Canad. Math. Bull. Vol. 42 (2), 1999 pp. 248-256

The Classification of **Pin**₄-Bundles over a 4-Complex

Christian Weber

Abstract. In this paper we show that the Lie-group Pin₄ is isomorphic to the semidirect product $(SU_2 \times SU_2) Z/2$ where Z/2 operates by flipping the factors. Using this structure theorem we prove a classification theorem for Pin₄-bundles over a finite 4-complex *X*.

1 Introduction

Let *G* be a compact Lie group. The set of isomorphism classes of principal *G*-bundles over a topological space *X* is in one-to-one correspondence to free homotopy classes from *X* to *BG*. The homotopy type of *BG* is determined by being the orbit space of a free *G* action on a contractible space *EG*. This means that knowing the homotopy type of the (k + 1)skeleton of *BG* translates the classification of principal *G*-bundles over a finite *k*-complex *X* into calculations in obstruction theory.

We now specialize to *X* being a finite 4-complex. The case $G = SU_2$ is very easy: The fact that the 5-skeleton of BSU_2 is S^4 and Hopf's classification theorem for $[X, S^4]$ imply that SU_2 -bundles over a four-complex *X* are in 1–1 correspondence to $H^4(X; \mathbb{Z})$, the isomorphism given by the second Chern class.

A. Dold and H. Whitney clarified the case $G = SO_n$. In [DW59] a general classification theorem for SO_n -bundles is given in terms of obstruction theory. The three dimensional case takes a particular nice form: SO_3 -bundles over a 4-complex are classified by the second Stiefel-Whitney class w_2 and the first Pontrijagin class p_1 . Moreover, every pair (w_2 , p_1) satisfying $\mathcal{P}w_2 \equiv p_1 \mod 4$, where \mathcal{P} is the Pontrijagin square, is realized as classifying pair for some SO_3 -bundle P over X.

Let's move on to the case of a disconnected structure group. The case of $G = O_3$ follows from the SO₃-case since $O_3 = SO_3 \times \mathbb{Z}/2$ and therefore $BO_3 = BSO_3 \times B\mathbb{Z}/2$. In this paper we want to look at the Lie group Pin₄, a double cover of O_4 , and will give a classification theorem for Pin₄-bundles over a 4-complex.

Acknowledgements This paper is part of the author's Ph.D. thesis [Web96] written under the supervision of Prof. Ian Hambleton to whom the author is indebted for support and many helpful discussions. Cordial thanks go to Dr. Peter Teichner for many clarifying conversations. The author also thanks the German National Scholarship Foundation for financial support and the Max-Planck-Institut for its warm hospitality and financial support in the final stage of his thesis. Finally the author thanks the referee for helpful suggestions to improve the readability of this paper.

Received by the editors October 16, 1996.

AMS subject classification: 55N25, 55R10, 57S15.

[©]Canadian Mathematical Society 1999.

Clifford Algebras, Pin and Spin 2

General Setup We'll give a brief review of the basics. A more detailed reference is Chapter I in [LM89]. Let (V, q) be a real vector space with quadratic form q. The Clifford algebra Cl(V, q) is the algebra generated by all $v \in V$ and 1 subject to the relations $v \cdot v = -q(v) \cdot 1$. We are particularly interested in the case $V = \mathbb{R}^n$ and $q^{\pm}(v) = \mp |v|^2$, and will write $\operatorname{Cl}_n^{\pm}$ for $Cl(\mathbb{R}^n, q^{\pm})$.

 $\operatorname{Pin}_n^{\pm}$ is the subgroup of the multiplicative group of $\operatorname{Cl}_n^{\pm}$ generated by elements $v \in S^{n-1}$. Conjugation by an element $v \in \mathbb{R}^n \subseteq \operatorname{Pin}_n^{\pm}$ leaves $\mathbb{R}^n \subseteq \operatorname{Cl}_n^{\pm}$ invariant and preserves q. Therefore we get a map

$$\begin{split} \widetilde{\operatorname{Ad}} \colon \operatorname{Pin}_n^{\pm} &\to O_n \\ \phi &\mapsto \big(y \mapsto \alpha(\phi) y \phi^{-1} \big), \end{split}$$

where $y \in \mathbb{R}^n$ and α is the endomorphism of $\operatorname{Cl}_n^{\pm}$ which extends $v \mapsto -v$ on \mathbb{R}^n . $\widetilde{\operatorname{Ad}}$ is a twofold cover, [LM89, I.2.10]. For $v \in \mathbb{R}^n \operatorname{\widetilde{Ad}}(v)$ is just the reflection at the hyperplane perpendicular to v.

