ON THE WIELANDT SUBGROUP OF INFINITE SOLUBLE GROUPS

by ROLF BRANDL, SILVANA FRANCIOSI and FRANCESCO DE GIOVANNI†

Dedicated to Professor Dr. H. Wielandt on his 80th birthday

(Received 28 September, 1988)

1. Introduction. The Wielandt subgroup $\omega(G)$ of a group G is defined to be the intersection of the normalizers of all the subnormal subgroups of G. If G is a group satisfying the minimal condition on subnormal subgroups then Wielandt [10] showed that $\omega(G)$ contains every minimal normal subgroup of G, and so contains the socle of G, and, later, Robinson [6] and Roseblade [9] proved that $\omega(G)$ has finite index in G.

In this paper we consider the somewhat dual situation. As, clearly, $\omega(G)$ contains the centre Z(G), it will be sensible to ask how far $\omega(G)$ is away from Z(G). If G is nilpotent, then every subgroup of G is subnormal and hence $\omega(G)$ is the norm of G, introduced by Baer in [1]. In this case Baer proved that either $\omega(G) = Z(G)$ or $\omega(G)$ is periodic.

Here we are interested in the Wielandt subgroup of a finitely generated soluble-byfinite group, particularly in its connections with the FC-centre of the group, which is the set of all elements with finitely many conjugates.

THEOREM A. Let G be a finitely generated soluble-by-finite group with finite Prüfer rank. Then the Wielandt subgroup $\omega(G)$ is contained in the FC-centre of G.

Cossey [3] proved that, if G is a polycyclic group, then $G/C_G(\omega(G))$ is finite. As an immediate consequence of Theorem A, we have the following slight generalization of this result.

COROLLARY. If G is a polycyclic-by-finite group, then $G/C_G(\omega(G))$ is finite.

In fact in this case $\omega(G)$ is finitely generated and by Theorem A each of its generators has finitely many conjugates in G.

Another obvious consequence of Theorem A is that in a soluble-by-finite min-by-max group G the Wielandt subgroup is always contained in the second FC-centre. Note that the locally dihedral 2-group G is a Černikov group all of whose subnormal subgroups are normal, i.e. $G = \omega(G)$, but G is not an FC-group.

In general, $\omega(G)$ need not be contained in any term of the upper FC-central series of the soluble group G, even if the group has finite Prüfer rank or is finitely generated, as can be seen from Examples 1 and 2 below.

Also $\omega(G)/Z(G)$ need not in general be finite. Indeed Cossey [3] has constructed a polycyclic and nilpotent-by-finite group of Fitting length three which has trivial centre and an infinite cyclic Wielandt subgroup. This example shows that the following theorem, which generalizes a result of Cossey [3], is best possible.

THEOREM B. If G is a polycyclic group which is either (a) metanilpotent or (b) abelian-by-finite, then $\omega(G)/Z(G)$ is finite.

[†] The first author wishes to thank the Mathematics Department of the University of Napoli for its excellent and warm hospitality.

Glasgow Math. J. 32 (1990) 121-125.

Here the hypothesis on G to be soluble cannot be dispensed with, as we will construct a finitely generated abelian-by-finite group with trivial centre and infinite Wielandt subgroup (see Example 3).

Our notation is standard and can be found in [8]. In particular:

A group G is a T-group if all of its subnormal subgroups are normal.

An automorphism of a group G is a *power automorphism* if it maps every subgroup of G onto itself.

A soluble-by-finite group is *minimax* if it has a series of finite length whose factors are either infinite cyclic or of type p^{∞} , for some prime p, or finite. The *spectrum* of an abelian minimax group G is the set of all primes p such that G has a quotient of type p^{∞} .

2. Proof of the Theorems. Our first lemma, which is probably already known, concerns the structure of soluble-by-finite T-groups.

LEMMA 1. Let G be a soluble-by-finite T-group. Then G is finite-by-soluble.

Proof. Let G_0 be the soluble radical of G, and put $C = C_G(G_0)$. Since G induces a group of power automorphisms on each factor of the derived series of G_0 , it follows that the commutator subgroup of the factor group G/C is nilpotent and hence G/C is soluble. Moreover $C \cap G_0 \leq Z(C)$, so that C/Z(C) is finite and C' is finite. Therefore G is finite-by-soluble.

The proof of Theorem A rests heavily on the following lemma.

