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Abstract

If 5 is a saturated formation of finite soluble groups and G is a finite group
whose g-residual A is abelian then it is well known that G splits over A and
the complements are conjugate. Hartley and Tomkinson (1975) considered
the special case of this result in which Of is the class of nilpotent groups and
obtained similar results for abelian-by-hypercentral groups with rank
restrictions on the abelian normal subgroup. Here we consider the super-
soluble case, obtaining corresponding results for abelian-by-hypercyclic
groups.

Subject classification (Amer. Math. Soc. (MOS) 1970): 20 E 15

1. Introduction
In Carter and Hawkes (1967), the following result was proved: if 5 is a saturated
formation of finite soluble groups and G is a finite group whose ^-residual A is
abelian, then G splits over A and the complements to A in G are conjugate. This
result has already been extended to classes of locally finite groups in which a
formation theory can be developed (for example, Gardiner, Hartley and Tomkinson
(1971), Theorem 4.12). Hartley and Tomkinson (1975) considered the special case
of the result given above in which 5 is the class of nilpotent groups and obtained
similar results for infinite groups with rank restrictions on the abelian sections.
Results for the supersoluble case have been obtained by Newell (1975) and in this
paper we also consider this case aiming at results of the same type as those in
Hartley and Tomkinson (1975) and we do not use the sets LaQj.), SG(fi) introduced
by Newell (1975).

We recall some definitions. A group is called hypercyclic if it has an ascending
normal series with cyclic factors. G is parasoluble if it has a finite normal series

(1) l = G0<iG1<3...<]G!
n = G

such that, for each i = 1,...,«, GjjG^ is abelian and each subgroup of Gi/G^-i
is normal in G/Gi_v These definitions are usually considered to be the super-
soluble analogues of groups having an ascending or finite central series. However,
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72 M. J. Tomkinson [2]

the results which we obtain here, which correspond to the results concerning
nilpotent groups obtained in Hartley and Tomkinson (1975), require a stronger
condition than G being parasoluble. We define G to be pretersoluble if it has a
finite normal series (1) such that GJGf^ is abelian, each subgroup of G^G^ is
normal in GIGi_1 and, if Xp is the /^-subgroup of GJGi^ then G/Co(Xp).is cyclic
of order dividing/?—1 for/? odd and G either induces the involution automorphism
on X2 or acts trivially on X%. This last condition implies that whenever there is a
factor isomorphic to Cp*, G induces a finite group of automorphisms.

We consider a group G and a ZG-module A. The rank conditions on A are
conditions on A as an abelian group. In Robinson (1972b), an abelian group A
is called an S0-group if it has finite 0-rank and finite /?-rank for each prime p;
A is an 2^-group if it is an S0-group and its torsion group is a Cernikov group.
An abelian Sj-group with finite torsion subgroup will be called an SJ-group as in
Hartley and Tomkinson (1975). A group G is an (50-group (Sx-group) if it has a
finite series whose factors are abelian <50-groups (©^groups).

The condition that A should be a residual of the extension E of A by G is
interpreted as A having no images of a certain type. As usual we say that A has
no images satisfying a certain property to mean that A has no non-zero images
with that property. A ZG-module M is called G-hypercyclic if it has an ascending
series of submodules in which each factor is a cyclic group. M is called
G-pretersoluble if it has a finite series of submodules

0 = MO<MX<... <Mn = M

such that each subgroup of MJM^ is a ZG-submodule and if Xp is the/?-subgroup
of MiIMi_x then G/CG(XP) is cyclic of order dividing p— 1 for p odd and G either
induces the involution automorphism or acts trivially on X2. It is clear that a
G-pretersoluble module M has an image M/N which, as an additive group, is
either cyclic of order p or is a group of type Cp*> and G/CG(M/N) is finite.

The main result we prove is:

THEOREM A. Let G be a hypercyclic group and A a ZG-module. If
(i) A is an Q^-group and has no G-hypercyclic image, or

(ii) A is an Q*-group and has no G-pretersoluble image,
then every extension of A by G splits conjugately over A.

The condition that A has no G-pretersoluble image will not be sufficient to
obtain Theorem A if A has an infinite torsion subgroup. But again a near-splitting
result similar to Hartley and Tomkinson (1975), Theorem C, can be obtained,
corresponding to the situation in which G is pretersoluble and A has no G-preter-
soluble image.
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THEOREM B. Let E be a group with pretersoluble residual A. Suppose that El A is
pretersoluble and A is an abelian Q^-group. Then there is a finite normal subgroup
F of E contained in A and such that E/F splits over A/F. There is a finite normal
subgroup F*~^F of E, contained in A and such that the complements to A/F in E/F
are conjugate modulo F*.