The preimage of SO_n under \widetilde{Ad} is called Spin[±]_n and is the subgroup of Pin[±]_n consisting of products of even numbers of $v \in S^{n-1}$. Since $\alpha(\phi) = \phi$ for $\phi \in \text{Spin}_n$ we see that restricted to Spin_n Ad (ϕ) is just given by conjugation with $\phi \in$ Spin_n. We will write Ad for the map $\operatorname{Pin}_n^{\pm} \to O_n$ given by conjugation, and therefore $\operatorname{\widetilde{Ad}}_{|\operatorname{Spin}_n} = \operatorname{Ad}_{|\operatorname{Spin}_n}$. $\operatorname{Pin}_n^{\pm}$ has a nontrivial one dimensional representation $\chi: \operatorname{Pin}_n^{\pm} \to \mathbb{Z}/2$ which is given

by extending $V \ni v \mapsto -1$ to all of $\operatorname{Pin}_n^{\pm}$. We see that $\operatorname{Ker}(\chi) = \operatorname{Spin}_n^{\#}$.

Since SO_n is connected, $\pi_1(SO_n) = \mathbb{Z}/2$ and both of Spin[±] are nontrivial coverings, we see that Spin_n^+ and Spin_n^- must be isomorphic as groups and coverings of SO_n . Keeping the ambiguity in mind we will from now on drop the superscript and refer only to Spin_n.

Spin₄ and Quaternions Recall that $H = \mathbb{R}\langle i, j, k \rangle$ subject to the relations $i^2 = j^2 = k^2 = k^2$ ijk = -1. The conjugate of a quaternion q = a + bi + cj + dk is given by $\bar{q} = a - bi - cj - dk$, and $N(q) := q\bar{q}$ defines a norm on H. The group of unit quaternions, *i.e.*, the 3-sphere, can be identified with SU_2 , in particular

$$i = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad j = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad k = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.$$

Consider the map

$$\mu \colon \operatorname{SU}_2 \times \operatorname{SU}_2 \to \operatorname{GL}_4(\mathbb{R})$$
$$(p,q) \mapsto (x \mapsto pxq^{-1})$$

given by quaternionic multiplication. μ maps into SO₄ since $\mu(p, q)$ is norm preserving and has determinant 1. μ defines a double cover of SO₄ and hence there is an isomorphism $\Phi: \operatorname{SU}_2 \times \operatorname{SU}_2 \to \operatorname{Spin}_4.$

The Structure of Pin_{*n*} The exact sequence of groups

$$1 \rightarrow \operatorname{Spin}_n \rightarrow \operatorname{Pin}_n^{\pm} \xrightarrow{\chi} \mathbb{Z}/2 \rightarrow 1$$

with $n \ge 3$ splits via

$$\sigma(-1) = \begin{cases} e_1 & \text{in the Pin}_4^+ \text{ case,} \\ e_1 e_2 e_3 & \text{in the Pin}_4^- \text{ case.} \end{cases}$$

The center of Spin_n is given by

$$C(\operatorname{Spin}_n) = \begin{cases} \mathbb{Z}/2 = \langle -1 \rangle & n \text{ odd,} \\ \mathbb{Z}/2 \oplus \mathbb{Z}/2 = \langle \omega \rangle \oplus \langle -\omega \rangle & n \equiv 0 \mod 4 \\ \mathbb{Z}/4 = \langle \omega \rangle & n \equiv 2 \mod 4, \end{cases}$$

where $\omega = e_1 \cdots e_n$ is the volume element. We'll always assume that (e_1, \ldots, e_n) is an orthonormal basis of \mathbb{R}^n . Moreover if σ^{\pm} is any splitting element of the extension above then $\sigma^{-1}\omega\sigma = (-1)^{n-1}\omega$.

