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1. INTRODUCTION 

Radioastronomical observations are often incomplete in the sense 
that either the angular resolution desired or the signal-to-noise ratio 
required are not adequate. Attempts to fill in the missing information 
by either smoothing or deconvolving the observed data date back to Brace-
well (1956, 1958). More recently the need for more sophisticated resto
ration procedures has increased since observations with radioastronomi
cal interferometers frequently suffer from incomplete coverage of the 
u - v plane. Procedures like CLEAN (Hogbom 1974, Schwarz 1978) and MEM 
(Wernecke 1977, Gull and Daniell 1978) have been developed to interpo
late the unknown data in the u - v plane. 

All these methods do not explicitly take into account the change of 
the signal-to-noise ratio and the angular resolution of the observed map 
during the restoration process. In the present paper we point out that 
the information of any observed temperature distribution is critically 
dependent on these parameters. An analytical expression is presented 
which gives the information measure I of a map as a function of angular 
and temperature resolution. Further, the relevance of I for convolutions, 
deconvolutions and nonlinear restorations of interferometer maps is dis
cussed. We find that the information measure I is a useful quantity to 
judge the quality of any of those restorations. 

2. THE INFORMATION MEASURE I 

Observing a temperature distribution T on the sky with a radiotele-
scope affects T in two ways. T is convolved with a beam function f and 
contamination by statistical errors which are characterized by a noise 
function n. 

T , = f * T + n 
obs 

For any interpretation of such a map only structure is of interest which 
is statistically significant if compared to the noise and angular reso-
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lution. The information of a given map increases with signal-to-noise 
ratio, spatial resolution and observed area. Hence it is plausible that 
a measure for the information I contained in the map can be derived from 
the number of significant details. This number can be determined, if the 
observed solid angle A is measured in units of the beam solid angle 

Aa = f 
max 

/ 

Then there are 

m = A / A 

/ f da 
4 IT 

locations in the map which may carry statistically independent details. 
Similarly, we measure the brightness temperature in units of the RMS 
noise level X. Then the observed signal (assumed to be always positive) 
is decomposed into 

1 = 

/ T da 
A 
Aa x 

signal elements. The degrees of freedom m and 1 derived in this way can 
now be used to derive an expression for the information I contained in 
our map. 

If P is the number of equally possible outcomes of an experiment, 
then the information I which is gained by observing one of these P cases 
is given by (Brillouin, 1963): 

I = k In P (here we use k = 1) 

To derive P we count the total number of possible outcomes of the experi
ment by distributing the 1 undistinguishable signal elements over m de
grees of freedom in position. From Bose - Einstein statistics we get 

_ (mr1+1)1 
" (m-1) ! 1! 

If m and 1 are large numbers we derive I by applying Stirlings formula 

I = (m+1) In (m+1) - m In m - 1 In 1 . 

After derivation of an analytical expression for the information content 
in a radioastronomical map we will study, how the information is changed 
by a manipulation of the data. For any reasonable transformation we re
quire that the observed solid angle A and the total intensity 
/ T da remain unchanged. Thus the information I is merely influenced 

by changing the resolution limits Aa and x. Both limits are affected in 
a complementary way: convolution increases Aa and decreases x, deconvo-
lution decreases Aa and increases x. For linear transformations this 
complementarity is described by a relation Aa • x > const (Kalberla, 1978). 
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During any restoration procedure the information measure I changes 
in a well defined way. As an hypothesis we assume that I will become 
maximal for an optimal restoration. There is a simple example which 
shows that I indeed may be maximized. If the data are smoothed out 
completely by a convolution we obtain m = 1 and 1 = 0. In the other 
extreme case of superresolution (Bracewell, 1958) the errors may be 
amplified such that they overcome the signal completely, thus 1 = 0 
and 1 = 0 again. 

3. COMPUTER TESTS. 

To test, whether maximizing I eventually leads to an optimal restoration, 
some computer generated brightness temperature distributions have been 
degraded and restored. The fidelity of the restorer distributions was 
measured by calculating the RMS deviation with respect to the model. 

One dimensional test scans (delta functions, triangular, rectangu
lar and gaussian distributions) have been convolved with a gaussian 
beam function, afterwards noise was added. In any case the scan length, 
the total intensity and the noise level have been adjusted in a way that 
for the corresponding degrees of freedom m >> 1. Then apparently a de-
convolution is necessary to increase the information of the test scans. 
The restored scans T r e s t have been calculated from (Kalberla, 1978) 

T (x) = q • T , (x) - q / Q (x-x*) T , (x') dx* 
rest ^ obs H ' obs 

scan 

where 

Q (x) = lim 

n -> oo 

is the resolving Kernel function. fKLJ denotes i-fold convolution of f. 
The parameter q determines the strength of the restoration. The width 
Aa of the beam function decreases with increasing q, the amplification 
of the errors is proportional to q. 

