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Abstract

Let w be a multilinear commutator word. We prove that if e is a positive integer and G is a finite group
in which any nilpotent subgroup generated by w-values has exponent dividing e, then the exponent of the
corresponding verbal subgroup w(G) is bounded in terms of e and w only.
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1. Introduction

A number of outstanding results about words in finite groups have been obtained in
recent years. In this context we mention Shalev’s theorem that for any nontrivial group
word w, every element of every sufficiently large finite simple group is a product of at
most three w-values [9], and the proof by Liebeck et al. [6] of Ore’s conjecture, that
every element of a finite simple group is a commutator. Another significant result is
that of Nikolov and Segal that if G is an m-generated finite group, then every element
of G′ is a product of m-boundedly many commutators [8].

Our interest in words began in [10] where it was shown that if G is a residually
finite group in which all commutators have orders dividing a given prime power, then
the derived group G′ is locally finite. Later, in [11–14], we treated other problems on
local finiteness of verbal subgroups in residually finite groups. Inevitably, at a crucial
point we had to deal with questions about the exponent of a verbal subgroup of a finite
group.

Recall that a group has exponent e if xe = 1 for all x ∈G and e is the least positive
integer with that property. Given a word w, we denote by w(G) the verbal subgroup
of G generated by the values of w. The goal of this paper is to prove the following
theorem.
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T 1.1. Let w be a multilinear commutator and G a finite group in which any
nilpotent subgroup generated by w-values has exponent dividing e. Then the exponent
of the verbal subgroup w(G) is bounded in terms of e and w only.

This result provides a potentially useful tool for reduction of questions on finite
groups to those on nilpotent groups. Historically, tools of this nature played an
important role in solutions of various problems in group theory, most notably the
restricted Burnside problem [4].

Multilinear commutators (outer commutator words) are words which are obtained
by nesting commutators, but using always different indeterminates. Thus the
word [[x1, x2], [x3, x4, x5], x6] is a multilinear commutator while the Engel word
[x1, x2, x2, x2] is not. An important family of multilinear commutators are the simple
commutators γk, given by

γ1 = x1, γk = [γk−1, xk] = [x1, . . . , xk].

The corresponding verbal subgroups γk(G) are the terms of the lower central series
of G. Another distinguished sequence of outer commutator words are the derived
words δk, on 2k indeterminates, which are defined recursively by

δ0 = x1, δk = [δk−1(x1, . . . , x2k−1 ), δk−1(x2k−1+1, . . . , x2k )].

Then δk(G) = G(k), the kth derived subgroup of G. The values of the word δk will
sometimes be called δk-commutators.

Let G be a finite group and P be a Sylow p-subgroup of G. An immediate corollary
of the focal subgroup theorem [3, Theorem 7.3.4] is that P ∩G′ is generated by
commutators. From this one immediately deduces that if all nilpotent subgroups
generated by commutators have exponent dividing e, then the exponent of the derived
group G′ divides e, too. Thus, the case of Theorem 1.1 where w = [x, y] is pretty
easy. The proof of the general case uses a number of sophisticated tools, though. In
particular, it uses the classification of finite simple groups and Zelmanov’s solution of
the restricted Burnside problem [17, 18].

2. Exponent of G(k) in the case of soluble groups

Throughout this paper we use the expression ‘{a, b, c, . . .}-bounded’ to mean
‘bounded from above by some function depending only on a, b, c, . . .’. If A is a group
of automorphisms of a group G, we denote by [G, A] the subgroup generated by all
elements of the form x−1xa, where x ∈G, a ∈ A. It is well known that [G, A] is a normal
subgroup of G. For the proof of the next lemma see, for example, [3, Theorems 6.2.2,
6.2.4]).

L 2.1. Let A be a group of automorphisms of a finite group G with (|A|, |G|) = 1.