Recall that, unlike in the case where N is abelian, for group extensions of the form

$$1 \rightarrow N \rightarrow G \rightarrow Q \rightarrow 1$$

with nonabelian *N* there may not be a well-defined operation of *Q* on *N* given by conjugation with a (set theoretic) section $Q \to G$. However any two choices for a section differ by an element in *N* which induces an inner automorphism of *N*. This means that there is a well defined homomorphism from *Q* to Out(N) = Aut(N) / Inn(N).

Since $\text{Spin}_4 \cong S^3 \times S^3$ we see that $\text{Out}(\text{Spin}_4) = \mathbb{Z}/2$. The higher dimensional even Spin groups are simple and looking at their Dynkin diagram we can read of their outer isomorphisms. The list for the dimensions divisible by 4 is

$$\operatorname{Out}(\operatorname{Spin}_{4n}) = \begin{cases} \mathbb{Z}/2 & n = 1\\ S_3 & n = 2\\ \mathbb{Z}/2 & n \ge 3. \end{cases}$$

Moreover, in all cases the automorphism class is detected by the induced automorphism of the center.

Extensions $N \to G \to Q$ with fixed homomorphism $\phi: Q \to \text{Out}(N)$, if there are any, are in one-to-one correspondence to $H^2(Q; CN)$, where we view CN as a Q module, see [EM47]. Therefore we calculate

$$H^{2}(\mathbb{Z}/2; C\operatorname{Spin}_{n}) = \begin{cases} \mathbb{Z}/2 & n \text{ odd} \\ 0 & n \equiv 0 \mod 4 \\ \mathbb{Z}/2 & n \equiv 2 \mod 4. \end{cases}$$

Putting the information together we see

Proposition 2.1 If $n \equiv 0 \mod 4$ then Pin_n^+ and Pin_n^- are isomorphic as groups.

In general it might be quite difficult to give a more concrete description of the operation of $\mathbb{Z}/2$ on Spin_n than just saying that it is given by conjugation with a split element. However for Spin₄ this is very easy:

Theorem A Pin_4^+ and Pin_4^- are both isomorphic to the semidirect product

$$(SU_2 \times SU_2) \mathbb{Z}/2$$

where -1 operates by flipping the factors.

A word of warning: The isomorphism between Pin_4^+ and Pin_4^- is one of Lie groups and is not compatible with the projection to O_4 . Therefore the obstructions for the existence of Pin_4^+ and Pin_4^- structures on a given O_4 bundle are different in general. However, since we are only interested in Pin_4 principal bundles and isomorphisms between them, we can drop the superscript again and refer to Pin_4 as given by the semidirect product above.

3 Bundle Theory

3.1 Spin₄ Bundles

The adjoint representation Ad : $\text{Spin}_n \to \text{SO}_n$ defines an associated SO_n bundle P_{SO} for every Spin_n bundle P. We denote the Euler and Pontrijagin classes of P_{SO} by e(P) and $p_i(P)$ respectively. The isomorphism $\text{Spin}_4 \cong \text{SU}_2 \times \text{SU}_2$ implies that $B\text{Spin}_4 \simeq B\text{SU}_2 \times B\text{SU}_2 \simeq HP^{\infty} \times HP^{\infty}$. Recall that $H^4(HP^{\infty}; \mathbb{Z}) \cong \mathbb{Z}$ is generated by $c_2(\gamma)$ where γ is the universal SU₂-bundle. The homotopy class of a map $f: X \to B\text{Spin}_4$ therefore defines an ordered pair $(a, b) \in H^4(X; \mathbb{Z}^2)$ by pulling back $(c_2(\pi_1^*\gamma), c_2(\pi_2^*\gamma))$ where $\pi_{1/2}$ is the projection to the first and second factor. Using the Borel-Hirzebruch formalism for characteristic classes one calculates (see [HH58]).

