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On Antichains of Spreading Models of
Banach Spaces

Pandelis Dodos

Abstract. We show that for every separable Banach space X, either SPw(X) (the set of all spreading

models of X generated by weakly-null sequences in X, modulo equivalence) is countable, or SPw(X)

contains an antichain of the size of the continuum. This answers a question of S. J. Dilworth, E. Odell,

and B. Sari.

1 Introduction

Let X be a separable Banach space, and denote by SPw(X) the set of all spreading

models of X generated by weakly-null sequences in X, modulo equivalence. By ≤
we denote the usual relation on SPw(X) of domination. The study of the struc-

ture (SPw(X),≤) was initiated by G. Androulakis, E. Odell, T. Schlumprecht and

N. Tomczak-Jaegermann [1]. They showed, for instance, that (SPw(X),≤) is a semi-

lattice, i.e., any two elements of SPw(X) admit a least upper bound. The question of

determining which countable lattices can be realized as (SPw(X),≤) for some sepa-

rable Banach space X has been answered by S. J. Dilworth, E. Odell, and B. Sari [5].

This note is motivated by the following problem posed in [5, Problem 1.13].

Problem 1 If SPw(X) is uncountable, must there exist {(xξ
n)n : ξ < ω1} in SPw(X)

which is either strictly increasing with respect to ξ, or strictly decreasing, or consists of

mutually incomparable elements?

To state our first result, let us say that a seminormalized Schauder basic sequence

(xn)n in a Banach space X is C-Schreier spreading for some C ≥ 1 (or simply Schreier

spreading, if C is understood) if for every k ∈ N and every k ≤ n0 < · · · < nk

and k ≤ m0 < · · · < mk we have that (xni
)k

i=0 is C-equivalent to (xmi
)k

i=0. Observe

that if (xn)n is Schreier spreading, then there exists a unique spreading model (up to

equivalence) generated by subsequences of (xn)n. Denote by 2<N the Cantor tree and

let ϕ : 2<N → N be the unique bijection satisfying ϕ(s) < ϕ(t) if either |s| < |t|, or

|s| = |t| = n and s <lex t (here <lex stands for the usual lexicographical order on 2n).

We show the following.

Theorem 1.1 Let X be a separable Banach space such that SPw(X) is uncountable.

Then there exists a family (xt )t∈2<N in X and C ≥ 1 such that the following hold.

(i) If (tn)n is the enumeration of 2<N according to ϕ, then the sequence (xtn
)n is a

seminormalized Schauder basic sequence.
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(ii) For every σ ∈ 2N, the sequence (xσ|n)n is weakly-null and C-Schreier spreading.

(iii) For every σ, τ ∈ 2N with σ 6= τ , if (yσ
n )n and (yτ

n)n are spreading models gener-

ated by subsequences of (xσ|n)n and (xτ |n)n respectively, then (yσ
n )n and (yτ

n)n are

incomparable with respect to domination.

Theorem 1.1 implies the following.

Corollary 1.2 Let X be a separable Banach space such that SPw(X) is uncountable.

Then SPw(X) contains an antichain of the size of the continuum.

We notice that, independently, V. Ferenczi and C. Rosendal proved Corollary 1.2

under the additional assumption that X has separable dual [6].

In [1] (see also [5]), it was shown that SPw(X) can contain a strictly decreasing

infinite sequence, yet no strictly increasing infinite sequence can be found in SPw(X).

This is not, however, the case of the uncountable.

Theorem 1.3 Let X be a separable Banach space.

(i) If SPw(X) contains a strictly decreasing sequence of length ω1, then SPw(X) con-

tains a strictly increasing sequence of length ω1.

(ii) On the other hand, if SPw(X) does not contain a strictly increasing infinite se-

quence, then there exists a countable ordinal ξX such that SPw(X) does not contain

strictly decreasing sequences of order type greater than ξX .

It was shown [5, Theorem 3.7] that for every countable ordinal ξ there exists a sep-

arable Banach space Xξ such that (SPw(Xξ),≤) does not contain a strictly increasing

infinite sequence, yet SPw(Xξ) contains a strictly decreasing sequence of order type ξ.

Thus, the ordinal ξX obtained by part (i) of Theorem 1.3 is not uniformly bounded

within the class of separable Banach spaces for which SPw(X) does not contain a

strictly increasing infinite sequence.

In the proofs of Theorem 1.1 and Theorem 1.3(i) we use the structural result ob-

tained by B. Sari [16]. However, the central argument in the proof of Theorem 1.1 is

essentially based on the work of Leo Harrington and Saharon Shelah on Borel orders.

Deep as it is, the theory developed by Harrington and Shelah is highly sophisticated.