The proofs of Theorems A and B break down into fairly distinct stages. First,
we give reduction theorems which show that the conditions of having no G-hyper-
cyclic or G-pretersoluble image pass down to submodules. These results mean that
in later stages we can use induction on a series in A and usually assume that A is
either torsion-free and rationally irreducible, finite and irreducible, or a divisible
abelian p-group in which each submodule is finite. As in Newell (1975), we then
consider the two different cases in which [A,G'] = 1 and [A, G']^\. The second
of these is dealt with using the results of Hartley and Tomkinson (1975) and the
first case is reduced to the situation in which E = AG is metabelian. The results
required for the metabelian case are given in Section 4 in the form of splitting
theorems for modules which are deduced from the results of Hartley and Tomkinson
(1975).

The case in which A is finite can be given in the much more general form which
would be necessary if these results were to be put in a formation-theoretic setting
and is given in this form in Section 3.

Some of the steps in our argument are clearly based on methods used in formation
theory. For example, if U/V is a factor of the ZG-module A, then | U/V\ =p if
and only if G/CG(U/V)e'$ip_1, the class of abelian groups with exponent dividing
p-\. Also we frequently consider G* = G'Gv(v-v^ the <Hip(p_1)-Tesidual of G. Our
notation for group classes is usually standard but as in Gardiner, Hartley and
Tomkinson (1971) we use X* to denote the class of finite 3£-groups [except for Qf
defined above] so that Ge%Q*%*_1 means that G is abelian-by-(finite p)-by-
(finite abelian of exponent dividing p—l). This class is also derived from the
formation definition of supersoluble groups.

However, some of the steps seem to depend heavily on the cyclicity of normal
subgroups. For example, we frequently use the fact that if <g><a G, then
[A, <#>] = [A,g]. Also if <g> is an infinite cyclic normal subgroup then
| G/CG<£> | = 1 or 2 and it is often important to note that 2 \p(p — 1) for a 1 primes/?.

Many of the results concerning abelian-by-hypercentral groups have been given
a cohomological setting by Robinson (1976). The condition that A has no
G-nilpotent image is equivalent to H^GjA) = 0. If A has no G-hypercentral image
then it can be shown that CA(G) = 0; that is, H\G,A) = 0. It is not easy to see
how the present results could be given a similar formulation.

Our notation and terminology will be consistent with Hartley and Tomkinson
(1975) unless otherwise explained.
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2. Reduction theorems
We begin by considering the action of a locally supersoluble group on a module A

which is a periodic abelian group. To do this we require a special case of the following
result of Baer (1972) for finite soluble groups.

LEMMA 2.1. Let 3 be a saturated formation of finite soluble groups. If N is a
normal subgroup of the finite soluble group G such that G/CG(N)e'ft, then
N = Xx X*, where X and X* are normal subgroups of G, each G-chief factor of
X is ^-central and each G-chief factor of X* is ̂ -eccentric.

If 5 is the class of finite supersoluble groups, then a chief factor is ^-central
if and only if it is cyclic of prime order. This is the case which is used in the following
result.

LEMMA 2.2. Let G be a locally supersoluble group and let A be a ZG-module
which is a periodic group of finite rank. Then A = C® C*, where C is a G-hyper-
cyclic module and C* has no factors which are cyclic groups. This decomposition
is unique.

PROOF. It is sufficient to consider the case in which A is ap-group. Let A€ = :
and Gt = CO(A^. A{ is finite and G/G{ is a finite supersoluble group. Applying
Lemma 2.1 to the extension of At by G/Gt, we see that At = Q© Cf, where Ct

is (j-hypercyclic and Cf has no factors which are cyclic groups.
It is clear that C< ̂  Q + 1 and Cf < C?+1. If we let C = Ug=i Q and C* = U?Li Cf,

then C and C* are ZG-submodules of A.

C+C*= \J(Ci+Cf)= U^i = ^

and

CnC* = l\JAAnCnC*= \J(AiDCnC*)= \J(CiDCf) = 0.
\i=i / i=i i-i

Thus^l = C©C*.
C is clearly G-hypercyclic. If U/V is an irreducible factor of C*, then there is

an integer i such that C/nQ^Fand so U/V^(UnCf)/(VnCf) and so f//Fis
not a cyclic group.

