaning that carbon emissions associated with a particular device
or product are difficult to measure (e.g., Horner et al., 2016;
Bieser and Hilty, 2018; Koomey and Masanet, 2021). Furthermore,
Freitag et al. (2021) and Samuel et al. (2022) both point to how
researchers approach carbon accounting differently depending on
their discipline, relying on different assumptions and methodolo-
gies. Calculating embodied carbon emissions (those emissions
associated with the manufacture and transport of digital servers,
devices, equipment and servers), while possible (Whitehead and
Adrews, 2015), also presents challenges because any emissions
attributed to a specific digital material are likely to be entangled
with those of other economic sectors (Pierce and Jameton, 2004).
This is particularly relevant if we consider the environmental
impacts of digital technologies specifically used for precision medi-
cine. This is because precision medicine only uses a small propor-
tion of digital infrastructures, and so it is difficult to dis-entangle
exactly what the environmental impact is for this particular field.
Nevertheless some data are available for consideration. First, it has
been estimated that healthcare data overall make up roughly 6% of
all digital data in the datasphere, and this is only likely to increase
given that it is the fastest growing sector.9 As such, considering the
environmental impacts of data-driven precision medicine is
important. Second, while the environmental impacts of data-driven
precisionmedicine – for example, those related to genomics, and/or
the use of natural language processing for analysing electronic
medical records – have not yet been studied to any great extent,
they are likely to have energy-intensive needs. For example, the
energy required to train one particular model in precisionmedicine
research – a deep learning artificial intelligence model (BERT10

based model without hyperparameter tuning) on a graphics pro-
cessing unit (GPU) (Rasmy et al., 2021) – has been calculated as
equivalent to a trans-American flight (Strubell et al., 2019).11

Furthermore, a recent study calculated the energy required to
conduct a genome-wide association study on biobank data for just
one disease trait, to be equivalent to driving about 30 or 100 km,
depending on the software used (Grealey et al., 2021).

The digital sector has worked hard recently to drive efficiency
gains.12 Tools available to quantify the carbon footprint of a piece
of software are improving (Anthony et al., 2020; Rae et al., 2022)
and ‘off the shelf’ energy-efficient computing hardware and soft-
ware are also increasingly gaining attention (e.g., Marković et al.,
2020).13 Some scholars predict that likely improvements in
energy efficiency and the move to renewable energy will relieve
at least some of the above concerns (Malmodin and Lundén,
2018; Giles, 2019), with many hyperscalers14 already at or head-
ing to net-zero carbon use. However, Blair (2020) argues that the
pace of data-driven innovation could outpace the world’s renew-
able energy sources (Blair, 2020). Other scholars stress that it
would be remiss to view renewables as a solution to the problem
(Morozov, 2013) given that they have their own environmental
impacts. For example, with their use (e.g., where they are placed,
their effects on the landscape and biodiversity, as well as – for
offshore wind – their potential effects on sea temperature),15 as
well as the materials used for their construction (Bihouix, 2020;
Mills, 2020) especially rare mineral extraction, which is increasing
rapidly to satisfy global demands (Bolger et al., 2021; Voskoboy-
nik and Andreucci, 2021).
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Moreover, research has explored the rebound effects of digital
technologies, that is, the effects that come from improvements in
efficiency. There is now a significant research literature that shows
that while increases in energy efficiency may offer environmental
advantages in the short term, they will also very likely lead to an
increase in consumption in the longer term (Takahashi et al., 2004;
Alcott, 2005; Hilty et al., 2006; Börjesson Rivera et al., 2014).We see
this in precision medicine, with more health data being collected
stored and analysed. In fact, the collection of ever-increasing
amounts of (health) data from both clinical and non-clinical (envir-
onmental, social media, passive [sleep, heart rate, etc.]) sources
allows precision medicine researchers to use ever more powerful
(and energy hungry) algorithms to answer endless health-related
research questions. One example is digital phenotyping – a preci-
sion medicine field developed specifically because the increases in
digital efficiency have allowed the collection and analysis of tre-
mendous swaths of data. Digital phenotyping uses machine learn-
ing techniques to analyse moment-by-moment individual data
from personal sensors and smartphones (social media data, sleep,
location, phone records, heart rate, etc.) to improve the diagnoses
for targeted intervention (Insel, 2017). Such trends in artificial
intelligence growth have led to increasing model size and energy
consumption (Wu et al., 2022).