In particular, all known proofs of their results use either effective descriptive set the-

ory or forcing. However, for the proof of Theorem 1.1 we need only some instances

of the theory and merely for Fσ orders. Thus, we have included “elementary” proofs

of all the results that we need, making the paper essentially self-contained and acces-

sible to anyone with basic knowledge of classical descriptive set theory. None of these

proofs should be considered as a contribution to the field of Borel orders.

The paper is organized as follows. In Section 2 we state and prove all results on

Borel orders that are needed for the proof of Theorem 1.1. In Section 3 we show that

for every separable Banach space X the structure (SPw(X),≤) can be realized as an Fσ

order. In Section 4 we give the proof of Theorem 1.1 while the proof of Theorem 1.3

is given in Section 5.

Notations By N = {0, 1, 2, . . . } we denote the natural numbers, while [N] de-

notes the set of all infinite subsets of N (which is clearly a Polish subspace of 2N).

By 2<N we denote the set of all finite sequences of 0’s and 1’s (the empty sequence is
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included). We view 2<N as a tree equipped with the (strict) partial order ⊏ of exten-

sion. For every t ∈ 2<N, by |t| we denote the length of t , i.e., the cardinality of the set

{s ∈ 2<N : s ⊏ t}. For every n ∈ N we let 2n
= {t ∈ 2<N : |t| = n}. If s, t ∈ 2<N,

then by sat we denote their concatenation. For every σ ∈ 2N and every n ≥ 1 we let

σ|n =
(

σ(0), . . . , σ(n − 1)
)

, while σ|0 = (∅).

If (xn)n and (yn)n are Schauder basic sequences in a Banach space X and C ≥ 1,

then we say that (xn)n is C-dominated by (yn)n (or simply dominated, if C is under-

stood) if for every k ∈ N and every a0, . . . , ak ∈ R we have

∥

∥

∥

k
∑

n=0

anxn

∥

∥

∥
≤ C

∥

∥

∥

k
∑

n=0

an yn

∥

∥

∥
.

We write (xn)n ≤ (yn)n to denote the fact that (xn)n is dominated by (yn)n. All the

other pieces of notation we use are standard as can be found, for instance, in [1,9,10].

2 Quasi-Orders and Borel Orders

A quasi-order is a set X with a binary relation ≤ on X that is reflexive and transitive.

For x, y ∈ X we let

(i) x ≡ y ⇐⇒ (x ≤ y) and (y ≤ x),

(ii) x < y ⇐⇒ (x ≤ y) and (y £ x),

(iii) x ⊥ y ⇐⇒ (x £ y) and (y £ x).

If x, y ∈ X are as in case (iii) above, then we say that x and y are incomparable. An

antichain is a subset of X consisting of pairwise incomparable elements. An ω1-chain

in X is a sequence (xξ)ξ<ω1
in X such that either xξ < xζ for all ξ < ζ < ω1 or xξ < xζ

for all ζ < ξ < ω1.

A Borel order is a quasi-order (X,≤) where X is Polish and ≤ is Borel in X2. A

Borel order is called thin if X does not contain a perfect set of pairwise incomparable

elements. We will need the following lemma concerning the structure of Fσ thin

orders.

Lemma 2.1 Let X be a Polish space and ≤ an Fσ thin order on X. Then (X,≤) does

not contain ω1-chains.

Lemma 2.1 is a very special case of a deep result due to L. Harrington and S. Shelah

(see [7,8]) asserting that no Borel thin order contains ω1-chains. We notice that, prior

to [8], H. Friedman had shown that no Borel linear order contains ω1-chains.

Proof of Lemma 2.1 Let (Fn)n be an increasing sequence of closed subsets of X2 with

≤ =
⋃

n Fn. By symmetry, it is enough to show that if (X,≤) contains a strictly

increasing sequence (xξ)ξ<ω1
, then there exists a perfect subset P of X such that x ⊥ y

for all x, y ∈ P with x 6= y. Set Γ = {xξ : ξ < ω1}. Refining if necessary, we may

assume that for every ξ < ω1 the point xξ is a condensation point of Γ. Let ρ be a

compatible complete metric for X. By recursion on the length of sequences in 2<N,

we shall construct a family (Ut )t∈2<N of open subsets of X such that the following are

satisfied.
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(i) For every t ∈ 2<N we have U ta0,U ta1 ⊆ Ut and U ta0 ∩U ta1 = ∅.

(ii) For every t ∈ 2<N with |t| ≥ 1 we have ρ − diam(Ut ) ≤
1
|t| .