The uniqueness is clear for if JSTis a G-hypercyclic submodule of A, then (X+ C)/C
is G-hypercyclic and is isomorphic to (X+C)nC*. Thus X+C= C and X^C.
Similarly every submodule without cyclic factors is contained in C*.

In showing that the conditions used in Theorems A and B pass down to sub-
modules we begin with the slightly simpler pretersoluble case.
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LEMMA 2.3. Let G be a hypercyclic group and A a ZG-module with a submodule B
such that A/B is an SJ-group. If A has no G-pretersoluble image, then B has no
G-pretersoluble image.

PROOF. If there is a counterexample to the lemma, then by the remarks prior to
the statement of Theorem A, we may suppose that B is either a group of order p
or a group of type Cp*> with G/CQ(B) finite.

Let T/B be the torsion part of A/B so that T/B is finite. If B is cyclic of order p,
then it follows from Lemma 2.2 that T has an image which is cyclic of order p. If
B is of type Cp«>, then there is a finite submodule F of T such that T = FB and
so T/F is G-pretersoluble. Thus T has a G-pretersoluble image and we may assume
that T satisfies the conditions given for B above.

Our counterexample may be chosen so that the rank of A/T is minimal and
clearly this rank is non-zero. If A/T is not rationally irreducible, then it has a
submodule C/T such that A/C is torsion-free. By induction, C has a G-preter-
soluble image C/Q, say, and then considering A/Cx, we see that A has a G-preter-
soluble image. Thus A/T is rationally irreducible.

Suppose Ca(A/T)j£ 1; then there is an element xeCo(A/T) such that <x> is a
non-trivial normal subgroup of G. Let K = C G «x» so that G/K is finite. The
mapping a->a(x— 1) is a non-zero if-homomorphism of A into T and so A has
a ^T-image A/D such that \A/D\=p or A/D is a group of type Cp«> and
CK(A/D) = CK(X). But D = Cjx) = CA«xy) is a G-submodule of A and
Ca(A/D)}zCK(T). Thus G/C^A/D) is finite and /4/Z) is a G-pretersoluble image

We may therefore assume that A/T is faithful for G. If CO(T)^ 1, then there is
an element y e Ca(T) such that <>>> is a non-trivial normal subgroup of G. Since
^ /7 is faithful, Ca/T(y)^A/T and so CA/T((yy) = 0, since ^ / J is rationally
irreducible. The mapping a: a->a(y—l) is a CG(j)-homomorphism of A and,
since CA/T(y) = 0, it induces a Co(j)-monomorphism of A/T. By Ex. 5 on p. 153
of Fuchs (1973), | A/T: (A/T) a \ is finite, that is, | A: Aa+T\ is finite. If a(y -1 ) e T,
then aeT(since CAjT(y) = 0) and so a(y-X) = 0, that is, AanT= 0. Thus ^/y4a
is a torsion abelian group. Also Aa = [A,y] = [4, <jy>] is a ZG-submodule of 4̂.
If T is finite, then A/Aa is finite and, by Lemma 2.2, has an image of order p.
If r s C p » then A/Aa has a finite submodule F/Ao such that ^+7^=^ . Then
A/F^T/(TnF) is a G-pretersoluble image of A.

If CO(T) = 1, then G is a finite cyclic group. Let xeA-T and R = ZG; then
xR = X^QX(T) and so there is an reR such that xr is a non-zero element of
Qj^r). Since i? is commutative, multiplication by r is an i?-homomorphism of A
into itself. Xr^CljfT) and so |Z/(ZnAnnr)| =p. Also ^/(X+T1) is a torsion
group, since A/T is rationally irreducible, and (X+ T)/X is a torsion group. Thus
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A/(XnAnnr) and hence A/Annr is a torsion group. Thus Ar^Tand so A/Annr
is a G-pretersoluble image of A.

The result that will be required for Theorem B is the following which is based
on part of Hartley and Tomkinson (1975), Lemma 2.3.

LEMMA 2.4. Let G be a hypercyclic group and let A be a ZG-module which is a
periodic group of finite rank. If B is a submodule of A which is a divisible group
and if A has no G-pretersoluble image, then B has no G-pretersoluble image.

PROOF. We may suppose that we have a counterexample in which the rank of A
is minimal. It is clear that we may assume B to be of type Cp* with G/Ca(B)
finite and A to be ap-group. There is an integer «^ 1 such that A/Q.n{A) is divisible
and, by considering this in place of A, we may assume that A is divisible.

