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The self-organisation of turbulence into regular zonal flows can be fruitfully
investigated with quasi-linear methods and statistical descriptions. A wave-kinetic
equation that assumes asymptotically large-scale zonal flows leads to ultraviolet
divergence. From an exact description of quasi-linear dynamics emerges two better
geometrical optics approximations. These involve not only the mean flow shear but
also the second and third derivative of the mean flow. One approximation takes
the form of a new wave-kinetic equation, but is only valid when the zonal flow is
quasi-static and wave action is conserved.
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1. Introduction
Self-organisation and emergent phenomena in systems with many degrees of

freedom and that are far from thermal equilibrium remain a frontier in physics.
In fluid dynamics, where turbulence and strong nonlinearities are ubiquitous, the
difficulty is amplified because many standard techniques are unavailable.

A striking example of self-organisation is zonal flow, which refers to banded flows
alternating in space and quasi-stationary in time. Zonal flow is formed from and
coexists with turbulence in the diverse physical contexts of magnetically confined
toroidal plasmas (Diamond et al. 2005; Fujisawa 2009; Hillesheim et al. 2016),
planetary atmospheres (Vasavada & Showman 2005) and possibly astrophysical discs
(Johansen, Youdin & Klahr 2009; Kunz & Lesur 2013). Common to each of these
physical systems are directions of symmetry, driven turbulent flow and a gradient in
the rotation, density, pressure or other background quantity.

In recent years, a quasi-linear approximation has facilitated progress in the
fundamental understanding of zonal flows (Farrell & Ioannou 2003, 2007; Marston,
Conover & Schneider 2008; Srinivasan & Young 2012; Bakas & Ioannou 2013; Parker
& Krommes 2013, 2014; Tobias & Marston 2013; Constantinou, Farrell & Ioannou
2014; Bakas, Constantinou & Ioannou 2015; Constantinou, Farrell & Ioannou 2016).
The quasi-linear approximation involves neglecting the fluctuation self-nonlinearity
while retaining the basic nonlinear coupling between mean flows and fluctuations.
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This truncation eliminates the Kolmogorov cascades and wave–wave interactions, but
numerical simulations of quasi-linear dynamics show that fluctuations can still drive
the spontaneous formation of zonal flows (Srinivasan & Young 2012). Hence, even
though many fluid systems are naturally turbulent, turbulence per se is not a critical
factor in driving zonal flows, and many aspects of the problem can be qualitatively
understood in the simpler quasi-linear setting. This approach has found use beyond
zonal flows for understanding generation of other large-scale structures such as the
magnetorotational dynamo (Squire & Bhattacharjee 2015) and rolls and streaks in
wall-bounded shear flow (Farrell & Ioannou 2012). In these quasi-linear models,
fluctuations are typically driven by external white noise forcing, an analytically
convenient assumption. It should be emphasized that the quasi-linear approximation is
a model useful for gaining insight, and one does not expect its quantitative predictions
to be correct, particularly when the mean flow is weak.

Because the quasi-linear system couples the fluctuations with the mean field, the
equations are stochastically linear, despite being dynamically nonlinear. One can
therefore apply an averaging procedure and derive an equation of motion for the
covariance without facing the standard closure problem of turbulence in which
unknown triple correlations appear.

This averaging leads to a coupled set of equations for the two-point, one-time
covariance of the fluctuations and the mean flow (Farrell & Ioannou 2003, 2007;
Marston et al. 2008; Srinivasan & Young 2012). These equations are called CE2,
short for second-order cumulant expansion. CE2 offers a set of nonlinear deterministic
equations in which rapid fluctuations have been averaged away yet is still equivalent
to the quasi-linear dynamics, and is the simplest consistent statistical formulation in
which to study inhomogeneous flows.

It is impossible to overstate the importance of CE2 in the context of the quasi-linear
model. If statistical inhomogeneity exists in only one dimension, then in a particular
limit and with a particular averaging procedure, CE2 describes the exact dynamics of a
single realization, not merely the statistics of an ensemble of trajectories (Srinivasan
& Young 2012; Parker & Krommes 2013). Some questions about the interpretation
and relation of statistical ensembles to the actual dynamics of interest can therefore
be avoided. This limit is obtained when the domain size in the zonal direction is
sufficiently large so that a zonal average becomes equivalent to an ensemble average
over the noise, a particular form of ergodicity akin to a thermodynamic limit. No
assumption of separation of time or spatial scales is necessary.