(iii) For every n ≥ 1 and every t, s ∈ 2n with t 6= s we have (Ut ×Us) ∩ Fn = ∅ and

(Us ×Ut ) ∩ Fn = ∅.

(iv) For every t ∈ 2<N, Ut ∩ Γ 6= ∅.

Assuming that the construction has been carried out, we set

P =
⋃

σ∈2N

⋂

n∈N

Uσ|n.

By (i) and (ii) above, we see that P is a perfect subset of X. Moreover, using (iii), it is

easy to check that P is in addition an antichain.

We proceed to the construction. For n = 0, we set U(∅) = X. Let ξ < ζ < ω1.

Then xξ < xζ , and so xζ £ xξ . In particular, (xζ , xξ) /∈ F1. Hence, there exist V 0,W 0

open subsets of X such that xζ ∈ V 0, xξ ∈ W 0, and (V 0 × W 0) ∩ F1 = ∅. Notice

that both V 0 ∩ Γ and W 0 ∩ Γ are uncountable. So we may select η < θ < ω1 such

that xη ∈ V 0 and xθ ∈ W 0. As xθ £ xη , we find V 1,W 1 open subsets of V 0 and W 0,

respectively such that xθ ∈ W 1, xη ∈ V 1, and (W 1 × V 1) ∩ F1 = ∅. Notice that

conditions (iii) and (iv) above are satisfied for V 1 and W 1 except, possibly, (i) and

(ii). Thus, refining, we find U(0) and U(1) open subsets of V 1 and W 1 respectively such

that conditions (i)–(iv) are satisfied. For the general step we proceed similarly.

For more information on the structure of Borel thin orders we refer to the work

of A. Louveau [11], and A. Louveau and J. Saint Raymond [12]. For applications of

the theory of Borel orders to Banach space theory we refer to the work of C. Rosendal

[15].

We will also need the following special case of the theorem of J. H. Silver [17]

on the number of equivalence classes of co-analytic equivalence relations. The proof

given below is an adaptation of Louveau’s approach on Silver’s theorem via the so-

called Gandy–Harrington topology (see [13]) in an easier setting.

Lemma 2.2 Let X be a Polish space and ∼ an Fσ equivalence relation on X. Then,

either the equivalence classes of ∼ are countable, or there exists a Cantor set P ⊆ X

consisting of pairwise inequivalent elements.

Proof Let B = (Un)n be a countable basis of X. For every closed subset F of X let

D(F) = F \
⋃

{Un ∈ B : ∃x ∈ F with Un ∩ F ⊆ [x]},

where [x] = {y ∈ X : x ∼ y}. That is, D(F) results by removing from F all

basic relatively open subsets of F which are contained in a single equivalence class.

Clearly D(F) is closed and D(F) ⊆ F. By transfinite recursion, we define a decreasing

sequence (Xξ)ξ<ω1
of closed subsets of X as follows. We set X0 = X, Xξ+1 = D(Xξ)

and Xλ =
⋂

ξ<λ Xξ if λ is limit. There exists ξ0 < ω1 such that Xξ0
= Xξ0+1.

Case 1: Xξ0
= ∅. Notice that for every ξ < ξ0 the set Xξ \ Xξ+1 is contained in at

most countably many equivalence classes. As Xξ0
= ∅, we see that

X =
⋃

ξ<ξ0

Xξ \ Xξ+1.
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Hence, this case implies that the equivalence classes of ∼ are countable.

Case 2: Xξ0
6= ∅. We set Y = Xξ0

and ∼ ′
= ∼∩Y 2. Clearly ∼ ′ is Fσ in Y 2. We claim

that ∼ ′ is meager in Y 2. By the Kuratowski–Ulam theorem (see [9, Theorem 8.41]),

it is enough to show that for every x ∈ Y the set

[x] ′ = {y ∈ Y : x ∼ ′ y} = {y ∈ Y : x ∼ y}

is meager. Notice that [x] ′ is Fσ in Y . So if [x] ′ were not meager, then there would

have existed Un ∈ B such that Un ∩Y ⊆ [x] ′. This implies that D(Xξ0
) Ã Xξ0

, which

is a contradiction. Thus, ∼ ′ is meager in Y 2 as claimed. It follows by a classical result

of Mycielski (see [9, Theorem 19.1]) that there exists a Cantor set P ⊆ Y such that

x ≁ ′ y for all x, y ∈ P with x 6= y. This clearly implies that x ≁ y for all x, y ∈ P

with x 6= y.

3 Coding (SPw(X),≤) as an Fσ Order

Let X be a separable Banach space. Our aim is to show that the quasi-order

(SPw(X),≤) can be realized as an Fσ order. This is done in a rather standard and

natural way.