(1) If N is an A-invariant normal subgroup of G, then CG/N(A) = CG(A)N/N.
(2) G = [G, A]CG(A).
(3) [G, A] = [G, A, A].

We call a subset B of a group A normal if B is a union of conjugacy classes of A.
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L 2.2. Let A be a group of automorphisms of a finite group G with (|A|, |G|) = 1.
Suppose that B is a normal subset of A such that A = 〈B〉. Let k ≥ 1 be an integer. Then
[G, A] is generated by the subgroups of the form [G, b1, . . . , bk], where b1, . . . , bk ∈ B.

P. In view of Lemma 2.1 it can be assumed that G = [G, A]. According to [2,
Lemma 2.1] the subgroup [G, A] is generated by the subgroups of the form [P, A],
where P ranges over the A-invariant Sylow subgroups of G. Therefore without
loss of generality we can assume that G is a p-group. It is sufficient to prove the
lemma for G/Φ(G) in place of G so we may further assume that G is an elementary
abelian p-group. Let H be the subgroup of G generated by all the subgroups of
the form [G, b1, . . . , bk], where b1, . . . , bk ∈ B. We need to show that G = H. It
is clear that H is A-invariant. Passing to the quotient G/H, we assume that H = 1.
Thus, [G, b1, . . . , bk] = 1 for all b1, . . . , bk ∈ B and, since A = 〈B〉, it follows that
[G, b1, . . . , bk−1] ≤CG(A). Since G is abelian and G = [G, A], we deduce that CG(A) =

1 and so [G, b1, . . . , bk−1] = 1. Now simply repeating the argument, we obtain that also
[G, b1, . . . , bk−2] = 1 etc. Eventually we see that [G, b1] = 1 and hence [G, A] = 1, as
required. �

Let us call a subgroup H of G a tower of height h if H can be written as a product
H = P1 · · · Ph, where:

(1) Pi is a pi-group (where pi is a prime) when i = 1, . . . , h;
(2) Pi normalizes P j if i < j;
(3) [Pi, Pi−1] = Pi if i = 2, . . . , h.

It follows from (3) that pi , pi+1 for i = 1, . . . , h − 1. A finite soluble group G has
Fitting height at least h if and only if G possesses a tower of height h (see, for example,
[16, Section 1]).

We will need the following lemmas.

L 2.3. Let G be a group and y an element of G. Suppose that x1, . . . , xk+1 are
δk-commutators in G for some k ≥ 0. Then [y, x1, . . . , xk+1] is a δk+1-commutator.

P. Note that x1, . . . , xk, xk+1 can be viewed as δi-commutators for each i ≤ k. It is
clear that [y, x1] is a δ1-commutator. Arguing by induction on k, assume that k ≥ 1 and
[y, x1, . . . , xk] is a δk-commutator. Then [y, x1, . . . , xk, xk+1] = [[y, x1, . . . , xk], xk+1]
is a δk+1-commutator. �

L 2.4. Let P1 · · · Ph be a tower of height h. For every 1 ≤ k ≤ h, the subgroup Pk

is generated by δk−1-commutators contained in Pk.

P. If k = 1 the lemma is obvious, so we suppose that k ≥ 1 and use induction on
k. Thus, we assume that Pk−1 is generated by δk−2-commutators contained in Pk−1.
Denote the set of δk−2-commutators contained in Pk−1 by B. Combining Lemma 2.2
with the fact that Pk = [Pk, Pk−1], we deduce that Pk is generated by subgroups of the
form [Pk, b1, . . . , bk−1], where b1, . . . , bk−1 ∈ B. The result is now immediate from
Lemma 2.3. �
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L 2.5. Let G be a group in which every δk-commutator has order dividing e. Let
H be a subgroup of G generated by a set of δk-commutators and suppose that for some
j the derived subgroup H( j) has exponent n. Then H has {e, j, n}-bounded exponent.

