Canad. Math. Bull. Vol. 16 (4), 1973

EPIMORPHISMS OF MODULES WHICH MUST BE ISOMORPHISMS

BJ

d. ž. djoković

Let R be an associative ring (not necessarily with identity).

DEFINITION 1. *R* is a left Π -ring if it has the following property: Let *M* be a finitely generated left *R*-module, *N* a submodule of *M* and $\phi: N \rightarrow M$ an epimorphism. Then ϕ is an isomorphism.

DEFINITION 2. *R* is a left Π_1 -ring if it has identity and the following property: Let *M* be a finitely generated unitary left *R*-module, *N* a submodule of *M* and $\phi: N \rightarrow M$ an epimorphism. Then ϕ is an isomorphism.

If R is a ring let R_1 be the ring with identity obtained from R by adjoining the identity. We have $R_1 \cong R \oplus Z$ as abelian groups. If M is a left R-module then it can be also considered as a unitary left R_1 -module and vice versa. Let E be a subset of M. The submodule of M generated by E is the intersection of all submodules of M which contain E. It follows that the submodule of M generated by E is the same for both module structures on M mentioned above. In particular, M is a finitely generated left R-module if and only if it is a finitely generated unitary left R_1 -module.

It is clear that these remarks prove the first part of the following theorem.

THEOREM 1. Let R be a ring. Then

(i) R is a left Π -ring if and only if R_1 is a left Π_1 -ring.

(ii) If R has identity then it is a left Π -ring if and only if it is a left Π_1 -ring.

(iii) Any homomorphic image of a left Π -ring (left Π_1 -ring) is also a left Π -ring (left Π_1 -ring).

(iv) A left Noetherian ring is a left Π -ring.

Proof. (iii) follows from the fact that if S is a homomorphic image of R then every left S-module can be considered as a left R-module.

(iv) Let $\phi: N \rightarrow M$ be as in Definition 1. We want to prove that ϕ is an isomorphism. Let $\phi^0(0)=0$ and define by induction

$$\phi^{-n}(0) = \phi^{-1}(\phi^{-(n-1)}(0)), \quad n = 1, 2, \dots$$

Received by the editors August 17, 1971 and, in revised form, September 22, 1971.

D. Ž. DJOKOVIĆ

Then each $\phi^{-n}(0)$ is a submodule of N. We have in fact

$$\phi^{-n}(0) = \{x \mid x \in N, \, \phi(x) \in N, \, \dots, \, \phi^{n-1}(x) \in N, \, \phi^n(x) = 0\}.$$

It follows that

$$0 = \phi^0(0) \subset \phi^{-1}(0) \subset \phi^{-2}(0) \subset \cdots$$

Since R is left Noetherian, and M is finitely generated if follows that M is Noetherian. There exists $k \ge 0$ such that $\phi^{-k}(0) = \phi^{-(k+1)}(0)$. We take k to be the smallest nonnegative integer with this property. Assume that $\phi^{-1}(0) \ne 0$ and so $k \ge 1$. Since $\phi^{-(k-1)}(0) \ne \phi^{-k}(0)$ there exists $x \in \phi^{-k}(0)$ such that $\phi^{k-1}(x) \ne 0$. But $x = \phi(y)$ for some $y \in \phi^{-(k+1)}(0)$ because ϕ is an epimorphism. Thus $\phi^{k-1}(x) = \phi^k(y) = 0$ because $y \in \phi^{-(k+1)}(0) = \phi^{-k}(0)$. This is a contradiction. Hence $\phi^{-1}(0) = 0$, i.e., ϕ is injective and consequently an isomorphism.

(ii) Assume that R is a left Π_1 -ring and let $\phi: N \to M$ be as in Definition 1. We have $M = M_0 \oplus M_1$ where $RM_0 = 0$ and M_1 is a unitary left R-module. Also $N = N_0 \oplus N_1$ with $N_0 \subset M_0$ and $N_1 \subset M_1$. Since $\phi(N_0) \subset M_0$, $\phi(N_1) \subset M_1$ the restrictions $\phi_0: N_0 \to M_0$ and $\phi_1: N_1 \to M_1$ are epimorphisms. Since R is a left Π_1 -ring ϕ_1 must be an isomorphism. Also ϕ_0 is an isomorphism because Z (the ring of integers) is Noetherian and we may use (iv). Hence ϕ is also an isomorphism.

In view of these results we can restrict to study only the left Π_1 -rings. Our main result is the following:

THEOREM 2. Any direct limit of left Π_1 -rings is a left Π_1 -ring.

Proof. Let $A = \lim_{i \to \infty} A_i$ where A_i are left Π_1 -rings. Let M be a finitely generated unitary left A-module

$$M = \sum_{k=1}^{n} A x_i,$$

 $N \subseteq M$ a submodule and $\phi: N \to M$ an epimorphism. Let $y_0 \in N$ be such that $\phi(y_0)=0$. Choose y_1, \ldots, y_n such that $\phi(y_k)=x_k$, $1 \le k \le n$. We may write

$$y_r = \sum_{k=1}^n a_{rk} x_k, \qquad 0 \le r \le n$$

with all a_{rk} in the image in A of a fixed A_{i_0} . Let M_{i_0} and N_{i_0} be the left A_{i_0} -modules obtained from M and N via the canonical homomorphisms $A_{i_0} \rightarrow A$. Let M_0 be the submodule of M_{i_0} generated by x_1, \ldots, x_n . It follows that y_0, y_1, \ldots, y_n belong to M_0 . Let N_0 be the submodule of N_{i_0} generated by y_0, y_1, \ldots, y_n . Then $N_0 \subset M_0$ and the restriction $\phi_0: N_0 \rightarrow M_0$ of ϕ is surjective. Since A_{i_0} is a left Π_1 -ring ϕ_0 must be an isomorphism. Hence, $\phi_0(y_0) = \phi(y_0) = 0$ implies $y_0 = 0$.

COROLLARY 1. Every commutative ring with identity is a left Π_1 -ring.

https://doi.org/10.4153/CMB-1973-083-0 Published online by Cambridge University Press

[December

514

1973] EPIMORPHISMS OF MODULES

Proof. Such a ring is the direct limit of the direct system of its finitely generated subrings (containing the identity element). Every finitely generated subring of a commutative ring is Noetherian and so a left Π_1 -ring.

This result was proved in [1]. Furthermore we have the following corollaries which correspond to Theorem 1, Corollaries 2–3 of [1].

COROLLARY 2. Let R be a left Π_1 -ring and M a unitary left R-module generated by n elements and N a free R-submodule of M of rank not less than n. Then M is a free R-module and rank N=rank M=n.

The proof of this is straightforward.

COROLLARY 3. Let R be a left Π_1 -ring and $f: R \rightarrow S$ a homomorphism of rings. Assume that S has identity and that it is finitely generated as a left R-module via f. If x, y \in S and xy=1 then yx=1.

Proof. Let $\phi: S \to S$ and $\psi: S \to S$ be defined by $\phi(s) = sx$, $\psi(s) = sy$. Since $\psi \circ \phi =$ identity it follows that ψ is onto. Since R is a left Π_1 -ring ψ must be an isomorphism and ϕ is its inverse. Hence $\phi \circ \psi =$ identity which implies that yx = 1.

ACKNOWLEDGMENT. I would like to thank Professor P. Ribenboim whose proof of Theorem 2 appears here instead of my original lengthy proof.

REFERENCE

1. M. Orzech, Onto endomorphisms are isomorphisms, Amer. Math. Monthly 78 (1971), 357-362.

UNIVERSITY OF WATERLOO, WATERLOO, ONTARIO