Let U be the universal space of A. Pelczynski for unconditional basic sequences

(see [14]). That is, U has an unconditional Schauder basis (un)n and for any other

unconditional Schauder basic sequence (yn)n in some Banach space Y there exists

L = {l0 < l1 < · · · } ∈ [N] such that (yn)n is equivalent to (uln )n. In what follows,

for every L = {l0 < l1 < · · · } ∈ [N] by (un)n∈L we denote the subsequence (uln )n of

(un)n determined by L. Define ≤ in [N] × [N] by

L ≤ M ⇐⇒ (un)n∈L is dominated by (un)n∈M .

Clearly ≤ is a quasi-order. Let ∼ be the associated equivalence relation (i.e., L ∼ M

if and only if L ≤ M and M ≤ L) and let < be the strict part of ≤, i.e., L < M if and

only if L ≤ M and M £ L. Notice that L ∼ M if and only if the sequences (un)n∈L

and (un)n∈M are equivalent as Schauder basic sequences. We have the following easy

fact whose proof is sketched for completeness.

Fact 3.1 Both ≤ and ∼ are Fσ .

Proof It is enough to show that ≤ is Fσ . For every K ∈ N with K ≥ 1 let ≤K be the

relation on [N] × [N] defined by

L ≤K M ⇐⇒ (un)n∈L is K-dominated by (un)n∈M .

It is easy to see that ≤K is closed in [N]×[N]. As ≤ is the union of ≤K over all K ≥ 1,

the result follows.

Our coding of (SPw(X),≤) as an Fσ order will be done via the following lemma.

Lemma 3.2 Let X be a separable Banach space. Then there exists AX ⊆ [N] analytic

such that the following are satisfied.
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(i) For every (yn)n ∈ SPw(X) there exists L ∈ AX such that (yn)n is equivalent to

(un)n∈L.

(ii) For every L ∈ AX there exists (yn)n ∈ SPw(X) such that (un)n∈L is equivalent to

(yn)n.

Proof Recall that a sequence (xn)n in X is said to be Cesaro summable if

lim
n→∞

x0 + · · · + xn−1

n
= 0.

Let SPC be the subset of XN defined by

(xn)n ∈ SPC ⇐⇒ (xn)n is seminormalized, Schauder basic, Cesaro summable

and C-Schreier spreading for some C ≥ 1.

It is easy to check that SPC is a Borel subset of XN (actually, it is Fσδ). Consider the

subset A of [N] defined by

L ∈ A ⇐⇒ if L = {l0 < l1 < · · · }, then ∃(xn)n ∈ XN∃θ ≥ 1 with
[

(xn)n ∈

SPC and
(

∀k ∀k ≤ n0 < · · · < nk we have (xni
)k

i=0

θ
∼ (uli )

k
i=0

)]

.

As SPC is Borel in XN, it is easy to see that the set A is analytic. Denote by (en)n the

standard basis of ℓ1. Let us isolate the following property of the set A.

(P) If L ∈ A, then the sequence (un)n∈L is not equivalent to (en)n. This follows

from the fact that every sequence (xn)n belonging to SPC is a Cesaro summable

Schauder basic sequence.

The proof of the lemma will be finished once we show the following.

Claim 1 Let (yn)n ∈ SPw(X) which is not equivalent to (en)n. Then there exists

L ∈ A such that (yn)n is equivalent to (un)n∈L. Conversely, for every L ∈ A there exists

(yn)n ∈ SPw(X) which is not equivalent to (en)n and such that (un)n∈L is equivalent to

(yn)n.

Proof of Claim 1 Let (yn)n ∈ SPw(X) not equivalent to (en)n and let (xn)n be a

seminormalized weakly-null sequence in X that generates it. By passing to a sub-

sequence, we may assume that (xn)n is a seminormalized, C-Schreier spreading (for

some C ≥ 1) Schauder basic sequence. As (yn)n is not equivalent to (en)n, by a result

of H. P. Rosenthal we see that (xn)n has a subsequence (xnk
)k which is additionally

Cesaro summable (see [3, Theorem II.9.8]). Hence (xnk
)k ∈ SPC. As (xnk

)k still gen-

erates (yn)n as a spreading model, we easily see that there exists L ∈ A such that

(un)n∈L is equivalent to (yn)n.