P. Since a commutator of two δk-commutators is again a δk-commutator, it
follows that all terms of the derived series of H are generated by δk-commutators.
Therefore every quotient H(i)/H(i+1) has exponent dividing e. We deduce that H/H( j)

has exponent dividing e j and so H has exponent dividing e jn. �

Let us use the symbol Xk(G) to denote the set of all δk-commutators in a group G.
We will now work under the following hypothesis.

H 2.6. Let e and k be positive integers. Assume that G is a finite group such
that xe = 1 for all x ∈ Xk(G) and P(k) has exponent dividing e for every p ∈ π(G) and
every Sylow p-subgroup P of G.

We remark that, in view of Lemma 2.5, Hypothesis 2.6 is equivalent to the existence
of an {e, k}-bounded number e0 such that the exponent of every nilpotent subgroup
of G generated by a subset of Xk(G) divides e0. It is convenient to work under
Hypothesis 2.6 as this condition is obviously inherited by quotients of G.

In what follows we will denote by F(G) the Fitting subgroup of a group G and by
h(G) the Fitting height of G.

L 2.7. Assume Hypothesis 2.6. If G is soluble, then h(G) is {e, k}-bounded.

P. Assume that G is soluble and let h = h(G). Choose a tower P1 · · · Ph of height
h in G. Without loss of generality we assume that h ≥ k. Lemma 2.4 tells us that for
every i ≥ k + 1 the subgroup Pi is generated by δk-commutators contained in Pi (we use
here the fact that whenever i ≥ k every δi-commutator is also a δk-commutator). Let P
be a Sylow p-subgroup of Pk+1 · · · Ph. By Lemma 2.5 we conclude that the exponent
of P is {e, k}-bounded. This is true for every Sylow p-subgroup of Pk+1 · · · Ph. Thus,
the exponent of Pk+1 · · · Ph is {e, k}-bounded. According to the Hall–Higman theory
[4] the Fitting height of a finite soluble group of exponent n is n-bounded so we deduce
that the Fitting height of Pk+1 · · · Ph is {e, k}-bounded. It is clear that the Fitting height
of P1 · · · Pk is at most k. Therefore h (the Fitting height of P1 · · · Ph) is {e, k}-bounded.
The lemma follows. �

Let G be a group and w = w(x1, . . . , xn) a word. The marginal subgroup w∗(G) of
G corresponding to the word w is defined as the set of all a ∈G such that

w(g1, . . . , agi, . . . , gn) = w(g1, . . . , gia, . . . , gn) = w(g1, . . . , gi, . . . , gn),

for all g1, . . . , gn ∈G and 1 ≤ i ≤ n. It is well known that w∗(G) is a characteristic
subgroup of G and that [w∗(G), w(G)] = 1. If w is a multilinear commutator,
then w∗(G) is precisely the set S such that w(g1, . . . , gn) = 1 whenever at least
one of the elements g1, . . . , gn belongs to S . A proof of this can be found
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in [15, Theorem 2.3]. The following helpful lemma was communicated to me by
C. Acciarri and G. A. Fernández-Alcober.

L 2.8. Let w be a multilinear commutator and G a group with a normal subgroup
N that contains no nontrivial w-values. Then [N, w(G)] = 1.

P. Let w = w(x1, . . . , xk). Since N is normal in G and w is a multilinear
commutator, it follows that w(g1, . . . , gk) belongs to N ∩Gw whenever at least one
of the elements g1, . . . , gk belongs to N. Thus by the hypothesis all such elements
must be trivial. It follows that N ⊆ w∗(G), where w∗(G) is the marginal subgroup
of G corresponding to w. The result is now clear since w∗(G) always commutes
with w(G). �

L 2.9. Assume Hypothesis 2.6. If G is soluble, then the exponent of G(k) is (e, k)-
bounded.