With CE2, a basic theoretical framework of zonal flows has been uncovered (Farrell
& Ioannou 2003, 2007; Srinivasan & Young 2012; Parker & Krommes 2013, 2014).
A statistically homogeneous equilibrium consisting of fluctuations without zonal flows
always exists, though it may be unstable. If the incoherent fluctuations are sufficiently
intense, they can drive a symmetry-breaking instability that grows into zonal flow.
This instability is known as the zonostrophic instability and provides an emergent
length and time scale for zonal flows. The instability also has a real eigenvalue, i.e.
a perturbation is stationary as it grows.

The zonostrophic instability has been shown to be a generalization of what is
sometimes called a modulational, parametric or secondary instability of a primary
eigenmode. One tractable calculation examines the stability of a monochromatic wave,
e.g. ψ ∼ ei(k·x−ωt)+ (complex conjugate), to a zonal flow perturbation with wavevector
q, along with two sidebands k ± q (Lorenz 1972; Gill 1974; Chen, Lin & White
2000; Connaughton et al. 2010). A dispersion relation can be calculated; the growth
rate of zonal flow depends on the amplitude |ψ | of the pump wave. This dispersion
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FIGURE 1. Hierarchy of models.

relation can be recovered identically from the CE2 approach by specializing the
zonostrophic instability to a monochromatic background spectrum (Parker 2014;
Parker & Krommes 2016). The CE2 approach allows a more general conception of
this instability, where the pump can consist not only of a single mode, but also of a
full spectrum of incoherent fluctuations.

When zonostrophic instability is marginally unstable, dynamics can be reduced to
the real Ginzburg–Landau equation with universal behaviour (Parker & Krommes
2013, 2014). Qualitative features of the Ginzburg–Landau equation provide insight
into behaviour often observed in numerical simulations. For example, merging zonal
jets are commonly seen in the transient phase prior to saturation (Huang & Robinson
1998; Scott & Polvani 2007). This phenomenon exists within the Ginzburg–Landau
equation and can be related to jet stability. As another example, some have remarked
about the existence of multiple attractors or dependence on initial conditions (Danilov
& Gurarie 2004; Marcus & Shetty 2011). This property, too, follows directly from
the Ginzburg–Landau equation. More generally, the pattern formation conceptual
framework has proven useful (Cross & Hohenberg 1993; Cross & Greenside 2009).

All of these results have been understood within the quasi-linear approximation
using CE2 in the Charney–Hasegawa–Mima model. While it has not yet been
concretely demonstrated that the same structure exists in the original, fully turbulent
system, some numerical evidence indicates it does (Parker & Krommes 2014).

In this paper, we discuss a few approximations to CE2 that offer a simpler, more
intuitive form. Two of these invoke wave-kinetic equations, and we explain why this
approach breaks down when studying zonal flow dynamics, although it may still prove
useful in steady state. We introduce another geometrical optics approximation that may
be both accurate and intuitively appealing. The relationship between these models is
shown in figure 1.

2. Quasi-linear and CE2 equations of motion
The two-dimensional Charney–Hasegawa–Mima equation has been used to model

turbulent flow in uniformly magnetized plasma with a density gradient (atmospheric
fluid on a rotating planet). We use the generalized Hasegawa–Mima equation
(Krommes & Kim 2000; Smolyakov, Diamond & Malkov 2000a),

∂tζ (x, y, t)+ v · ∇ζ − κ∂yψ = f +D, (2.1)
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where ζ is the vorticity, ψ is the electric potential (streamfunction) and v = ẑ×∇ψ
is the fluid velocity. The conventional plasma coordinate system is used where κ

is the local gradient of plasma density (Coriolis parameter) in the −x direction
and y is the zonal direction. f and D represent forcing and dissipation. Variables
can be decomposed into mean and fluctuating components, e.g. ζ = ζ + ζ̃ , where
ζ = L−1

y

∫ Ly

0 dy ζ is a zonally averaged quantity and Ly is the periodicity length
in the y direction. The generalized Hasegawa–Mima equation involves taking
ζ̃ = ∇2