Conversely, let L ∈ A. We pick (xn)n ∈ SPC witnessing that L ∈ A. By property

(P) above, we have that (un)n∈L is not equivalent to (en)n. Now we claim that (xn)n is

weakly-null. Assume not. Then there exist M = {m0 < m1 < · · · } ∈ [N], x∗ ∈ X∗

and ε > 0 such that x∗(xmn
) > ε for every n ∈ N (notice also that mn ≥ n). Let
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K ≥ 1 be the basis constant of (xn)n. Let also C ≥ 1 be such that (xn)n is C-Schreier

spreading. Observe that for every n ∈ N we have

∥

∥

∥

x0 + · · · + x2n−1

2n

∥

∥

∥
≥

1

2(K + 1)

∥

∥

∥

xn + · · · + x2n−1

n

∥

∥

∥

≥
1

2C(K + 1)

∥

∥

∥

xmn
+ · · · + xm2n−1

n

∥

∥

∥
≥

ε

2C(K + 1)
,

which implies that (xn)n is not Cesaro summable, a contradiction. Thus, (xn)n is

weakly-null. Let (yn)n be a spreading model generated by a subsequence of (xn)n.

Then (yn)n ∈ SPw(X). Invoking the definition of the set A again, we see that (yn)n

is equivalent to (un)n∈L. This yields additionally that (yn)n is not equivalent to (en)n.

The claim is proved.

If (en)n /∈ SPw(X), then we set AX = A. If (en)n ∈ SPw(X), then we set AX =

A ∪ {L ∈ [N] : (un)n∈L ∼ (en)n}. Clearly AX is analytic and, by Claim 1, AX is as

desired. The lemma is proved.

4 Proof of Theorem 1.1

Let X be a separable Banach space such that SPw(X) is uncountable. Let AX be the

analytic subset of [N] obtained by Lemma 3.2. We fix Φ : N
N → [N] continuous with

Φ(N
N) = AX . We define - on N

N by

α - β ⇐⇒ Φ(α) ≤ Φ(β).

By Fact 3.1 and the continuity of Φ, we see that - is an Fσ quasi-order on the Baire

space N
N.

Lemma 4.1 Let X be a separable Banach space such that SPw(X) is uncountable, and

consider the Fσ quasi-order (N
N,-). Then either

(i) (N
N,-) is not thin, or

(ii) (N
N,-) contains a strictly increasing sequence of length ω1.

Proof Let ∼= be the equivalence relation associated with -, i.e., α ∼= β if α - β and

β - α. Notice that

α ∼= β ⇐⇒ Φ(α) ∼ Φ(β)

for every α, β ∈ N
N. Also observe that ∼= is an Fσ equivalence relation. As SPw(X)

is uncountable, we see that ∼= has uncountably many equivalence classes. Thus, by

Lemma 2.2, there exists a Cantor set P ⊆ N
N such that α ≇ β for every α, β ∈ P with

α 6= β. Fix a homeomorphism h : 2N → P. Let <lex be the (strict) lexicographical

ordering on 2N. For every Q ⊆ 2N, denote by [Q]2 the set of unordered pairs of

elements of Q. Consider the following subsets I and D of [2N]2 defined by

{σ, τ} ∈ I ⇐⇒ if σ <lex τ , then h(σ) - h(τ ),

{σ, τ} ∈ D ⇐⇒ if σ <lex τ , then h(τ ) - h(σ).
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It is easy to check that both I and D are Borel in [2N]2, in the sense that the sets

I
∗

= {(σ, τ ) ∈ 2N × 2N : {σ, τ} ∈ I} and D
∗

= {(σ, τ ) ∈ 2N × 2N : {σ, τ} ∈ D}

are both Borel subsets of 2N × 2N. By a result of F. Galvin (see [9, Theorem 19.7]),

there exists Q ⊆ 2N perfect such that one of the following cases occur.

Case 1:[Q]2 ⊆ I. We fix a sequence (σn)n in Q that is increasing with respect to <lex.

Then h(σn) - h(σm) for all n < m. As h(Q) ⊆ P and P consists of inequivalent

elements with respect to ∼=, we see that the sequence (h(σn))n is strictly increasing.

This yields that (SPw(X),≤) contains a strictly increasing sequence. By a result of

B. Sari [16], we conclude that SPw(X) must contain a strictly increasing sequence of

length ω1. This clearly implies that (N
N,-) contains a strictly increasing sequence of

length ω1, i.e., part (ii) of the lemma is valid.

Case 2:[Q]2 ⊆ D. Let (τn)n be a sequence in Q which is decreasing with respect

to <lex. Arguing as in Case 1 above, we see that the sequence (h(τn))n is strictly

increasing. So this case also implies part (ii) of the lemma.

Case 3:[Q]2 ∩ (I ∪ D) = ∅. We set R = h(Q). Clearly R is a perfect subset of N
N.

It is easy to check that if α, β ∈ R with α 6= β, then α and β are incomparable with

respect to -. Hence R is a perfect antichain of (N
N,-), i.e., (N

N,-) is not thin. Thus,

this case implies part (i) of the lemma.