P. Assume that G is soluble and let h = h(G). By Lemma 2.7, h is {e, k}-bounded.
If G is nilpotent, the result is immediate so we assume that h ≥ 2 and use induction on
h. Let H = G(k) and N = F(G). By induction the exponent of HN/N is {e, k}-bounded.
Let M be the subgroup generated by all δk-commutators of G contained in N. By the
remark made after Hypothesis 2.6, the exponent of M is {e, k}-bounded, too. Let us
pass to the quotient G/M and assume that M = 1. Lemma 2.8 tells us that in this case
[N, H] = 1. Hence, the exponent of H/Z(H) is {e, k}-bounded. Mann showed that in
any finite group K the exponent of the derived group K′ is bounded in terms of the
exponent of K/Z(K) [7]. Using Mann’s result, we deduce that H′ has {e, k}-bounded
exponent. Therefore we can pass to the quotient G/H′ and without loss of generality
assume that H is abelian. Since H is generated by elements of order dividing e, it
follows that the exponent of H divides e, as required. �

Combining Lemma 2.9 with Lemma 2.5, we deduce the following lemma.

L 2.10. Assume Hypothesis 2.6. If T is a soluble subgroup of G such that T is
generated by a set of δk-commutators, then the exponent of T is {e, k}-bounded.

3. Exponent of G(k) in the case of arbitrary groups

Let G be a finite group and k a positive integer. As in [14], we will associate with
G a triple of numerical parameters nk(G) = (λ, µ, ν) where the parameters λ, µ, ν are
defined as follows. If G is of odd order, we set λ = µ = ν = 0. Suppose that G is of even
order and choose a Sylow 2-subgroup P in G. If the derived length dl(P) of P is at most
k + 1, we define λ = dl(P) − 1. Put µ = 2 if Xλ(P) contains elements of order greater
than two and µ = 1 otherwise. We let ν = µ if Xλ(P) * Z(P) and ν = 0 if Xλ(P) ⊆ Z(P).

If the derived length of P is at least k + 2, we define λ = k. Then µ will denote
the number with the property that 2µ is the maximum of orders of elements in Xk(P).
Finally, we let 2ν be the maximum of orders of commutators [a, b], where b ∈ P and a
is an involution in a cyclic subgroup generated by some element from Xk(P).
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The set of all possible triples nk(G) is naturally endowed with the lexicographical
order. Following the terminology used by Hall and Higman [4], we call a group G
monolithic if it has a unique minimal normal subgroup which is nonabelian simple. In
the modern literature such groups are very often called ‘almost simple’. For the proof
of the next proposition, see [14].

P 3.1. Let k ≥ 1 and G be a group of even order such that G has no
nontrivial normal soluble subgroups. Then G possesses a normal subgroup L such
that L is residually monolithic and nk(G/L) < nk(G).

The next lemma is taken from [12]. The proof is based on Lie-theoretic techniques
created by Zelmanov. The lemma plays a crucial role in the proof of Lemma 3.3 which
in turn is fundamentally important for the proof of Theorem 1.1.

L 3.2. Let G be a group in which every δk-commutator is of order dividing e. Let
H be a nilpotent subgroup of G generated by a set of δk-commutators. Assume that H
is in fact m-generated for some m ≥ 1. Then the order of H is {e, k, m}-bounded.

The lemma that follows partially explains why Proposition 3.1 is important for the
proof of Theorem 1.1. The proof can be found in [14].

L 3.3. There exist {e, k}-bounded numbers λ0, µ0, ν0 with the property that if G is
a group in which every δk-commutator is of order dividing e, then nk(G) ≤ (λ0, µ0, ν0).

P 3.4. Under Hypothesis 2.6 the exponent of G(k) is {e, k}-bounded.

P. According to Lemma 3.3 the number of all triples that can occur as nk(G) is
{e, k}-bounded. We can therefore use induction on nk(G). If nk(G) = (0, 0, 0), then G
has odd order. By the Feit–Thompson theorem [1], G is soluble, so the conclusion
holds by Lemma 2.9. Hence, we assume that nk(G) > (0, 0, 0) and there exists an
{e, k}-bounded number E0 with the property that if L is a normal subgroup such that
nk(G/L) < nk(G), then the exponent of G(k)L/L is at most E0.

