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This thesis considers some computational problems in cyclic Galois extensions of
global function fields. We investigate the efficient computation of integral closures, or
maximal orders, in cyclic extensions of global fields and the determination of Galois
groups for polynomials over global function fields.

Global function fields, which are finite separable extensions of a global rational
function field, are interesting because they provide a basis for designing efficient
algorithms for algebraic curves. Applications of curves and function fields arise in
coding theory and cryptography. Efficient computation with curves or function fields
is necessary for efficient construction of codes.

In this thesis, we consider function fields from the number theory point of view, and
take advantage of algorithms for number fields (such as those in [2]), which can be
used analogously for function fields. Algorithms are stated generally, so it is irrelevant
whether the field is a number or a function field and whether or not it is represented as
an extension of another algebraic (function) field.

Some tasks have a rich history for number fields but have only recently sparked
interest for function fields. These include the development of methods to efficiently
compute integral closures (an analogue of Z), Galois groups, class groups and unit
groups, which are the four most important tasks of number theory considered by
Zassenhaus [6]. We investigate two of these. Integral closures can be used to compute
class groups, unit groups and Galois groups, which are the other three important tasks.

Also interesting for function fields is the computation of Riemann–Roch spaces of
divisors and the genus. The calculation of a basis for a Riemann–Roch space can use
the representation of a divisor by ideals of integral closures. Improving the efficiency
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of the computation of integral closures can therefore improve the computation of the
genus, Riemann–Roch spaces and divisor class groups.

Function fields defined over a finite field k (with characteristic p > 0), along with
number fields, are global fields. Both types of global fields have a class field theory
which allows abelian extensions to be classified completely. Abelian extensions allow
us to construct families of fields where we can control the genus and the number of
rational places and they provide a way of computing these values for such extensions
relatively cheaply. In order to use these fields explicitly and compute the rational
places, we need to be able to compute integral closures in these fields efficiently.

To construct an algebraic–geometric code from a function field involves the
computation of some rational places of the function field, the construction of a divisor
and the computation of a basis for its Riemann–Roch space. The minimum distance
of a code is linked to the genus and the number of rational places of the function
field. Algebraic–geometric codes are interesting because curves with many rational
points tend to have high minimum distances, which is good for reliable transmission
of information. Class field theory can be used to generate curves with many rational
points compared to their genus [3].

Efficient algorithms make possible a wider range of applications. The construction
of algebraic–geometric codes from much larger cyclic field extensions benefits from
improved efficiency in the integral closure computation. To achieve this, efficient
algorithms for computing integral closures specifically for Kummer, Artin–Schreier
and Artin–Schreier–Witt extensions are investigated. These algorithms are efficient
because they compute a global (pseudo) basis for such orders. We show that we have
removed one of the barriers to constructing good codes from larger cyclic extensions.

In cyclic extensions, the combination of the local maximal orders can be done
efficiently and a (pseudo) basis can be written down directly for the global maximal
orders. Calculating a basis for the maximal orders ‘by hand’, which we show can be
easily done, saves much computation time in computing a basis from generators. The
special shape of the defining polynomials means that, in many cases, we can avoid,
for the first time, any normal form computations. This is possible for cyclic extensions
because of the relationship between the constant coefficient and the discriminant of the
polynomial and also between the constant coefficient and the primitive element of the
extension. Additionally, we compute integral closures without computing any other
subrings of the function field (as the round 2 method does) and without factoring (or
sometimes even computing) the discriminant of the defining polynomial.

For Kummer extensions (more generally, radical extensions), we give an efficient
algorithm to compute a diagonal basis for integral closures. In Artin–Schreier
extensions, our efficient algorithm computes a triangular basis for integral closures.
In Artin–Schreier–Witt extensions, we have been able to compute a (pseudo) basis
for S -maximal orders where S contains primes of the same ramification degree,
rather than generators corresponding to each individual prime. To combine S -maximal
orders for different ramification degrees, we minimise the number of pseudogenerators
which are input to the normal form computation. We also compute a basis for a
degree pn extension rather than the Artin–Schreier–Witt tower of n extensions of
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degree p, as in [5]. These cyclic extensions cover all possibilities for components
of abelian extensions.

Since abelian and cyclic extensions are types of Galois extensions and computing
Galois groups is also considered to be an important task of number theory, we describe
an algorithm to compute Galois groups of polynomials of unrestricted degree over
global function fields. Since Stauduhar developed an interesting practical algorithm [7]
for the computation of Galois groups, there have been a number of other algorithms
described but these have mostly been specific to irreducible polynomials over the
rational field. We consider the recent algorithm of Fieker and Klüners [4] and describe
how to adjust this algorithm so that it can be used to compute Galois groups of
polynomials over characteristic p function fields, including when the characteristic
is two (in which case replacement invariants were required). Further, we provide an
algorithm to compute Galois groups of reducible polynomials, including those over
function fields of characteristic p.

Most of the results in this thesis have been published in [8, 9, 11], or are being
revised for publication in [10]. All of the algorithms described in this thesis have
been implemented by the author in the Magma Computer Algebra System [1] (V2.16,
V2.17, V2.18, V2.20 and later) and perform effectively as is shown by a number of
examples and a collection of timings.
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