Lemma 4.2 Let X be a separable Banach space such that SPw(X) is uncountable.

Then there exists a Cantor set P ⊆ AX consisting of pairwise incomparable elements

with respect to domination.

Proof Assume, towards a contradiction, that such a Cantor set P does not exist. This

easily implies that (N
N,-) is a thin quasi-order. By Lemma 4.1, we see that (N

N,-)

is an Fσ thin order that contains an ω1-chain. But this possibility is ruled out by

Lemma 2.1. Having arrived at the desired contradiction, the lemma is proved.

Remark 1 We notice that Lemma 3.2 and Lemma 4.2 immediately yield that if X is

a separable Banach space such that SPw(X) is uncountable, then SPw(X) must contain

an antichain of the size of the continuum.

We are ready to proceed to the proof of Theorem 1.1.

Proof of Theorem 1.1 Let P ⊆ AX be the Cantor set obtained by Lemma 4.2. By

passing to a perfect subset of P if necessary, we may assume that

(A) for every L ∈ P the sequence (un)n∈L is not equivalent to the standard basis of ℓ1.

We will construct the family (xt )t∈2<N by “pulling back” inside X the spreading models

coded by P. To this end, let (dm)m be a countable dense subset of X. Let SPC be the

Borel subset of XN defined in the proof of Lemma 3.2. Consider the subset G of

P × [N] defined by

(L, M) ∈ G ⇐⇒ if L = {l0 < l1 < · · · } and M = {m0 < m1 < · · · }, then
[

L ∈ P and (dmn
)n ∈ SPC and

(

∃θ ≥ 1∀k ∀k ≤ n0 < · · · <

nk we have (dmni
)k

i=0

θ
∼ (uli )

k
i=0

)]

.
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Let us gather some of the properties of the set G.

(P1) The set G is Borel.

(P2) For every (L, M) ∈ G and every N infinite subset of M, if (yn)n is a spread-

ing model generated by a subsequence of (dm)m∈N , then (yn)n is equivalent to

(un)n∈L.

(P3) For every L ∈ P there exists M ∈ [N] such that (L, M) ∈ G.

(P4) For every (L, M) ∈ G, the sequence (dm)m∈M is weakly-null.

Properties (P1) and (P2) are rather straightforward consequences of the definition of

the set G. Property (P3) follows by assumption (A) above, the fact that P is a subset

of AX and a standard perturbation argument. Property (P4) has already been verified

in the proof of Lemma 3.2.

As G is a Borel subset of P × [N], by (P3) above and the Yankov–von Neumann

uniformization theorem (see [9, Theorem 18.1]), there exists a map f : P → [N]

that is measurable with respect to the σ-algebra generated by the analytic sets and

such that (L, f (L)) ∈ G for every L ∈ P. Notice that the map f must be one-

to-one. Invoking the classical fact that analytic sets have the Baire property, by [9,

Theorem 8.38] and by passing to a perfect subset of P, we may assume that f is

actually continuous. Moreover, by passing to a further perfect subset of P if necessary,

we may also assume that there exist j0, k0 ∈ N such that for every L ∈ P, the sequence

(dm)m∈ f (L) is j0-Schreier spreading and satisfies 1
k0

≤ ‖dm‖ ≤ k0 for every m ∈ f (L).

The function f is one-to-one and continuous. Hence, identifying every element

of [N] with its characteristic function (i.e., an element of 2N), we see that the set f (P)

is a perfect subset of 2N. Recall that by ϕ : 2<N → N we denote the canonical bijection

described in the introduction. By recursion on the length of finite sequences in 2<N,

we may easily select a family (ms)s∈2<N in N with the following properties.

(P5) For every s1, s2 ∈ 2<N we have ϕ(s1) < ϕ(s2) if and only if ms1
< ms2

.

(P6) For every σ ∈ 2N, setting Mσ = {mσ|n : n ∈ N} ∈ [N], there exists a unique

Lσ ∈ P such that Mσ ⊆ f (Lσ).

We set xs = dms
for every s ∈ 2<N. We observe that 1

k0
≤ ‖xs‖ ≤ k0 for all s ∈ 2<N.

We also notice that for every σ ∈ 2N, the sequence (xσ|n)n is j0-Schreier spreading.

Now let s ∈ 2<N with |s| = k and σ ∈ 2N with σ|k = s. By properties (P4)

and (P6), we see that the sequence (xσ|n)n>k is weakly-null. Using this observation

and the classical procedure of Mazur for constructing Schauder basic sequences (see

[10]), we may select a family (st )t∈2<N in 2<N such that, setting xt = xst
for every

t ∈ 2<N, the following are satisfied.