Lemma 3.1 The characteristic classes a, b and e, p_1 of a Spin₄ bundle are subject to the relations

$$e = -a + b$$
 $p_1 = 2(a + b).$

Combining Hopf's classification theorem for $[X, S^4]$ with the above lemma we see

Proposition 3.2

- *Two* Spin₄ principal bundles over a compact 4-complex X are isomorphic iff their characteristic classes (a, b) in H⁴(X; Z²) coincide as ordered pairs. Moreover, every ordered pair (a, b) can be realized.
- *ii)* If $H^4(X; \mathbb{Z})$ has no 2-torsion, then two Spin₄ bundles are isomorphic iff their Euler and first Pontrijagin class coincide.
- *iii)* A Spin₄ bundle over an oriented 4-manifold is characterized by its Euler and Pontrijagin number.

Moreover, the pairs (e,p) which can be realized are exactly the ones satisfying 2|p and 4|(p+2e).

Christian Weber

3.2 Pin₄ Bundles

Let us start by fixing some handy notation for weakly associated Pin₄-bundles:

Lemma 3.3 Any Spin₄-principal bundle with characteristic classes (a, b) is isomorphic to P+Q, where P and Q are SU₂-bundles with second Chern class equal to a and b, and $P+Q := \Delta^*(P \times Q), \Delta \colon X \hookrightarrow X^2$ is the diagonal. The weakly associated Pin₄-bundle has the form

$$(P+Q) \times_{\mathrm{Spin}_4} \mathrm{Pin}_4 \cong P + Q \coprod Q + P$$

and right multiplication on the right hand side by an element $(\alpha, \beta; \epsilon) \in \text{Pin}_4$ is given by

$$(p, q)(\alpha, \beta; \epsilon) = \begin{cases} (p\alpha, q\beta) & \epsilon = 1\\ (q\beta, p\alpha) & \epsilon = -1 \end{cases}$$
$$(q, p)(\alpha, \beta; \epsilon) = \begin{cases} (q\alpha, p\beta) & \epsilon = 1\\ (p\beta, q\alpha) & \epsilon = -1 \end{cases}$$

Proof A typical element of the LHS looks like [(p, q, a, b, e)] with $p \in P$, $q \in Q$ and $(a, b, e) \in Pin_4$. Moreover $[(p, q, a, b, e)] = [(ps^{-1}, qt^{-1}, sa, tb, e)]$ for all $(s, t) \in Spin_4$. An element of the LHS therefore has a unique representative of the form [(p, q, 1, 1, e)] for which we will write [p, q, e].

We now define Φ : LHS \rightarrow RHS by

$$\Phi([p, q, a, b, e]) := \begin{cases} (pa, qb) & e = 1, \\ (qb, pa) & e = -1 \end{cases}$$

This is well-defined, and one checks that Φ is equivariant with respect to the right multiplication with elements of Pin₄ on both sides.

Lemma 3.4 The classifying space $BPin_4$ is homotopy equivalent to the $HP^{\infty} \times HP^{\infty}$ bundle over $\mathbb{R}P^{\infty}$ given by the quotient

$$(\mathbb{H}P^{\infty} \times \mathbb{H}P^{\infty} \times S^{\infty})_{/(\bar{x},\bar{y},z)\sim(\bar{y},\bar{x},-z)}$$

Proof It suffices to give a free Pin₄ right operation on a contractible space with quotient as claimed. Think of S^{∞} to be the unit sphere in \mathbb{H}^{∞} . Now define an action

$$(S^{\infty} \times S^{\infty} \times S^{\infty}) \times \operatorname{Pin}_{4} \to S^{\infty} \times S^{\infty} \times S^{\infty}$$
$$(x, y, z) \cdot (\alpha, \beta, \epsilon) = \begin{cases} (x\alpha^{-1}, y\beta^{-1}, z) & \epsilon = 1\\ (y\alpha^{-1}, x\beta^{-1}, -z) & \epsilon = -1 \end{cases}$$

One easily checks that this is a free action with the right quotient.