ψ̃ = (∇2 − ρ−2
s )ψ̃ for fluctuations and ζ = ∇2ψ for the mean flow, where

ρs is the plasma sound radius (deformation radius). In plasma coordinates, lengths are
normalized to the sound radius and ρs should be set to 1; the geophysical barotropic
vorticity equation is recovered for ρ−2

s = 0.
The quasi-linear system is obtained by, within the equation for the fluctuations,

discarding the terms quadratic in fluctuations. One obtains ∂tζ̃ + v · ∇ζ̃ + ṽ · ∇ζ −
κ∂yψ̃ = f + D and ∂tζ + ṽ · ∇ζ̃ = D. With no forcing or dissipation, the fluctuation
equation may be written more explicitly as ∂tζ̃ − (κ +U′′)∂yψ̃ +U∂yζ̃ = 0. In a WKB
approximation where U is assumed to have slower spatial and temporal dependence
than ζ , one can consider an ansatz ζ ∼ ei(k·x−ω(k,x)t). This ansatz yields a wave
frequency

ω(k, x)= ky[κ +U′′(x)]
k

2 + kyU(x), (2.2)

where k
2 = k2 + ρ−2

s and k2 = k2
x + k2

y . Many studies have ignored the U′′ term. We
show the results so obtained have extremely limited applicability and demonstrate the
importance of retaining U′′.

We take the forcing to consist of statistically homogeneous white noise with
covariance F and dissipation to consist of a constant friction µ. Viscosity is not
necessary to regularize the dynamics in the quasi-linear system because there is no
turbulent cascade. Direct numerical simulations of both the original system and the
quasi-linear approximation exhibit steady zonal flows (Srinivasan & Young 2012;
Parker & Krommes 2013).

The CE2 equations can be derived directly from the quasi-linear equations of
motion. We quote the results (Srinivasan & Young 2012; Parker & Krommes 2013):

∂tW(x, y, x, t)+ (U+ −U−)∂yW − (U′′+ −U′′−)
(
∇2 + 1

4∂
2
x

)
∂yΨ

+ [2κ + (U′′+ +U′′−)]∂x∂x∂yΨ = F(x, y)− 2µW, (2.3a)

∂tU(x, t)+µU =−∂x∂x∂yΨ (x, y, x, t)|(x,y)=(0,0), (2.3b)

where U is the zonal flow velocity, U± = U(x ± x/2, t), and U′′ = ∂2
x U. Here, x is

the inhomogeneity coordinate – if quantities are statistically homogeneous, there is
no dependence on x. W and Ψ are the two-point, one-time covariance of vorticity
and streamfunction, respectively, and are related by W(x, y, x, t) = L+L−Ψ (x, y, x, t),
where L±=∇2± ∂x∂x+ (1/4)∂2

x . Equivalently, W is the physical-space Wigner function
for ζ and (2.3a) is the Wigner transport equation that can be alternatively described
in terms of formal Weyl symbols (Krommes & Parker 2016). The right-hand side of
(2.3b) is the mean force due to the divergence of the Reynolds stress. Periodicity is
assumed in x.
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3. Asymptotic wave-kinetic equation
A wave-kinetic equation (WKE) takes the form

∂tN (k, x, t)+ ∂ω
∂k
·
∂N
∂x
− ∂ω
∂x
·
∂N
∂k
= S, (3.1)

where N is the wave action density and S represents sources and sinks (Connaughton,
Nazarenko & Quinn 2015; Krommes & Parker 2016). With S= 0, it is Hamiltonian
with ω generating the equations for wavepacket trajectories through phase space,
dx/dt = ∇kω and dk/dt = −∇xω. For the physical-space coordinates, we write
x= (x, y)→ x because we only allow inhomogeneity in one direction.