(P7) For every t1, t2 ∈ 2<N we have that st1
⊏ st2

if and only if t1 ⊏ t2. Moreover,

|st1
| < |st2

| if and only if ϕ(s1) < ϕ(s2).

(P8) If (tn)n is the enumeration of 2<N according to ϕ, then the sequence (xtn
)n is

Schauder basic.

It is easy to verify that the family (xt )t∈2<N has all properties stated in Theorem 1.1.

Remark 2 We would like to note a few things on the richness of the structure

(SPw(X),≤) when SPw(X) is uncountable. Let X be a separable Banach space and
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assume that there exist C ≥ 1 and a family {(yξ
n)n : ξ < ω1} of mutually inequiv-

alent spreading models generated by weakly-null sequences in X such that for every

ξ < ζ < ω1 either the sequence (yξ
n)n is C-dominated by (yζ

n)n or vice versa. By

Lemma 3.2, there exist K ≥ 1 and U ⊆ AX uncountable such that the following

hold. For every L, M ∈ U either (un)n∈L is K-dominated by (un)n∈M or vice versa,

and moreover, for every L ∈ U there exists a unique ordinal ξL < ω1 such that

(un)n∈L is equivalent to (yξL
n )n. Let U be the closure of U in [N] and set F = U ∩ AX .

Then F is an uncountable analytic set. Consider the following symmetric relation ≈K

in [N] × [N] defined by

L ≈K M ⇐⇒ either (un)n∈L is K-dominated by (un)n∈M or vice versa.

It is easy to see that ≈K is closed in [N]×[N]. By the choice of U , we have L ≈K M for

every L, M ∈ U . As ≈K is closed, we see that L ≈K M for every L, M ∈ U . In partic-

ular, L ≈K M for every L, M ∈ F. Notice that U ⊆ F, and so the relation ∼ of equiva-

lence restricted on F has uncountably many equivalence classes. By Lemma 2.2, there

exists a perfect subset P of F such that for every L, M ∈ P the sequences (un)n∈L and

(un)n∈M are not equivalent1. Thus, we have shown the following.

Proposition 4.3 Let X be a separable Banach space and assume that there exist C ≥ 1

and a family {(yξ
n)n : ξ < ω1} of mutually inequivalent spreading models generated by

weakly-null sequences in X such that for every ξ < ζ < ω1 either the sequence (yξ
n)n

is C-dominated by (yζ
n)n or vice versa. Then (SPw(X),≤) contains a linearly ordered

subset of the size of the continuum.

Related to Proposition 4.3, the following question is open to us. Let X be a separa-

ble Banach space and assume that SPw(X) is uncountable. Does (SPw(X),≤) contain

a linearly ordered subset of the size of the continuum, or at least uncountable?

5 Proof of Theorem 1.3

(i) First we need to recall some standard facts (see [9, p. 351]. Let S be a set and ≺ a

strict, well-founded (binary) relation on S. This is equivalent to asserting that there

is no infinite decreasing chain · · · ≺ s1 ≺ s0. By recursion on ≺, we define the rank

function ρ≺ : S → Ord of ≺ by the rule

ρ≺(s) = sup{ρ≺(x) + 1 : x ≺ s}.

In particular, ρ≺(s) = 0 if and only if s is minimal. The rank ρ(≺) of ≺ is defined by

ρ(≺) = sup{ρ≺(s) + 1 : s ∈ S}.

We are ready to proceed to the proof. So, let X be a separable Banach space such

that SPw(X) contains a strictly decreasing sequence of length ω1. Let AX be the ana-

lytic subset of [N] obtained by Lemma 3.2. Consider the following relation ≺ on [N]

defined by

L ≺ M ⇔ (L ∈ AX) and (M ∈ AX) and (M < L).

1This does not follow directly by Lemma 2.2 as F is not Polish. One has to observe that F is the
continuous surjective image of N

N and use an argument as in the beginning of Section 4.
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That is, ≺ is the relation > (the reverse of <) restricted on AX × AX . Clearly ≺ is

analytic (as a subset of [N] × [N]). Let {(yξ
n)n : ξ < ω1} be a strictly decreasing

sequence in SPw(X). By Lemma 3.2, for every ξ < ω1 we may select Lξ ∈ AX such

that (un)n∈Lξ
is equivalent to (yξ

n)n. It follows that Lξ < Lζ if and only if ζ < ξ.

Assume, towards a contradiction, that SPw(X) does not contain a strictly increas-

ing sequence of length ω1. Then, by the result of Sari [16] already quoted in the proof

of Theorem 1.1, SPw(X) does not contain a strictly increasing sequence of length ω.