Let x e Ca(B) such that <x> is a non-trivial normal subgroup of G. The mapping
a: a^>a{x— l)isaCo(;c)-endomorphismof.4andKercr^2?.Thus [A,x] = lma<A.
Also [A,x] is divisible and so the rank of A/[A,x] is less than that of A.
[A,x] = [A, <*>] is a ZG-submodule of A. If B% [A,x], then by induction A/[A,x]
has a G-pretersoluble image. Thus B^[A,x] and by induction again, [A,x] has
a G-pretersoluble image. We may therefore assume that [A, x] = B and so A/Ket a
is of type Cp«>. Ker a — CA(x) = C^«x» is a ZG-submodule and

Ca(A/Kei a) ̂  Ca(x) n CG(A/Ker a) = Co(*) n Ca(B).

It follows that G/Ca(A/Kera) is finite and so A/Keia is a G-pretersoluble image
of A.

For our main theorem we require the following:

LEMMA 2.5. Let Gbea hypercyclic group and A a ZG-module which is an Qa-group.
If B is a submodule of A and if A has no G-hypercyclic image then B has no G-
hypercyclic image.

This lemma is an immediate consequence of the following characterization of
modules without G-hypercyclic images.

LEMMA 2.6. Let Gbea hypercyclic group and A a ZG-module which is an Q0-group.
Then A has no G-hypercyclic image if and only if no G-factor of A is cyclic.

PROOF. It is clear that if A has no cyclic G-factor then it has no G-hypercyclic
image. So we assume that A has a cyclic G-factor U/V of order p and show that
A has a G-hypercyclic p-image.

Choose a submodule X of A maximal subject to Un X = V. Then A/X is mono-
lithic with monolith (U+X)/X of order p. It follows from Lemma 2.2 that the
torsion subgroup of A/X is G-hypercyclic and is a />-group.
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Thus if the lemma is false, there is a counterexample A with A monolithic, the
torsion subgroup T is a G-hypercyclic p-group with monolith U and the rank of
A/T is minimal. A/T is non-zero and if A/T is not rationally irreducible then there
is a submodule B/T such that A/B is torsion-free. By induction B has a G-hyper-
cyclic p-image JB/5X. Considering ^4/51; the induction hypothesis again shows that
A/Bx has a G-hypercyclic p-image. Therefore we may assume

(2) The torsion subgroup T of A is a G-hypercyclic p-group with monolith U and
A/T is rationally irreducible.

The next step of the proof is to show

(3) A/T is faithful for G.

Otherwise there is an element x e CG(A/T) such that <JC> is a normal subgroup
of G which either is infinite or has prime order. Let K = CG{x) so that G/K is finite.
The mapping a->a(x— 1) is a ZA-homomorphism from A into T and is non-zero
since A is faithful for G. Thus A has a non-zero AT-hypercyclic image A/C, where
C= CA((x}), the kernel of the map a->a(x—1). C is a ZG-submodule of A
and if C%T, then ^4/C contains G-hypercyclic p-factors. By Lemma 2.2, A has a
G-hypercyclic p-image.

Therefore we may assume that C^T; that is, xeCa{A/T)c\CG(T). If x has
prime order tf^p, then [a,x]a = [a,*9] = 1, since ^4<x)e5R2, and so [a,x] = 1 and
xeCo(A), contrary to A being faithful for G. Thus x has order/? or infinite order.

In either case G/K is a finite abelian group of exponent dividing p(p—1). As
above C = C^«;c» is a ZG-submodule of A and ^4/C is iST-isomorphic to a
ZA-submodule of T. Thus every irreducible .K-factor in A/C is centralized by
G* # (where G* = G' G*"*'-1'). Let D/C be a minimal ZG-submodule of A/C and
letL = Ca{D/C). G* K stabilizes a series of the finite p-group D/C and so G* KL/L
is a finite p-group. But OP(G/L) is trivial and so L ̂  G* AT and hence G/L is abelian
with exponent dividing/) — 1. Hence D/C is cyclic of order p. Applying Lemma 2.2
to the torsion group A/C, we see that A/C has a G-hypercyclic p-image. This
contradiction establishes (3).

(4) G e S t © * ^ .

G acts faithfully and irreducibly on the Q-space Q®Z(A/T) and so has an
abelian normal subgroup H of finite index (Robinson (1972a), Theorem 3.24). By
Clifford's Theorem, H is a completely reducible Q-linear group and so is a sub-
group of the direct product of a free abelian group and a finite group (Robinson
(1968a), Lemma 3.12). Therefore G has a torsion-free abelian normal subgroup L
of finite index. L is contained in the hypercentre of GPL and hence in that of G*L.