LEMMA 2. Let G be a soluble-by-finite minimax group whose maximum periodic normal subgroup is finite. If F is the Fitting subgroup of G and A is the Wielandt subgroup of G, then $G/C_G(A \cap F)$ is finite.

Proof. From the structure of minimax groups it follows that F is nilpotent with finite torsion subgroup T and G/F is a finitely generated abelian-by-finite group (see [8, Part 2, p. 169]). Hence there exists a torsion-free abelian normal subgroup H/F of G/F such that G/H is finite. Let p be a prime which does not belong to the spectrum of the abelian minimax group Z(F/T), and for each positive integer t put $F_t = F/F^{p'}T$. Then F_t is a finite p-group and the Frattini factor group $F_t/\Phi(F_t)$ has order at most p', where r is the Prüfer rank of F.

Let y be any element of $H \setminus F$ and put $Y = \langle y \rangle$. The factor group $Y/C_Y(F_t/\Phi(F_t))$ is isomorphic with a subgroup of the general linear group GL(r, p) and hence, if m is the maximum p'-divisor of |GL(r, p)|, the element $z = y^m$ acts as a p-automorphism on $F_t/\Phi(F_t)$ and so also on F_t . Since $F \leq \langle z, F \rangle \leq H$, the subgroup $\langle z, F \rangle$ is subnormal in G. Write $K_t = C_{\langle z \rangle}(F_t)$. Then $\langle K_t, F^{p'}T \rangle$ is normal in $\langle z, F \rangle$ and the quotient $\langle z, F \rangle/\langle K_t, F^{p'}T \rangle$ is a finite p-group. Hence the subgroup $S_t = \langle z, F^{p'}T \rangle$ is subnormal in $\langle z, F \rangle$ and so also in G. Therefore A normalizes S_t , and for each element x of $A \cap F$ we have that

$$[x, z] \in S_t \cap F = F^{p'}T(\langle z \rangle \cap F) = F^{p'}T,$$

since $\langle z \rangle \cap F = 1$. Thus $[x, z] \in \bigcap_{t \ge 1} F^{p^t}T = T$ (see [8, Part 2, p. 170]) and so y^m centralizes $(A \cap F)T/T$.

The Wielandt subgroup A acts as a group of power automorphisms on the non-periodic nilpotent group F. If F is not abelian, it has no non-trivial power automorphisms (see [2]), and so A centralizes F. This proves that in any case $A \cap F$ is

122

contained in the centre of F. Therefore H^m centralizes $(A \cap F)T/T$ and so also $(A \cap F)/(A \cap T)$. Hence $H/C_H((A \cap F)/(A \cap T))$ has finite exponent and so is finite. It follows that also $G/C_G((A \cap F)/(A \cap T))$ is finite. Since $A \cap T$ is finite, the subgroup $C = C_G((A \cap F)/(A \cap T)) \cap C_G(A \cap T)$ has finite index in G. Moreover the group $C/C_G(A \cap F)$ has finite exponent and so is finite. Therefore $G/C_G(A \cap F)$ is finite.

Proof of Theorem A. Suppose first that G is soluble. By a result of Robinson [7] G is a minimax group, and so it contains a characteristic subgroup R, which is the direct product of finitely many quasicyclic subgroups, such that the Fitting subgroup F/R of G/R is nilpotent with finite torsion subgroup and G/F is polycyclic (see [8, Part 2, p. 169]).

Let A be the Wielandt subgroup of G. Since AR/R is contained in the Wielandt subgroup of G/R, it follows from Lemma 2 that $G/C_G((AR \cap F)/R)$ is finite. Therefore $E = C_G((A \cap F)/(A \cap R))$ has finite index in G and so it is finitely generated. Let $\{x_1, \ldots, x_t\}$ be a finite set of generators of E. If a is an element of $A \cap F$, we have that $a^{x_i} = au_i$, where $u_i \in A \cap R$ $(i = 1, \ldots, t)$, and there exists a finite G-invariant subgroup S of R containing u_1, \ldots, u_t . Then [a, E] is contained in S and so a has finitely many conjugates in G. Therefore $A \cap F$ is contained in the FC-centre of G.