Impacts of resource extraction

The datafication of health and the move to data-driven precision
medicine practices also contribute to the global demand for min-
eral and metal consumption associated with developing digital
infrastructures. Practices associated with mineral extraction often
lack regulation, particularly in low-to-middle income countries
(LMICs). Mining-associated harms are numerous (Mancini et al.,
2021) and include respiratory illness, injuries, cancers and adverse
mental health. Community health risks occur through exposure to
the air, water, soil and noise pollution that come from mineral
extraction and (highly toxic) processing andmanufacturing (Harris
et al., 2015; Schwartz et al., 2021). A recent global census of
406 lower-to-middle income countries’ mining-related hazardous
waste sites – affecting an estimated 7.5 million people – revealed
that arsenic, lead and mercury, are all strongly associated with
adverse health effects, contributing more than three-quarters of
the environmental risks at these sites (Caravanos et al., 2013).
Responsible mining is now an important issue16 legislation and
ethical codes are enforced in many countries (Arvanitidis et al.,
2017; Global Reporting Initiative, 2019; Ayeh and Bleicher, 2021)
and have led to several improvements in practice (Deberdt and
Billon, 2021). However, poor practices also continue (Bilham,
2021), often attributed to gaps in the regulation (Magallón Elósegui,
2020)17 or to the fact that initiatives are often developed by power-
ful companies who shape the discourse and neglect important
stages of the mining life cycle (Phadke, 2018), and who outsource
responsibility ‘at a distance’ (Calvão et al., 2021; Deberdt andBillon,
2021), disregard complexity (Ayeh and Bleicher, 2021) and do not
engage with the social and cultural context of the industry (Hecht,
2012; Mantz, 2018; Smith, 2022). While health-related and other
adverse mining-associated impacts are context specific and will vary
depending on the type of mining, the mineral being extracted, as
well as the economic, political and cultural context (Bilham,
2021), Samuel and Lucassen (2022) have argued that those work-
ing in precision medicine must becomemore aware of these issues
in order to mitigate them as much as possible.

Electronic waste (e-waste)

The digital technology sector produces amassive amount of e-waste
that contains hazardous materials such as lead, cadmium, mercury
and nickel, making it a major challenge for disposal, especially
when the levels of many of these substances exceed permissible
limits (Mmereki et al., 2016; Rautela et al., 2021). This includes the
data servers and ICT digital infrastructure that is used in precision
medicine. A lack of regulation associated with disposal, recycling
and resource recovery (Gabrys, 2012; Mmereki et al., 2016;
Lepawsky, 2018; Rautela et al., 2021) means that only about one-
fifth of e-wastes are formally collected and recycled globally, with a
lack of clarity around what happens to the remainder, but the
likelihood is that they are dumped on landfills or traded through
illegal markets (Forti et al., 2020). Resource recovery from e-waste
landfills is a source of livelihood and business opportunities, but
unregulated and informal e-waste recycling methods (e.g., open
burning, incineration, acid stripping of metals and acid baths)
generate hazardous by-products that have been shown to be present
at increased levels in those living around informal e-waste sites,
seriously affecting their health (Gabrys, 2012; Dai et al., 2020; Ngo
et al., 2021; Singh et al., 2021). Furthermore, Lepawsky (2018)
argues that e-waste is more than just end-of-life digital products,
but also includes the solid, liquid and gaseous toxic waste that
comes from the manufacturing of digital products.

Other environmental impacts

Less literature has explored the effects of digital technologies on
water consumption and biodiversity, though some exist (e.g., Ristic
et al., 2015; Mytton, 2021; Lei and Masanet, 2022). Data centres
consume water indirectly through electricity generation (often
thermoelectric power) and directly through cooling the ICT equip-
ment which generates substantial heat (and subsequent loss
through evaporation) of water.18