Before we can prove our classification result for Pin₄ bundles we need two technical lemmas:

Lemma 3.5 Let X and Y be two connected CW complexes with basepoints x_0 and y_0 . Let $\tilde{Y} \xrightarrow{\pi} Y$ be the universal covering. Identify $\pi_1(Y, y_0)$ with the group of covering transformations of \tilde{Y} . Let $\tilde{f}, \tilde{g}: X \to \tilde{Y}, f := \pi \circ \tilde{f}$ and $g := \pi \circ \tilde{g}$. Then: $f \simeq g$ iff $\tilde{f} \simeq \alpha \circ \tilde{g}$ for some $\alpha \in \pi_1 Y$.

This can quickly be proved using covering space theory. On the algebraic side we have:

Lemma 3.6 Let X be a finite CW complex of dimension n, w: $G := \pi_1 X \to \mathbb{Z}/2$ a nonzero map, H := Ker(w) and $\Lambda := \mathbb{Z}[G/H]$ considered as a G-module. Furthermore let $\pi : X^w \to X$ be the twofold covering associated to w with covering transformation τ . Then there is an isomorphism

$$\Phi^* \colon H^*(X; \Lambda) \to H^*(X^w; \mathbb{Z}).$$

Since $\operatorname{Res}_H \Lambda \cong \mathbb{Z} \oplus \mathbb{Z}$ is a trivial H module, the map on cohomology induced by π is given by

$$H^*(X;\Lambda) \xrightarrow{\pi^*} H^*(X^w; \operatorname{Res}_H \Lambda) = H^*(X^w; \mathbb{Z} \oplus \mathbb{Z})$$
$$x \mapsto (\Phi^* x, \tau^* \Phi^* x).$$

In particular π^* is injective.

Proof Recall some facts from algebra: Let $H \subset G$ be a subgroup of finite index, M an H-module and N a G-module, then there is a natural isomorphism

$$\Phi: \operatorname{Hom}_{G}(N, \underbrace{\operatorname{Hom}_{H}(\mathbb{Z}G, M)}_{=:\operatorname{Coind}_{H}^{C}M}) \cong \operatorname{Hom}_{H}(N, M),$$

see [Bro82, p. 64]. In our situation $\Lambda = \text{Coind}_H^G \mathbb{Z}$, where \mathbb{Z} is the trivial *H*-module. Now let $N_i := C_i(\tilde{X})$ be the chain complex of the universal covering of *X*, thought of as a *G*-and *H*-module. Since the isomorphism Φ is natural it commutes with differentials, and so induces an isomorphism

$$\Phi^*: H^*(X; \Lambda) \to H^*(X^w; \mathbb{Z})$$

as claimed.

To see the second claim note that on the cochain level the map induced by π is given by

$$\operatorname{Hom}_{G}(C_{i}\widetilde{X},\Lambda) \to \operatorname{Hom}_{H}(C_{i}\widetilde{X^{w}}; \mathbb{Z} \oplus \mathbb{Z})$$
$$\alpha \mapsto (\Phi\alpha, \Phi\alpha \circ \tau).$$

This implies the lemma since the differential on the right hand side respects the direct sum decomposition given by $\mathbb{Z} \oplus \mathbb{Z}$.

The one dimensional nontrivial representation of Pin₄ defines a map w_1 from $BPin_4$ to $\mathbb{R}P^{\infty}$. The corresponding characteristic class $w_1(P)$ of a Pin₄ bundle P is equal to the first Stiefel-Whitney class of the associated O_4 bundle P_O . Using the cell decomposition of $BPin_4$ given by 3.4 one calculates that $H^4(BPin; \mathbb{Z}^-) = \langle \tilde{e} \rangle \cong \mathbb{Z}$. If $f_P: X \to BPin_4$ is the classifying map of P we set $\tilde{e}(P) := f_P^*(\tilde{e}) \in H^4(X; \mathbb{Z}^{w_1P})$ and call it the twisted Euler class

of *P*. Here $H^*(B\operatorname{Pin}_4; \mathbb{Z}^-)$ is the twisted cohomology of $B\operatorname{Pin}_4$ where \mathbb{Z}^- is the unique non-trivial $\mathbb{Z}/2$ -module. Likewise $H^*(X; \mathbb{Z}^{w_1P})$ is the twisted cohomology of *X* where \mathbb{Z}^{w_1P} are the integers turned into a $\pi_1 X$ -module via the map $w_1 P: \pi_1 X \to \{\pm 1\}$.