Clearly it may be assumed that F/R is non-periodic. But obviously A induces a group of power automorphisms on F/R. Thus either A centralizes F/R or else F/R is abelian, $A/C_A(F/R)$ has order two and the non-trivial automorphism induced by A on F/R is the inversion (see [2]). In the former case $A = A \cap F$ and A is contained in the FC-centre of G:

It remains to show, by obtaining a contradiction, that the latter case cannot hold. In this situation G/R is a finitely generated abelian-by-polycyclic group, and so it satisfies the maximal condition on normal subgroups (see [8, Part 1, p. 161]). In particular $(A \cap F)R/R$ is the normal closure of a finite subset of G/R, and so it is finitely generated, since every element of $A \cap F$ has finitely many conjugates in G. Since $A/(A \cap F)$ is finite, it follows that the group AR/R is a finitely generated T-group. Thus AR/R is either abelian or finite (see [5, Theorem 3.3.1]). If AR/R is abelian, then $A \leq F$ and $A = A \cap F$ is contained in the FC-centre of G. Assume finally that AR/R is finite. Hence $F/C_F(AR/R)$ is finite and A acts trivially on $C_F(AR/R)$. But A has an element acting by inversion on F/R and $C_F(AR/R)/R$ is a non-periodic subgroup, which is the required contradiction.

In the general case it follows from Lemma 1 that the T-group A contains a finite G-invariant subgroup B such that A/B is soluble. Then A/B is contained in the Wielandt subgroup of the soluble radical of G/B, and the first part of the proof shows that A/B is contained in the FC-centre of G/B. Since B is finite, A is contained in the FC-centre of G.

The following two examples show that the two finiteness conditions in Theorem A are both necessary.

EXAMPLE 1. Let G be the split extension of the additive group A of rational numbers by $\langle \alpha \rangle$, where α is an automorphism of infinite order of A. Then every subnormal subgroup of G is either contained in A or contains A, and so A is the Wielandt subgroup of G. On the other hand, it is clear that the FC-centre of G is trivial.

EXAMPLE 2 (P. Hall [4]). Let A be the additive group of a rational vector space V of

dimension \aleph_0 with basis $\{a_i \mid i \in \mathbb{Z}\}$. Then $A = \bigoplus_{i \in \mathbb{Z}} A_i$, where A_i is the subspace generated by a_i . Let ξ and τ be the linear transformations of V defined by

$$a_i^{\xi} = a_{i+1}, \qquad a_i^{\tau} = p_i a_i \qquad (i \in \mathbb{Z}),$$

where the map $i \mapsto p_i$ is a bijection between \mathbb{Z} and the set of all prime numbers. Hence $G = \langle \xi, \tau \rangle \ltimes A$ is a 3-generator soluble group with derived length three and trivial FC-centre. Since $\langle \xi, \tau \rangle$ is isomorphic to the wreath product of two infinite cyclic groups, it is easy to see that each subnormal subgroup H of G which is not contained in A contains an element x acting on every A_i as the multiplication by a rational number $r_i \neq 1$, -1. Then $[A_i, H] = A_i$ and so [A, H] = A. Since H is subnormal in G, it follows that $A \leq H$. Therefore A is the Wielandt subgroup of G.

In the proof of Theorem B the following result due to Cossey [3] will be used.

LEMMA 3. Let G be a nilpotent-by-abelian polycyclic group. Then $\omega(G)/Z(G)$ is finite.

Proof of Theorem B. (a) By Theorem 3.3.1 of [5] it can be assumed that $\omega(G)$ is infinite abelian, so that $\omega(G)$ is contained in the Fitting subgroup F of G. Let $\{x_1, \ldots, x_i\}$ be a finite set of generators of G and put $H_i = \langle x_i, F \rangle$. Since G/F is nilpotent, H_i is subnormal in G, and so $\omega(G)$ is contained in the Wielandt subgroup of H_i . As H_i is nilpotent-by-abelian, it follows from Lemma 3 that $\omega(H_i)/Z(H_i)$ is finite; thus there exists a positive integer e_i such that $\omega(G)^{e_i} \leq Z(H_i) \leq C_G(x_i)$. If $e = e_1 \cdots e_i$, it follows that $\omega(G)^e \leq \bigcap_{i=1}^l C_G(x_i) = Z(G)$. Therefore $\omega(G)/Z(G)$ has finite exponent and so is finite.

(b) The proof will be by induction on the Hirsch length of G. Suppose first that G has no non-trivial finite normal subgroups, so that in particular the Fitting subgroup F of G is torsion-free. Clearly we may suppose that G is not nilpotent, so that G/F contains an abelian non-trivial normal subgroup H/F.