It follows that ≺ is a well-founded relation on [N] which is in addition analytic. By

the Kunen–Martin theorem (see [9, Theorem 31.5]), we see that ρ(≺) is a countable

ordinal, say ξ0. For every η < ξ0 let

A
η
X = {L ∈ AX : ρ≺(L) = η}.

As ρ≺(L) < ξ0 for every L ∈ AX we see that AX =
⋃

η<ξ0
A

η
X . Moreover, for every

L, M ∈ A
η
X we have that either L ∼ M or L ⊥ M. That is, we have partitioned

the quotient AX/∼ into countably many antichains. As the family {Lξ : ξ < ω1}
is uncountable, we see that there exist ξ, ζ < ω1 with ξ 6= ζ and η < ξ0 such that

Lξ, Lζ ∈ A
η
X . But this is clearly impossible. Having arrived at the desired contradic-

tion, the proof of part (i) is completed.

(ii) Again we need to discuss some standard facts. Let R be a binary relation on

N, i.e., R ⊆ N × N. By identifying R with its characteristic function, we view every

binary relation on N as an element of 2N×N. Let LO be the subset of 2N×N consisting

of all (strict) linear orderings on N. It is easy to see that LO is a closed subset of 2N×N

(see also [9, p. 212]). For every α ∈ LO and every n, m ∈ N we write

n <α m ⇐⇒ α(n, m) = 1.

Let WO be the subset of LO consisting of all well orderings on N. For every α ∈ WO,

|α| stands for the unique ordinal which is isomorphic to (N, <α). We will need the

following boundedness principle for WO (see [9, p. 240]): if B is an analytic subset

of WO, then sup{|α| : α ∈ B} < ω1.

We proceed to the proof of part (ii). Let X be a separable Banach space. Let AX be

the analytic subset of [N] obtained by Lemma 3.2. Consider the following subset OX

of LO defined by

α ∈ OX ⇐⇒ ∃(Ln)n ∈ ([N])N with
[

(∀n Ln ∈ AX) and [∀n, m (n <α m ⇐⇒

Ln > Lm)]
]

.

As AX is analytic, it easy to check that OX is an analytic subset of LO.

Claim 2 The set SPw(X) does not contain a strictly increasing sequence if and only if

OX ⊆ WO.

Proof of Claim 2 First assume that there exists α ∈ OX with α /∈ WO. By definition,

there exists a sequence (Ln)n in AX such that for all n, m ∈ N we have

n <α m ⇐⇒ Ln > Lm.
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As α /∈ WO, there exists a sequence (ni)i in N such that ni+1 <α ni for all i ∈ N. It

follows that (Lni
)i is a strictly increasing sequence, which clearly implies that SPw(X)

contains a strictly increasing sequence.

Conversely, assume that SPw(X) contains a strictly increasing sequence. Hence, we

may find a sequence (Ln)n in AX such that Ln < Lm if and only if n < m. Let α ∈ LO

be defined by

n <α m ⇐⇒ n > m (⇐⇒ Ln > Lm).

Then α ∈ OX and α /∈ WO.

Now, let X be a separable Banach space that does not contain a strictly increasing

sequence. By Claim 2, we see that the set OX is an analytic subset of WO. Hence, by

boundedness, we see that

sup{|α| : α ∈ OX} = ξX < ω1.

We claim that ξX is the desired ordinal. Indeed, let ξ be a countable ordinal and

{(yζ
n)n : ζ < ξ} a strictly decreasing sequence in SPw(X). By Lemma 3.2, we may

find (Lζ)ζ<ξ in AX which is strictly decreasing. Fix a bijection e : N → {ζ : ζ < ξ}
and define α ∈ WO by

n <α m ⇐⇒ e(n) < e(m) (⇐⇒ Le(n) > Le(m)).

It follows that α ∈ OX , and so, ξ = |α| ≤ ξX .

Remark 3 Denote by SB the standard Borel space of all separable Banach spaces as

it is discussed in [2, 4, 9]. Consider the subset NCI of SB defined by

X ∈ NCI ⇐⇒ SPw(X) does not contain a strictly increasing infinite sequence.

It can be shown, using some results from [5], that the set NCI is co-analytic non-

Borel in SB. Moreover, there exists a co-analytic rank φ : NCI → ω1 on NCI such

that for every X ∈ NCI we have

sup{|α| : α ∈ OX} ≤ φ(X),

where OX is as in the proof of Theorem 1.3(ii) (for the definition of co-analytic ranks

we refer to [9], while for applications of rank theory to Banach space theory we refer

to [2]).
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