Now let *X* be a compact 4-complex and $P \to X$ a Pin₄ principal bundle with $w_1(P) =: w$. Let $\pi: X^w \to X$ be the twofold covering corresponding to *w*, Then π^*P lifts to a Spin₄ bundle \tilde{P} and hence, by Proposition 3.2, there are two classes (a, b) in $H^4(X^w; \mathbb{Z})$ which we will call the classifying pair of *P*.

Theorem B Let P and Q be two Pin₄ bundles over a compact 4-complex X with $w_1(P) = w_1(Q) =: w$. Then P is isomorphic to Q iff their classifying pairs (a_P, b_P) and (a_Q, b_Q) coincide as unordered pairs in $H^4(X^w; \mathbb{Z})$.

- If w = 0 then every unordered pair (a, b) in $H^4(X; \mathbb{Z})$ is realized.
- If $w \neq 0$ let $\tau: X^w \to X^w$ be the covering transformation. Then every unordered pair $(a, \tau^* a), a \in H^4(X^w; \mathbb{Z})$ is realized.

The classifying classes a, b of P are related to Euler and Pontrijagin classes via

$$e(\tilde{P}) = -a + b, \quad p_1(\tilde{P}) = 2(a + b).$$

Proof We do the case w = 0 first: In this case the classifying maps f_P and f_Q lift to *B*Spin. The model for *B*Pin implies that the covering transformation ϕ operates as 'flip' on $H^4(B\text{Spin}; \mathbb{Z}) \cong \mathbb{Z} \oplus \mathbb{Z}$. Therefore if $f: X \to B\text{Pin}_4$ lifts to $B\text{Spin}_4$ the classifying classes coincide as unordered pair for every possible lift of f. Now apply Lemma 3.5 and Proposition 3.2.

Now let *w* be nonzero. The fibration $BSpin_4 \rightarrow BPin_4 \rightarrow \mathbb{R}P^{\infty}$ implies a commutative diagram

$$BPin_4 \longleftarrow BSpin_4$$

$$f_{P, f_Q} \downarrow w_1$$

$$X \xrightarrow{w_1 P} \mathbb{R} P^{\infty}.$$

Since $w_1(P) = w_1(Q)$ there is a homotopy $H: X \times I \to \mathbb{R}P^{\infty}$ connecting $w_1 \circ f_P$ and $w_1 \circ f_Q$. We try to lift this homotopy to $B \operatorname{Pin}_4$. The obstructions for doing this on the *i*-skeleton of X are

$$o_i \in H^i(X, \{\pi_i(BSpin_4)\}).$$

Since $\pi_i(BSpin_4) = 0$ for $i \le 3$ we see that *H* can be lifted over the 3-skeleton $X^{(3)}$.

Now let X^w be the two fold covering of X associated to w. Since $\pi^* w_1 P = \pi^* w_1 Q = 0$ there exist lifts $f_{\tilde{P}}$ and $f_{\tilde{Q}}$ of $\pi^* f_P$ and $\pi^* f_Q$ to BSpin.

DO •

The preceding case implies that $\pi^* f_P \simeq \pi^* f_Q$ iff the classifying pairs of P and Q coincide as unordered pairs. The assumptions therefore imply that $\pi^* o_4 = 0 \in H^4(X^w; \pi^* \pi_4 B \operatorname{Spin}_4)$. But $\pi_4 B \operatorname{Spin}_4$ is as $\pi_1 X$ -module isomorphic to $\mathbb{Z}[\pi_1 X/\pi_1 X^w]$. Therefore Lemma 3.6 implies that

$$\pi^* \colon H^4(X; \pi_4 B\operatorname{Spin}_4) \to H^4(X^w; \pi^* \pi_4 B\operatorname{Spin}_4)$$

is injective. Hence $o_4 = 0 \in H^4(X; \pi_4 B \operatorname{Spin}_4)$, and therefore $f_P \simeq f_Q$.