Precision medicine, data-driven technologies and
environmental impacts

While the environmental impacts of data-driven and digital tech-
nologies have received substantial attention in the academic, policy
and news media arena (Gilmore, 2018; Kuntsman and Rattle, 2019;
Schwartz, 2019; Department for Environment, 2021), they have
received surprisingly little attention in the health sector, or in
precision medicine literature. Rather, the literature has largely
focused on promised benefits and increased patient autonomy
(Samuel and Farsides, 2017; Birk and Samuel, 2020). One exception
is Samuel and Lucassen’s (2022) recent mapping of the literature
exploring specific environmental impacts of data-driven health
research, some ofwhich included research associatedwith precision
medicine. These authors show how most studies have focused on
developing software and hardware solutions using green IT, that is,
an approach to IT that produces minimal waste during its devel-
opment and operation and promotes recyclability, with less focus
on a consideration of the need to think about changes in data
practices (Samuel and Lucassen, 2022). This is not always the case
– some scholars have highlighted what researchers and clinicians
can do to decrease their environmental impact (Rae et al., 2022).
Scott et al. (2012) take a specific focus on e-waste in the health
sector, promoting reduce, reuse and recycle mottos. Tongue (2019)
calls for more differentiation between useful and redundant data
when considering which data should be stored in a healthcare
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system given the environmental impacts associated with exponen-
tial increases in data collection and processing, and Chevance et al.
(2020) have called for ‘digital temperance’ rather than ‘overcon-
sumption and overpromotion’ of data in health systems. These
latter authors have described three guiding principles to be incorp-
orated into any health-related data-relevant practices: (1) restraint
in production, use and promotion of digital technologies; (2) life-
cycles instead of waste (cf. the circular economy); and (3) complex
systems approaches through inter-disciplinary collaboration. Lan-
nelongue et al. (2021) have proposed a series of 10 rules for health
researchers to make computing more environmentally sustainable,
which are listed in Table 1 (Grealey et al., 2021). Such rules are
particularly relevant to researchers working in the field of data-
driven precision medicine, but as yet there has been little literature
focussing on initiatives to mitigate the ever-increasing data con-
sumption by precision medicine researchers.

Conclusion

As healthcare and health research become increasingly ‘datafied’,
assumptions remain that the use of data is ‘free’ with few or no
consequences to the environment. We have brought attention to
the environmental impacts of the data-intensive approaches asso-
ciated with precision medicine. While such approaches only
account for a small proportion of the total adverse environmental
(and health) impacts associated with digital technologies more
generally, and information is limited on the exact environmental
impacts of data-driven precision medicine, it is still important to
reflect on this in healthcare and research practices.

Data-driven precision medicine researchers need to consider
what data is being collected and analysed and why, what will
happen to that data, and what impact it may have on health and
the environment (good and bad). As we have shown in this review,
while the promise of health benefit is a laudable goal for precision
medicine research, adverse health effects can also result from the
environmental impacts of precision medicine technologies. Fur-
thermore, it remains true that those most likely to benefit from
precision medicine will be those less likely to be harmed by the
environmental risks attached to it and vice-versa.

There is a range of ways this imbalance might be re-dressed.
Precision medicine researchers can ensure that their data is stored
in data centres that are powered by renewable energy, and also
adopt best practice in procurement and waste disposal. Progress

can be seen from the fact that many data centres are already using
efficient data servers, are actively moving towards net zero, and
reducing other environmental impacts. Furthermore, environmen-
tally friendly data storage solutions can be found in long-term data
storage, which has longer data accessibility speeds, but significantly
lower energy costs. Researchers should consider differentiating
their data in terms of storage needs so that data that is not antici-
pated for short-term use can be stored at lower energy costs. Finally,
precision medicine researchers developing their own algorithms
must be diligent in their research methods to ensure algorithms are
only run once they have been carefully checked and piloted. A range
of carbon trackers that allow researchers to estimate the carbon
emissions associated with their algorithms can help build awareness
around the issues.19 The field of precision medicine must also think
more broadly about how to ensure the adverse and beneficial
environmental/health impacts of the field are more evenly distrib-
uted. This can involve, for example, developing research questions
that have (more) global relevance, and for which any potential
beneficial health impacts have been considered early in the research
process in terms of their global (and national) affordability and
accessibility (Samuel and Richie, 2022). Finally, at a policy level,
high-energy-consuming technological solutionism through preci-
sion medicine must be explicitly balanced with low-tech (and
energy) health solutions, such as those that address the social
determinants of health. Social science research has long shown that
these social determinants of health play a far greater role in health
outcomes than a country’s technological clinical capabilities
(Institute of Medicine (US) Committee on Assuring the Health of
the Public in the 21st Century, 2002). Furthermore, increasing the
efficiency of digital solutions should not be viewed as a free pass
towards continued consumption, but rather efficiency should be
viewed as providing the necessary space between society’s con-
sumption and the need not to overshoot planetary boundaries
(forthcoming). Overall, there is a range of practices that precision
medicine researchers, as well as policymakers, should consider to
help balance the benefits and adverse environmental impacts of
precision medicine.
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Notes