A form which has been used as the starting point in many geophysical and plasma
physics studies assumes the zonal flows are asymptotically large scale relative to the
fluctuations, in which case one neglects U′′ in (2.2) and has ω(k, x)= κky/k

2+ kyU(x).
Equation (3.1) becomes

∂tN (k, x, t)− kxU′
∂N
∂kx
− 2κkxky

k
4

∂N
∂x
= F(k)

κ
− 2µN , (3.2a)

where forcing and dissipation have been inserted and the wave action density is
N =W/κ .

We denote this system as the asymptotic WKE (Manin & Nazarenko 1994;
Smolyakov, Diamond & Shevchenko 2000b), which we shall see shortly is the
limit of the CE2 equations in which the wavelength of zonal flow is taken to be
asymptotically large. Justifications for the long-wavelength assumption are tenuous in
magnetically confined plasmas, in which the characteristic size of zonal flows is often
measured to be comparable to that of the turbulence (Fujisawa et al. 2004; Gupta
et al. 2006; Hillesheim et al. 2016). Furthermore, despite the use of the asymptotic
WKE in the plasma literature over many years, to our knowledge it has never before
been validated by comparing nonlinear numerical solutions to a parent model.

Various studies have inserted into the basic wave-kinetic equation a term that
represents the effects of eddy–eddy nonlinear interactions. These interactions conserve
energy and enstrophy. In a weak turbulence assumption, these effects can be derived
in an asymptotic expansion (Nazarenko 2011). Simple analytic studies sometimes use
an ad hoc nonlinear damping term such as −N 2, which balances linear instabilities
that arise in various plasma models (Diamond et al. 2005). While retaining the effect
of eddy–eddy nonlinear interactions in some form is important for many situations,
it is unnecessary here. In the quasi-linear approximation, the eddy–eddy nonlinear
interactions are absent, which is why an exact statistical theory could be formulated
without a closure problem. The lack of eddy–eddy nonlinear interactions makes the
quasi-linear system a useful testbed for various statistical theories and approximations
of the drift wave–zonal flow problem. If a model is unable to faithfully reproduce
the quasi-linear dynamics where these effects are absent, then one has no confidence
in that model in the more realistic situation when these effects are included.

Dynamics in the asymptotic WKE is closed by adding the equation for the zonal
flow,

∂tU(x, t)+µU = ∂x

∫
dk
(2π)2

κkxky

k
4 N (k, x, t), (3.2b)

where we have used the Fourier transform convention f (k) = ∫ dx e−ikxf (x). With
no forcing or dissipation, it conserves enstrophy within the fluctuations only and
conserves total energy of the fluctuations and zonal flow.
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FIGURE 2. Dispersion relation of zonostrophic instability describing linear stage of growth
of zonal flows about a homogeneous equilibrium. Inset: zoomed in at small q, where all
the curves overlap. Parameters: µ= 0.02, β= 1, ρ−2

s = 1, F= 4πεkf δ(k− kf ), ε= 1, kf = 1.

The asymptotic WKE is also poorly behaved at small scales. It drives growth of
arbitrarily small-scale zonal flow in finite time, violating its fundamental assumption
of scale separation as well as precluding any kind of well-behaved solution. The
dispersion relation of zonostrophic instability for perturbations ∼eλteiqx is shown in
figure 2.

The dispersion relation plotted in figure 2 is calculated as follows. Equation (3.2)
contains a homogeneous equilibrium, independent of x, at NH = F/2κµ, U = 0. One
writes N =NH + eiqxeλtN1(kx, ky), U= eiqxeλtU1 and linearises. The linearised form of
(3.2a) can be solved for N1 in terms of U1, and then substituted into (3.2b), yielding
a single nonlinear equation for the eigenvalue λ:

λ+µ=−q2
∫

dk
(2π)2

kxk2
y

(λ+ 2µ)k
4 − 2iκqkxky

κ
∂NH

∂kx
. (3.3)

When q is large, the unstable mode has λ ∼ q. Another solution exists where λ is
independent of q at large q, but this mode is typically damped and is of lesser physical
interest. For more details, see appendix A and the supplementary material available at
https://doi.org/10.1017/S0022377816001021.