Let N be an abelian normal subgroup of G such that G/N is finite and let p be a prime number which does not divide the order of the finite group $H/C_H(N)$. Then, for each positive integer *i*, we have that

$$N/N^{p'} = C_{N/N^{p'}}(H) \times [N/N^{p'}, H].$$

Hence $C_N(H) \cap [N, H] \leq \bigcap_{i>0} N^{p^i} = 1.$

If [N, H] = 1, then $N \le Z(H)$, so that H is central-by-finite. Thus H' is finite, and so H' = 1 and H is abelian. This contradiction shows that $[N, H] \ne 1$. Suppose now that $C_N(H) = 1$. Then $Z(H) \cap N = 1$ and so Z(H) is finite. But H is nilpotent-by-abelian and hence from Lemma 3 it follows that $\omega(H)$ is finite. Therefore $\omega(G)$ is finite (and even trivial in this case). Therefore we may assume that the normal subgroups $C_N(H)$ and [N, H] are both non-trivial. It follows by induction that there exists a positive integer e such that $\omega(G)^e$ centralizes both $G/C_N(H)$ and G/[N, H]. Then $\omega(G)^e \le Z(G)$, and $\omega(G)/Z(G)$ has finite exponent and so is finite.

In the general case, let T be the maximum finite normal subgroup of G. By the above the result is true for the factor group G/T. Since T is finite, there exists a positive integer e such that $\omega(G)^e$ centralizes G/T and T. Therefore $\omega(G)^e Z(G)/Z(G)$ has finite exponent, so that also $\omega(G)/Z(G)$ has finite exponent, and hence is finite. The following example shows that the solubility hypothesis in Theorem B cannot in general be dropped.

EXAMPLE 3. Let $Q = A_5$ and let A be the free abelian group with basis $\{x_1, x_2, x_3, x_4, x_5\}$ endowed with the natural Q-module structure. Clearly $B = \langle x_1^{-1}x_2, x_2^{-1}x_3, x_3^{-1}x_4, x_4^{-1}x_5 \rangle$ is a Q-submodule of A and $G = Q \ltimes B$ is a finitely generated abelian-by-finite group with trivial centre. Moreover $\omega(G)$ is infinite, since $\omega(G) = B$. This will follow directly from the fact that every proper subnormal subgroup of G is contained in B.

To see this first note that, if $\alpha = (12)(34)$, $\beta = (123)$ and $\gamma = (23)(45)$, then

$$([x_1^{-1}x_2, \alpha]^{-1}[x_1^{-1}x_2, \beta])^{\gamma} = x_1^{-1}x_2$$

and so $x_1^{-1}x_2$ belongs to [B, Q]. Similar computations show that all generators of B belong to [B, Q], and hence [B, Q] = B. Now let S be any subnormal subgroup of G. Then, if S is not contained in B, we have G = BS, as Q is simple, and so B = [B, Q] = [B, S] = $[B,_kS]$ for all k. It follows that B is contained in S and so S = G.

REFERENCES

1. R. Baer, Der Kern, eine charakteristische Untergruppe, Compositio Math. 1 (1934), 254-283.

2. C. D. H. Cooper, Power automorphisms of a group, Math. Z. 107 (1968), 335-356.

3. J. Cossey, The Wielandt subgroup of a polycyclic group, Australian National University, Math. Research Report Series 19 (1988).

4. P. Hall, On the finiteness of certain soluble groups, Proc. London Math. Soc. (3) 9 (1959), 595-622.

5. D. J. S. Robinson, Groups in which normality is a transitive relation, *Proc. Cambridge Philos. Soc.* 60 (1964), 21-38.

6. D. J. S. Robinson, On the theory of subnormal subgroups, Math. Z. 89 (1965), 30-51.

7. D. J. S. Robinson, A note on groups of finite rank, Compositio Math. 21 (1969), 240-246.

8. D. J. S. Robinson, Finiteness conditions and generalized soluble groups (Springer, 1972).

9. J. E. Roseblade, On certain subnormal coalition classes, J. Algebra 1 (1964), 132-138.

10. H. Wielandt, Über den Normalisator der subnormalen Untergruppen, Math. Z. 69 (1958), 463-465.

Mathematisches Institut Universität Würzburg Am Hubland 12 D-8700 Würzburg West Germany

Istituto di Matematica Facoltà di Scienze Università di Salerno I-84100 Salerno Italy

Dipartimento di Matematica Università di Napoli Via Mezzocannone 8 I-80134 Napoli Italy