Choose M^G*L maximal with respect to M<\ G, MnL = 1. Then G*L/M is
torsion-free abelian. For, let X/M^ML/M be a maximal torsion-free abelian
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subgroup of G*L/M normal in G/M. If X^G*L/M, then there is a subgroup
y< G*L such that Y<3 G and Y/Xis cyclic of prime orders, say. X/Mis contained
in the hypercentre of G*L/M and hence Y/M is a hypercentral group. If Y/M is
torsion-free then it is abelian (being abelian-by-finite, torsion-free and locally
nilpotent, see Robinson (1972b), Lemma 6.37) contrary to the maximality of X.
If Y/M is not torsion-free then its periodic subgroup P/M is non-trivial. But then
PnL = 1 contrary to the maximality of M.

MnG* stabilizes a series of T and is finite so (Mn G*)/C(M n O*)(T) is a p-group.
Also each /?-chief factor of M is centralized by G* and so Mn G* is />-nilpotent.

If MnG* is not a />-group, then there is an element yeC(Mnat)(T) such that
<j> is a normal subgroup of G of prime order q^p. [A,y] = [A, <>>>] is a ZG-
submodule of v4. Since G acts faithfully on ^/r , [A,y]%T and so ^/([^ , j ]+r)
is a torsion group, using (2). Thus A/[A,y] is a torsion group. If a(y—l)eT, then
a e r and so a(y-\) = 0. Thus [ ^ j ] n r = 0 . Applying Lemma 2.2 to A/[A,y],
we see that A has a G-hypercyclic/>-image. Thus we may assume that MnG* is
a /7-group.

G/G* is an abelian group of finite exponent and so, in particular, G*L/G* is
residually finite and there is a subgroup G^G* such that G*L/G1 is finite and
GxnG*M=G* and hence G1nM=G*nM. Let L1 = LnG1 andM1 = MnG1;
then L^ is a torsion-free abelian normal subgroup of G, Mx is a finite normal
/^-subgroup, G1]M1 is torsion-free abelian and G/G1e'$i*{p^1y

G/L is a finite supersoluble group and so each/^-factor is centralized by G*L.
Thus G*L/L and hence GJL^ is />-nilpotent. Let Q/L^ be the unique Sylow p'-
subgroup of GJLL. Since Mx = MnG* is a /?-group, gnMj = 1 and so Q is a
torsion-free abelian normal subgroup of G. Gj/2 is a finite p-group and
G/Gx eSl*,^ , . This completes the proof of (4).

Now let S = CG(t/) so that G/Setyp^. Then i? = Sn Q is an abelian normal
subgroup of G and G/R e <5* 3t*_i- By the hypercentral case (Hartley and
Tomkinson (1975), Lemma 2.8), there is a non-trivial i?-hypercentral />-image
A/B of 4̂. Let {slt ...,sn} be a transversal to R in G. Then A/Bsi is also an
i?-hypercentral /j-image and hence so is D = A/fl^BSf. Thus Dx = CD(R) is a
non-zero submodule of D. But Z> is a ZG-module and hence Dx is a ZG-module.
Thus D1 is a non-zero module with G/CG(Dj) e (5* 3l*_x. Thus Dr is G-hypercyclic.
Applying Lemma 2.2 to D, we see that A has a G-hypercyclic />-image.

3. Finite modules

Our aim in this section is to prove

THEOREM 3.1. Let G be a hypercyclic group and A a finite ZG-module. If A has no
cyclic G-image, then every extension of A by G splits conjugately over A.
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Rather than prove this directly, we obtain a more general result with a formation-
theoretic flavour. We work in the class S of "hyper-©0"-groups; that is, groups
with an ascending normal series in which the factors are abelian of finite rank.
It is clear that S contains all (50-groups and all hypercyclic groups.

In general, an S-group may have infinite chief factors; for example, the extension
of the additive group of rationals by its group of automorphisms. But in the
following result, from which Theorem 3.1 is easily deduced, it is only necessary
to consider the finite chief factors of G.

LEMMA 3.2. Let G be an Q-group and A a finite irreducible Zp G-moduJe. If M is
a normal subgroup of G such that each p-chief factor of G is centralized by M and
[A, M] = A, then every extension of A by G splits conjugately over A.

PROOF. Let E be an extension of A by G. Factoring out a suitable normal sub-
group of E we may assume

(5) every non-trivial normal subgroup of E contains A.

We consider the three different types of abelian normal subgroup which G may
possess.

(A) G has a finite normal p'-subgroup N.