Nonlinear simulations of the asymptotic WKE confirm the ultraviolet divergence.
Figure 3 shows the spectrum of the zonal flow in the saturated, steady state for
different values of the highest resolved wavenumber q. No matter the resolution,
the highest modes grow fastest and zonal flow energy concentrates in the highest
resolved wavenumbers. For comparison, the figure also shows the same plot for a
direct numerical simulation of the quasi-linear system, in which the scale of the
zonal flow is not dependent on the numerical resolution. These simulations are
pseudospectral, dealiased and nonlinearly conserve energy and enstrophy to machine
precision.

For very small q, this model correctly predicts for zonostrophic instability that
fluctuations provide an effective forcing proportional to q2, a regime sometimes
described in the literature. Figure 2 shows that at least for some parameters, the q2

regime only exists for extremely small q.
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FIGURE 3. Spectrum of the zonal flow U(q) (the Fourier transform of U(x)) in the
nonlinear saturated state at tf = 6/µ in simulations of the quasi-linear system and the
asymptotic WKE. In each simulation, the zonal flows reach a steady state. For the
asymptotic WKE, the results from three simulations are shown, with three different values
for the maximum resolved wavenumber of the zonal flow. In each case, the zonal flow
energy concentrates at the highest resolved wavenumbers. Same parameters as in figure 2.

Early studies with the asymptotic WKE correctly deduced that the symmetry-
breaking instability is likely a generic phenomenon, which was a key insight (Manin
& Nazarenko 1994; Lebedev et al. 1995; Krommes & Kim 2000; Smolyakov et al.
2000b). The asymptotic WKE has been used to predict growth rates of zonal flow
in various systems (Diamond et al. 1998; Malkov, Diamond & Smolyakov 2001b;
Anderson et al. 2002, 2006; Wang & Hahm 2009). As the above results indicate,
predicted growth rates will be accurate only at small q. Significant error occurs
at moderate q, and crucially, the asymptotic WKE is completely unable to predict
the wavenumber q with maximum growth rate. Aside from growth rates, others
have attempted to use the asymptotic WKE to seek nonlinear solutions of zonal
flow–turbulence interaction, but due to the system’s tendency to dynamically generate
small-scale flows, that is invalid from the start (Smolyakov et al. 2000a; Malkov
& Diamond 2001; Malkov, Diamond & Rosenbluth 2001a; Kaw, Singh & Diamond
2002; Balescu 2003; Itoh et al. 2004, 2005; Trines et al. 2005; Singh et al. 2014). It
appears only one of these studies (Trines et al. 2005) performs numerical simulations
of the asymptotic WKE.

Approximations of the asymptotic WKE are perilous because they can elide the
growth of small scales present in the model. Sometimes, a random-walk argument
based on random zonal flows has been invoked to transform (3.2a) into a diffusion
equation (Diamond et al. 1998; Malkov & Diamond 2001). However, such an
assumption stands in contrast with the typically real growth rate of zonal flows and the
observations from numerical simulations of Hasegawa–Mima or Hasegawa–Wakatani
models that exhibit steady, not random, zonal flows (Numata, Ball & Dewar 2007;
Parker & Krommes 2013).

4. Geometrical optics approximations
We report two reductions of CE2 involving a geometrical optics approximation.
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The first approximation, which we call CE2-GO, involves an expansion in space
that is justified when inhomogeneities are weak. The U± terms in (2.3a) are Taylor
expanded for small x, assuming that the covariance W is small when x is not small.
Additionally, only lowest order in ∂x is kept, e.g. the lowest-order relation W(x, y, x)=
∇4
Ψ (x, y, x) is used. After Fourier transforming (x, y)→ k, we obtain

∂tW(k, x, t)− kyU′
∂W
∂kx
− kyU′′′

∂

∂kx

(
W

k
2

)
− 2(κ +U′′)

kxky

k
4

∂W
∂x
= F(k)− 2µW, (4.1a)

∂tU(x, t)+µU = ∂x

∫
dk
(2π)2

kxky

k
4 W. (4.1b)

The dispersion relation for zonally symmetric perturbations about a homogeneous
equilibrium can be obtained in a similar manner as (3.3). The result is