Suppose first that G has no nontrivial normal soluble subgroups. Proposition 3.1
tells us that G possesses a normal subgroup L such that L is residually monolithic
and nk(G/L) < nk(G). A result of Jones [5] says that any infinite family of finite
simple groups generates the variety of all groups. Observe that every monolithic
group is isomorphic to a subgroup of Aut(H), where H is the nonabelian simple group
isomorphic to the unique minimal normal subgroup of the monolithic group. Thus
by Jones’s result we have only finitely many possibilities to choose the group H in
which every δk-commutator is of order dividing e. It follows that up to isomorphism
there exist only finitely many monolithic groups in which every δk-commutator is of
order dividing e. The exponent of such monolithic groups is {e, k}-bounded and so L is
residually of {e, k}-bounded exponent. Therefore L has {e, k}-bounded exponent. We
conclude that the exponent of G(k) is {e, k}-bounded.

Now let us drop the assumption that G has no nontrivial normal soluble subgroups.
Let S be the product of all normal soluble subgroups of G. The previous paragraph
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shows that G(k)S/S has {e, k}-bounded exponent. Let T be the subgroup generated
by all δk-commutators contained in S . By Lemma 2.9 the exponent of T is {e, k}-
bounded. Passing to the quotient G/T , we can assume that T = 1. Combining our
hypothesis with Lemma 2.8, we conclude that S ∩G(k) ≤ Z(G(k)). Hence, the exponent
of G(k)/Z(G(k)) is {e, k}-bounded. We now use Mann’s theorem [7] and deduce that
G(k+1) has {e, k}-bounded exponent. Therefore we can pass to the quotient G/G(k+1)

and without loss of generality assume that G(k) is abelian. Since G(k) is generated by
elements of order dividing e, it follows that the exponent of G(k) is {e, k}-bounded, as
required. �

4. Proof of Theorem 1.1

The number of distinct indeterminates used in the expression for a multilinear
commutator w is the weight of w. The following lemma is taken from [11].

L 4.1. Let G be a group and w a multilinear commutator of weight k. Every
δk-commutator in G is a w-value.

L 4.2. Let w be a multilinear commutator of weight k, and let G be a soluble
group of derived length at most k. Suppose that all w-values in G have order dividing
e. Then the exponent of the verbal subgroup w(G) is {e, k}-bounded.

P. Let T be the last nontrivial term of the derived series of G. Since T is abelian,
the subgroup generated by all w-values contained in T has exponent dividing e.
Passing to the quotient by this subgroup, we can assume that no w-value lies in T \ {1}.
Now Lemma 2.8 shows that [T, w(G)] = 1. The induction on the derived length of G
tells us that w(G)/Z(w(G)), the image of w(G) in G/CG(w(G)), has bounded exponent.
Therefore Mann’s theorem [7] implies that the derived group w(G)′ has {e, k}-bounded
exponent. We can now pass to the quotient G/w(G)′ and assume that w(G) is abelian.
But now it is clear that since all w-values in G have order dividing e, the exponent of
w(G) must divide e, too. �

Theorem 1.1 is now immediate.

P. Suppose that w is a multilinear commutator and G is a finite group in which
any nilpotent subgroup generated by w-values has exponent dividing e. By Lemma 4.1
there exists k ≥ 1 such that every δk-commutator is a w-value. This k depends only on
w. Obviously G satisfies Hypothesis 2.6. Proposition 3.4 now tells us that the exponent
of G(k) is {e, k}-bounded. It is straightforward from Lemma 4.2 that the exponent of
w(G)/G(k) is likewise {e, k}-bounded. The proof is complete. �
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