In this case, if Q is a Sylow //-subgroup of AN, then NE(Q) is a complement
to A in E. If X is any other complement, then X = NE(XnAN) = NE(Qa), for
some aeA.

(B) G has a finite minimal normal p-subgroup N.

Let K = CB(AN) and consider Ex, the split extension of AN by G/K. Let Mx be
the split extension of AN by MK/K and let Q be a Sylow //-subgroup of Mv

MJA is />-nilpotent and so, by a Frattini argument, NEl(Q) is a complement to A
in E1. Since AN is a />-group, A n £(AN) / 1 . But A n £(AN) «=a E and so A < £(AN).
Therefore ANnNEl(Q)-<i ANEl(Q) = Ey and so ANn NEl(Q) is a normal subgroup
of E, contrary to (5).

(Q G has a torsion-free rationally irreducible abelian normal subgroup N of finite
rank.

Let L = CAN(A); then AN/L is finite and Le^. If x,yeL, then

[XP,y] = [x,y]P = 1

and so IP is abelian. The torsion subgroup of IP is finite with exponent p and so
IP* is torsion-free. But then IP* is a non-trivial normal subgroup of E intersecting
A trivially, contrary to (5). This completes the proof of the lemma.
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In a hypercyclic group G each />-chief factor is cyclic of order p and so is
centralized by M = G' G*1"1. Together with a simple induction argument this
yields Theorem 3.1. The corresponding result for hypercentral groups can be
obtained by taking M = G.

4. Splitting theorems for modules

The results of this section are special cases of Theorems A and B and will be
used in the proof of those theorems after reducing to the metabelian case. We note
first the corresponding special case of Hartley and Tomkinson (1975), Theorem B.

LEMMA 4.1. Let G be a hypercentral group and let A be a ZG-module. Suppose
that A has a submodule B such that A/B is G-hypertrivial and either

(i) B is an <5*-group and [B, G] = B,

or

(ii) B is an Q^-group and has no G-hypertrivial image.

Then there is a unique submodule C such that A = B@C.

PROOF. Let E = AG; then E/B is hypercentral and E splits conjugately over B.
If M is a complement to B in E then A = B ® (M n A). Since M n A is G-hypertrivial
and B has no G-trivial factors it is clear that Mn A is the unique complement.

The following simple lemma will be used when we obtain a module which is
^T-trivial, where K is the centralizer of an infinite cyclic normal subgroup of G.

LEMMA 4.2. Let G be a cyclic group of order 2 and let Abe a ZG-module which is
the direct sum of two groups of type Cp*. Then A has a proper infinite submodule B
and hence has a G-pretersoluble image.

PROOF. Let G = <#> and let X = <xn; pxx = 0,pxn+1 = xn> be a subgroup of A
of type Cpoo. Then 5 = (xn(g— 1); n = 1,2,...) is a proper infinite submodule of A.

THEOREM 4.3. Let G be a hypercentral group and let Abe a ZG-module. If A has
a submodule B which is an Qf-group such that A/B is G-hypercyclic and B has no
G-pretersoluble image, then there is a unique submodule C such that A = B@C.

PROOF. Since the torsion subgroup of B is finite, there is a finite series of sub-
modules

such that T is finite and each BJBi^ is torsion-free of finite rank and rationally
irreducible. By Lemma 2.3, none of the submodules Bi(i = 0,...,n) has a G-
pretersoluble image. It is sufficient, using an induction argument and Theorem 3.1,
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to prove the theorem for the case in which B is torsion-free of finite rank and
rationally irreducible.

Let U be a submodule of A maximal with respect to UnB = 0. By considering
AjU, we may assume that

(6) every non-trivial submodule of A intersects B non-trivially.

We show that with this restriction B must be equal to A. If B<A, then since
A/B is G-hypercyclic there is a submodule S such that SjB is a cyclic group of
either infinite or prime order. If \S/B\ = p, then consider the two cases Bp = B
and BP < B. If BP < B, then the finite module S/BP is a direct sum <x> BP/BP © B/Bp,
by Lemma 2.1. In both cases, there is an element xeS such that S = 2?<x> and
xpeBp. Thus there is an element beB such that xp = bp and so (xb^y = 1.
S = B® (xb-1} and so <x6~1> is the (non-trivial) torsion subgroup of S and
intersects B trivially contrary to (6).