λ+µ=−q2
∫

dk
(2π)2

kxk2
y

(λ+ 2µ)k
4 − 2iκqkxky

∂

∂kx

[(
1− q2

k
2

)
WH

]
, (4.2)

where WH = F/2µ. This dispersion relation is identical to (3.3) except for the factor
of (1 − q2/k

2
). This factor, which arises from the U′′′ term in (4.1a), provides the

crucial cutoff at large q.
In the second approximation, the zonal flow is assumed quasi-static, leading to

conservation of wave action density N = W/(κ + U′′). A wave-kinetic equation in
the form of (3.1) is derived from (4.1a) by dividing by (κ +U′′). One obtains

∂tN (k, x, t)− ky

(
U′ + U′′′

k
2

)
∂N
∂kx
− 2(κ +U′′)

kxky

k
4

∂N
∂x
= F(k)
κ +U′′

− 2µN , (4.3a)

∂tU(x, t)+µU = ∂x

∫
dk
(2π)2

kxky

k
4 (κ +U′′)N . (4.3b)

We denote this coupled set as the WKE (Wordsworth 2009). Equation (4.3a) arises
from the wave frequency of (2.2). This WKE is invalid when U′′ is rapidly evolving
such as during an instability because wave action is not conserved. This formulation
therefore may not be used to study the dynamics in which a zonal flow evolves
to a steady state. However, in the quasi-steady-state limit, the WKE is valid and
equivalent to CE2-GO. The WKE exhibits a close connection to the Rayleigh–Kuo
stability criterion, which states that a necessary condition for instability of fixed mean
flow is that κ +U′′ has a zero somewhere (Kuo 1949); such a condition would create
singularities in N =W/(κ +U′′).

Both CE2-GO and the WKE nonlinearly conserve enstrophy and energy between
the fluctuations and zonal flow, although for the WKE one again must assume quasi-
static zonal flow. Within the geometrical optics approximation, the energy density of
the fluctuations is (2Lx)

−1
∫ Lx

0 dx
∫

dk(2π)−2W(k, x)/k
2
, and the enstrophy density

is the same integral with W instead of W/k
2
, where Lx is the periodicity length in

the x direction. The energy density of the zonal flow is (2Lx)
−1
∫ Lx

0 dxU(x)2 and the
enstrophy density of the zonal flow is (2Lx)

−1
∫ Lx

0 dxU′(x)2. In the WKE, total wave
action is conserved within the fluctuations under steady zonal flow and in the absence
of forcing and dissipation.

In the limit of asymptotically large-scale zonal flows in which U′′ and U′′′ are
neglected, both CE2-GO and the WKE reduce to the asymptotic WKE.
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The dispersion relations for zonostrophic instability in CE2-GO and the WKE are
shown in figure 2. CE2-GO agrees remarkably well with the exact CE2, even at q
where a scale separation is not satisfied. The U′′′ term in (4.1a) and (4.3a) is essential;
when only the flow shear U′ is retained, the dispersion relation grows linearly in q.
The WKE does not correctly predict the dispersion relation because its fundamental
assumption of quasi-static zonal flow is violated.

We emphasize that CE2 is exact for quasi-linear dynamics while CE2-GO is
approximate, so CE2-GO should not be preferred just because of its simpler and more
intuitive form. Numerical solutions of CE2 are feasible and many studies have been
carried out successfully (Farrell & Ioannou 2003, 2007; Marston et al. 2008; Tobias,
Dagon & Marston 2011; Parker & Krommes 2013; Constantinou et al. 2014; Parker
& Krommes 2014; Squire & Bhattacharjee 2015). Moreover, numerically solving
CE2 as compared to CE2-GO takes comparable effort as both are three dimensional,
although the geometrical optics approximation may reduce the computational cost.
Certain analytic calculations are also possible for CE2 (Srinivasan & Young 2012;
Bakas & Ioannou 2013; Parker & Krommes 2013, 2014; Bakas et al. 2015).