1. The authors refer to Great Britain, so we assume they mean England,Wales
and Scotland.

2. https://www.who.int/initiatives/cop26-health-programme/country-commitments.

3. https://healthcareclimateaction.org/racetozero. Also see Healthcare with-
out Harm’s Reducing Healthcare’s Climate Footprint, which contains case
studies of various hospital’s initiatives to reduce their carbon footprint:
chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj; https://noharm-

Table 1. Ten rules proposed by Lannelongue et al. (2021) to help make
computing for health-related purposes more environmentally sustainable

1 Calculate the carbon footprint of your work

2 Include the carbon footprint in your cost–benefit analysis

3 Keep, repair and reuse devices to minimise electronic waste

4 Choose your computing facility

5 Choose your hardware carefully

6 Increase efficiency of the code

7 Be a frugal analyst

8 Releasing a new software? Make its hardware requirements and
carbon footprint clear

9 Be aware of unanticipated consequences of improved software
efficiency

10 Offset your carbon footprint
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europe.org/sites/default/files/documents-files/4746/HCWHEurope_Cli
mate_Report_Dec2016.pdf.

4. Also see, for example, https://www.pfizer.com/news/announcements/pfizer-
announces-commitment-accelerate-climate-action-and-achieve-net-zero;
https://www.roche.com/stories/reducing-our-carbon-footprint.

5. See, for example, https://practicegreenhealth.org/topics/water/water;
https://www.cvshealth.com/social-responsibility/corporate-social-responsi
bility/resource-library/transform-health-2021-water-goal.

6. https://www.sustainabilityexchange.ac.uk/leafanewapproachtoachievingla
boratorysus#:~:text=What%20is%20LEAF%3F,environment%20that%
20supports%20research%20quality. Also see https://www.mygreenlab.
org/; https://slcan.ca/; https://www.mygreenlab.org/.

7. https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/news/uk-bio
bank-creates-cloud-based-health-data-analysis-platform-to-unleash-the-
imaginations-of-the-world-s-best-scientific-minds.

8. Potentially muchmore as further records are digitalised, and the propensity
for data grows. For example, a Californian health-based network with more
than 9 million members is estimated to have between 26 and 44 petapytes
of patient data from electronic health records; cited in: Managing the
healthcare information stream, Commvault. 2015. chrome-extension://
efaidnbmnnnibpcajpcglclefindmkaj; http://webdocs.commvault.com/
assets/managing-the-healthcare-information-stream.pdf.

9. https://www.youtube.com/watch?v=DAR0ATh-TPI.

10. Bidirectional encoder representations from transformers.

11. We assume this refers to a flight travelling between America’s East-West
coasts.

12. Mainly for business reasons, but more recently to address considerations of
the environment. For example, see Samuel et al. (2022).

13. Also see Open Compute Project, https://www.opencompute.org; green
Data Center Platform, https://www.greendatacenterplatform.com/.

14. Hyperscaled supply of computing power, cloud computing, networking,
and so forth. Examples include Amazon, Facebook and Google.

15. Presented by Professor Nicola Beaumont at UKERC Research Conference,
13–14 June 2022, Manchester, UK.

16. See https://www.responsibleminingfoundation.org/.

17. For example, the EU legislation (in contrast to that of the OECD) only
requires downstream obligations for those involved in moving and pro-
cessing the minerals from the extraction site to their incorporation in the
final product so leaves out companies that import already manufactured
electronic components.

18. Cooling data centres is expensive, which is why you often see companies
building data centres in cooler climates. This reduces costs and decreases
water consumption, though it does require data to be transferred longer
distances to a user device.

19. It is worth noting that these carbon calculators are problematic for a range
of reasons, including the types of data/databases they base their calculations
on (forthcoming).
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