Thus S/B is an infinite cyclic group. Let K = CG(S/B) so that G/K = 1 or 2. If
5 has a A-trivial image 2?/Z>, then we may assume that B/D is either cyclic of order
p or is of type Cpm. If G = ^TuAg, then E = DnDg is a ZG-submodule and
5/£[5, # ] is a ^-trivial G-image of B. If 5//) is finite, then B/E[B, K] is finite
and since each irreducible factor is AT-trivial it must be G-pretersoluble, since
2\p(p— 1), for all primes p. If B/D is of type Cp«,, then we may assume that B/E
is a divisible /?-group of rank at most 2 and is A-trivial. Applying Lemma 4.2
to the Z(G/̂ T)-module B/E we see that B has a G-pretersoluble image.

Therefore we may assume that B has no A-trivial image and so, by Lemma 4.1,
B has a unique ^-invariant complement <*> in S. It is clear that <;c> is a
ZG-submodule contrary to (6). Thus B = A and the module {/ which was factored
out is a complement to B in A. Since U is G-hypercyclic and B has no cyclic G-factors
(Lemma 2.3), the uniqueness of the complement is clear.

THEOREM 4.4. Let G be a hypercentral group and let Abe a ZG-module. If A has
a submodule B which is an Q^group such that A/B is G-hypercyclic and B has no
G-hypercyclic image, then there is a unique submodule C such that A = B@C.

PROOF. By induction, using Lemma 2.5 and Theorem 4.3, we may assume that

(7) B is a divisible abelian p-group and every submodule ofB is finite.

Again, by factoring out a suitable submodule, we may also assume

(8) every non-trivial submodule of A intersects B non-trivially.

If B< A, then there is a submodule S such that S/B is a cyclic group of infinite
or prime order. If S/B is finite, then S is a torsion group and so, by Lemma 2.2,
S = B@B*, where B* is a cyclic group, contrary to (8).

https://doi.org/10.1017/S1446788700038957 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700038957


82 M. J. Tomkinson [12]

Thus S/B is an infinite cyclic group. Let K = Ca{S/B) so that | G/K\ = 1 or 2.
If B has a £-hypertrivial p-image J3/£>, G = KuKg and E= DnDg, then £/£ is
a A-hypertrivial G-image of B. Thus CB/E(K) is a non-zero /sT-trivial ZG-module
and so is G-pretersoluble (since 2\p(p— 1), for all primes/?). This is contrary to
Lemma 2.5 and so B has no ^T-hypertrivial image. Therefore, by Lemma 4.1, B has
a unique X-invariant complement <*> in 5. It is clear that <*> is a ZG-submodule
contrary to (8). Thus B = A and the module factored out to obtain (8) is a
complement to B in A. Since C is G-hypercyclic and B has no cyclic G-factors
(Lemma 2.6), the uniqueness of C is clear.

The corresponding result required for Theorem B is slightly more complicated
to state. We begin with the corresponding result for the nilpotent case.

LEMMA 4.5. Let G be a nilpotent group and A a ZG-module. If A has a submodule
B which is an Qygroup such that A/B is G-polytrivial and [B, G] = B, then there is a
finite submodule F^. B such that B/F has a complement in A/F. There is a finite
submodule F*^F of B such that the complements to B/F in A/F are unique modulo
F*, that is, Q F * = C2F*.

PROOF. Let E = AG; then E/B is nilpotent and [B,E] = B. By Hartley and
Tomkinson (1975), Theorem C, there are finite submodules JF and F*, F^F*^B,
such that E/F splits over B/F and the complements are conjugate modulo F*.
If M/F is a complement to B/F in E/F, then A/F = B/F® (A n M)/F. Let C/F be
any complement to B/F in A/F. Then CG/F is a complement to B/F in E/F and
so there is an element xeE such that (CGy^MF*. Thus

as required.

THEOREM 4.6. Let Gbea nilpotent group and A a ZG-module. If A has a submodule
B which is an <Z1-group such that A/B is G-pretersoluble and B has no G-pretersoluble
image, then there is a finite submodule F^B such that B/F has a complement in A/F.
There is a finite submodule F*~^F of B such that the complements to B/F in A/F
are unique modulo F*.

PROOF. By induction, using Lemma 2.3 and Theorem 4.3, we may assume that

(9) B is a divisible p-group and every proper submodule of B is finite.

Let S/B be a submodule of A/B such that each subgroup of S/B is a submodule
and if Xp is the p-subgroup of S/B then G/CQ(XP) is cyclic of order dividing p— 1
if p is odd and G either induces the involution automorphism or acts trivially on
X2. If the p'-subgroup of S/B is Q/B then Q splits over B and so we need only
consider the cases in which S/B is a/>-group and S/B is torsion-free.
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(A) S/B is torsion-free.