The utility of CE2-GO and the WKE, if they prove to be accurate, will come
from their transparent phase-space formulation, more intuitive interpretation of wave
dynamics, and greater possibility of analytic manipulation as compared to CE2. The
WKE is valid for studying steady states, and we anticipate it will provide new insight
into the behaviour of wavepackets in a steady mean flow.

5. Discussion

The asymptotic wave-kinetic equation, where zonal flows are assumed to be
asymptotically large scale compared to the fluctuations, violates its own fundamental
assumption in finite time. Within this model, the instability that drives zonal flows
grows linearly in wavenumber without bound. Nonlinear numerical solutions confirm
that zonal flow energy concentrates in the highest resolved wavenumbers. From one
point of view, this ultraviolet divergence occurs because the asymptotic WKE attempts
to describe the effect of mean flow on the fluctuations solely in terms of the local
mean flow shear. Although the asymptotic WKE may remain useful as one of the
simplest possible methods for investigating the linear stage of zonal flow growth,
the CE2 and CE2-GO models offer more accurate yet still practicable methods that
supersede it.

CE2 is an exact description of quasi-linear dynamics, and we have described two
geometrical optics approximations that offer simpler and more intuitive phase-space
equations. These formulations involve not only the local mean flow shear, but also the
second and third derivative of the mean flow. The first formulation, CE2-GO, requires
only a spatial scale expansion and agrees with the exact zonostrophic instability
dispersion relation remarkably well. The second formulation, a wave-kinetic equation
written in terms of conservation of wave action, is valid only when the zonal flow is
slowly varying. This requirement precludes the use of the wave-kinetic equation for
studying the important dynamics that determines how zonal flows grow and saturate,
during which wave action is not conserved. Future work will continue to study the
geometrical optics approximations and their validity.

While the quasi-linear approximation provides deep insight into the behaviour of
zonal flows, it is important to understand when and why the approximation breaks
down. For instance, Kelvin–Helmholtz-like instabilities of shear flow may limit their
strength, and the quasi-linear approximation may not capture physics that depends on
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vortex roll up (Connaughton et al. 2010). Comparisons of the quasi-linear system with
higher fidelity models offers an approach of further developing our understanding of
these kinds of effects. Initial efforts along these lines have been completed, but more
remains to be understood (Tobias & Marston 2013; Constantinou et al. 2016; Marston,
Chini & Tobias 2016)

Finally, although we have emphasized the quasi-linear approximation as a complete
nonlinear system that can be analysed in detail, the geometrical optics approximation
discussed here is useful more broadly. If one retained the effect of eddy–eddy
nonlinearities, the geometrical optics approach may still be used to simplify the exact
mean flow–fluctuation interactions.
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Appendix A. Numerical calculation of dispersion relation
The dispersion relation for the zonostrophic instability in the asymptotic WKE,

equation (3.3), and in CE2-GO, equation (4.2), can be solved numerically for the
eigenvalue λ once the parameters β, µ, q and the forcing spectrum F(k) are specified.
In this appendix we explain the numerical calculation for λ shown in figure 2. We use
the asymptotic WKE as an example; the calculation for the other models is analogous.
Most choices of forcing F that result in an unstable perturbation Re(λ) > 0 have a
purely real λ.

For the forcing F, we take a thin-ring isotropic forcing F(k) = 4πεkf δ(k − kf ), a
convenient simplification. If ρ−2

s =0, then ε is equal to the energy input by the forcing.
After integrating by parts in kx, switching to polar coordinates kx = k cos φ and ky =
k sin φ, and integrating over the delta function, the dispersion relation becomes

λ+µ= q2 ε

µ
k4

f (λ+ 2µ)(1+mf )

∫ 2π

0

dφ
2π

(1+mf − 4 cos2 φ) sin2 φ

[(λ+ 2µ)k2
f (1+mf )2 − 2iκq cos φ sin φ]2 ,

(A 1)
where mf = k−2

f ρ
−2
s . Assuming real λ, one can rationalize the integrand and discard

the imaginary part because it vanishes upon integration, and then proceed using robust
one-dimensional numerical root finders.

Python code to carry out the calculations and reproduce some of the curves in
figure 2 is available in the supplementary material.
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