For any degraded model distribution a set of restored scans with dif
ferent restoration parameters q has been calculated. For any of these 
restored scans the information I and the RMS deviation with respect to 
the model has been determined. Figure 1 shows two typical cases with 
different signal-to-noise ratios. The maximum of the information I is 
well correlated with the minimum of the RMS deviation between model 
and restored scan. Thus the information measure I is a useful quantity 
to determine the optimal restoration parameter q. 

n 

Z 

i = 1 

(-qf) 
(i) 
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Fig. 1 
Information I and RMS deviation between restored scan and model are 
plotted as a function of the restoration parameter q. The extrema of 
both curves are closely related.Two typical cases for poor and good 
signal-to-noise ratio are shown. 

In a second set of computer tests aperture synthesis observations 
have been simulated. Figure 2 shows an example: A model for the bright
ness temperature distribution (A) was degraded by noise (B). After 
Fourier transformation into the u - v plane a subset of u - v data was 
erased. Figure 2 C shows the direct Fourier transform after eliminating 
40% of the significant data. To obtain the restored map (D) , the 
missing data have been replaced starting from the origin of the u - v 
plane proceeding to higher spatial frequencies. For this purpose a 
modified Gerchberg - Saxton algorithm (Gassmann, 1977 other references 
herein) was used. For any cycle of the iterative procedure the dirty 
map was convolved by a gaussian function. Then the remaining negative 
intensities have been forced to zero. From cycle to cycle the width of 
the smoothing function was decreased. 

During this restoration procedure the RMS deviation between model 
and restored map was calculated.Simultaneously the information I was 
determined from the width of the smoothing function and the uncertain
ties which are introduced by the interpolation of the missing data 
points in the u - v plane.As for the one-dimensional test cases men
tioned before maxima in I were found to correspond to minima in the 
RMS deviation between model and restored map. For some test models no 
extrema could be obtained but then both, information as well as RMS 
deviation, were found to converge. 

These two cases can be distinguished by different m/1 ratios. A 
maximum in I was obtained if m/1 >> 1 which corresponds to typical 
aperture synthesis observations (e.g. for Westerbork maps 
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m = -p- % 8000 and 1 of the order of 1000). 
Aa 
Convergence was obtained for m/1 £ 1 which in general means very 

high signal-to-noise ratio. 

«§*&*& 
«; \.;.J**? -Aft;-. 

Fig. 2 
Example for the restoration of a model distribution: 
A) model B) model with noise, C) dirty map derived from an incom
plete covered u - v plane, D) restored map. 
Negative regions are shown shaded. The contour interval is constant. 
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The purpose of the computer tests was to study whether or not 
there is any relation between the maximum in the RMS deviation between 
model and restored map. The results obtained so far suggest that such 
a relation exists for our restoration procedure. Although no tests with 
other restoration procedures have been made we propose that such a 
relation should hold in general. Otherwise the relevance of the infor
mation measure I has to be reconsidered 

For a practical use of the information measure I in restoring ob
servations it should be possible to predict those restoration parameters 
for which I becomes maximal. In order to do this we have to know how 
the restoration procedure changes the spatial resolution Aa and the 
temperature uncertainties T (including the errors which are introduced 
by any interpolation process). While the change in resolution Aa for 
our procedure can be derived from the smoothing function which is 
applied to the map we cannot calculate yet the amplification of the 
errors T. This problem needs further investigations. 

4. DISCUSSION 

It was shown that the information content I of a radioastronomical 
map is critically dependent on the resolution limits Aa and T . During 
an restoration procedure both, spatial resolution Aa as well as tempe
rature resolution T are changed. Consequently the information I of a 
map is affected, too. 

To test the hypothesis that maximizing I leads to an optimal 
restoration, computer tests have been performed. The restoration used 
here is a special one in the sense that it allows to calculate the 
resolution limits Aa and T at any stage of the procedure. This is 
necessary for a simultaneous calculation of I. Whether or not other 
restoration procedures, e.g. CLEAN or MEM - methods, allow also to 
calculate I during the iterations has not been investigated. 

To calculate the information measure I we only need the total 
intensity within the observed solid angle A and the resolution limits 
Aa and x. Then maximizing I is possible without introducing further 
constraints to the data. Thus the information measure I can be consid
ered as a new independent criterion to judge the quality of a map. 
It would probably be worth comparing the restoration methods mentioned 
above by applying them to the same set of observations and calculating 
the resulting information measure I for the restored maps. 
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