To see that $a_P = \tau^* b_P$ observe that the diagram

where *T* is the covering transformation of $BSpin_4$ over $BPin_4$, is commutative since the 2-fold covering $X^w \to X$ is the pullback of $BSpin \to BPin$ under f_P . Since T^* flips the chosen generators *a*, *b* of $H^4(BSpin_4; \mathbb{Z})$ this shows that

$$(\tau^* \hat{f}^* a, \tau^* \hat{f}^* b) = (\hat{f}^* b, \hat{f}^* a).$$

Since for w = 0 the existence follows from the existence part of 3.2 we can restrict ourself to the case $w \neq 0$. To see that every pair $\{a, \tau^* a\}$, $a \in H^4(X^w; \mathbb{Z})$, is realized for some Pin₄bundle over X let P_a be the SU₂-bundle with $c_2 = a$ and form the Spin₄ bundle $P_a + P_{\tau^* a}$. According to Lemma 3.3 the weakly associated Pin₄ bundle $\hat{P} := (P_a + P_{\tau^* a}) \times_{\text{Spin}_4} \text{Pin}_4$ is equal to $P_a + P_{\tau^* a} \coprod P_{\tau^* a} + P_a$. Since $P_{\tau^* a} = \tau^* P_a$ as SU₂-bundles there is a map $\tau' : P_{\tau^* a} \to P_a$ covering τ . To simplify notation we'll write τ' also for $(\tau')^{-1} : P_a \to P_{\tau^* a}$.

Having the notation set up we define an involution $\hat{\tau}$ on *P* by

$$\hat{\tau} \colon P_a + P_{\tau^* a} \coprod P_{\tau^* a} + P_a \to P_a + P_{\tau^* a} \coprod P_{\tau^* a} + P_a$$
 $(p, q) \mapsto (\tau' p, \tau' q)$
 $(q, p) \mapsto (\tau' q, \tau' p).$

This map is a Pin₄ equivariant involution on \hat{P} covering τ on X^w and flipping the components of \hat{P} . The quotient $\hat{P}/\hat{\tau}$ is therefore a Pin₄ bundle over X with data (w, a, τ^*a).

The relation between (a, b) and Euler and Pontrijagin class follows from Lemma 3.1.

Corollary 3.7 Let $H^4(X^w; \mathbb{Z})$ contain no 2-torsion.

- *i)* Two Spin₄ bundles are isomorphic as Pin₄ bundles iff p₁ coincides and e coincides up to sign.
- *ii)* Two Pin₄ bundles with $w_1 \neq 0$ are isomorphic iff they have the same w_1 and their twisted Euler classes coincide up to sign.

Corollary 3.8 Pin₄ bundles over a nonorientable 4-manifold X with $w_1 = w_1(X)$ are classified by the absolute value of their Euler number.

Moreover, every number $k \ge 0$ *is realized as Euler number for some* Pin₄ *bundle P*.

References

- [Bro82] Kenneth S. Brown, *Cohomology of Groups*. Graduate Texts in Math. **87**, Springer-Verlag, New York, Heidelberg, Berlin, 1982.
- [DW59] A. Dold and H. Whitney, *Classification of oriented sphere bundles over a* 4*-complex*. Ann. of Math. (2) **69**(1959), 667–677.
- [EM47] S. Eilenberg and S. MacLane, *Cohomology theory in abstract groups II*. Ann. of Math. (2) **48**(1947), 326–41.
- [HH58] F. Hirzebruch and H. Hopf, Felder von Flächenelementen in 4-dimensionalen Mannigfaltigkeiten. Math. Ann. 136(1958), 156–172.
- [LM89] H. Blaine Lawson, Jr. and Marie-Louise Michelson, Spin Geometry. Princeton Math. Ser. 38, Princeton Univ. Press, Princeton, New Jersey, 1989.
- [Web96] Christian Weber, *Gauge theory on nonorientable four-manifolds*. Verlag (ed. Dr. Kovač), Hamburg, 1996.

Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 D-53225 Bonn Germany email: weber@mpim-bonn.mpg.de