Let K = C^S/B); then | G/K\ = 1 or 2. If B has a ^-trivial image, then as in the
proof of Theorem 4.3, B has a G-pretersoluble image. Thus by Lemma 4.5, there are
finite ZAT-submodules F^Ff^B such that B/F1 has a complement in S/F± and the
complements are unique modulo Ff. If D/J^ is a complement to 5/Fx in S/F1 and
G = KuKg, then X>£/.Fi is also a complement and D+Dg is a ZG-submodule
contained in DFf. If F = Bn(D + Dg) then D+Dg = DF and DF/F is a ZG-
submodule complementing B/F. Applying Lemma 4.5 to the module S/F, there is a
finite submodule F* of B such that the complements to B/F in S/F are unique
modulo F*.

(B) S/5 is a p-group.

If p = 2, then | G/C0(S/B) | = 1 or 2 and we can repeat the argument of (A).
If p is odd and K = Ca(S/B) then G/K is a finite //-group. If 5 has a isT-trivial
image B/D and if {gi,...,g,J is a transversal to .Kin G, then £/n?=.i £#* is a .K-trivial
G-image of 5 and is G-hypercyclic. It follows from Wehrfritz (1973), Lemma 11.7
that B has a G-pretersoluble image. Thus by Lemma 4.5, there are finite ZK-
submodules Fx < Ff ^ B such that B/Fx has a complement in S/F^ and the comple-
ments are unique modulo FJ. If DjFx is a complement to B/Ft in S/Fj then DgJFj^
(i = 1, ...,n) is also a complement and 2™=i JP$T< is a ZG-submodule contained in
DFjf. If F = Bn (Z Dg{), then 2 D ^ = DF and DF/F is a ZG-submodule com-
plementing B/F. As in (A) we obtain the required submodule F*.

5. Variations on results of P. Hall and D. Robinson

The results referred to in the heading to this section concern a normal nilpotent
subgroup N of a group G. Hall (1958) proved that if G/N' is nilpotent then so is G.
This theorem was extended by Robinson (1968b) who showed that the nilpotency
of G/N' could be replaced by property 0*, where 0* can represent supersoluble,
hypercentral or hypercyclic (among other examples).

The proof of this result depends largely on the fact that Ni+JNi+2 is a ZG-
homomorphic image of (Ni/Ni+1) ®z (N/N'), where Nt denotes the /th term of the
lower central series of N and NJNi+1 is considered as a ZG-module in the usual
way. The homomorphism is given by

a ® n -> [a, n] Ni+2

and it is clear that instead of taking deNJNi+1 and we N/N' we could take
deNJNi+^NiD £(N)) and neN/N' £(#)• Thus Ni+1/Ni+2 is a ZG-homomorphic
image of (Ni/Ni+1(Ni n £(JV))) ®z (N/N' £(JV)) and so a similar result can be
obtained by assuming conditions on N/N'
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To state the required result more explicitly we let £ denote a class of ZG-modules
satisfying

(Cl) ifB^AeS, then Bed and A/Bed;

(C2) if A and Bare in (£, then A®zBe£.

The properties which will be considered are then defined as follows. Let N be a
group admitting G as a group of operators. N is said to be a pG G-group (PG (£-
group) if it has a finite normal series (ascending normal series) of G-admissible
subgroups such that each factor is abelian and, when regarded as a ZG-module,
is in the class (£. The proof given in Robinson (1968b) then gives

THEOREM 5.1. IfN is nilpotent and N/N' £(N) e PG £ (PG £), then N' e PG £ (PG (£).

We shall mainly be concerned with supersolubility conditions and will use this
result in a similar way to Newell (1975), Lemma 4. If (£ is the class of ZG-modules
whose underlying additive group is cyclic, then PG (£ is the class of G-supersoluble
groups. To obtain the class of G-pretersoluble groups we consider PG 8̂ where 8̂
is the class of ZG-modules X in which the underlying additive group is either

(PI) torsion-free and each additive subgroup is a submodule,

or

(P2) a torsion group in which each additive subgroup is a submodule and if Xp is the
p-subgroup then G/Ca(Xp) is cyclic of order dividing p—\, for p odd, and G
either acts trivially or induces the involution automorphism on X2.

We need to prove that ty satisfies the conditions (Cl) and (C2). If X satisfies
condition (PI) then G either acts trivially or induces the involution automorphism
on X and so it follows easily that 8̂ satisfies condition (Cl).

LEMMA 5.2. If X and Y are ZG-modules in the class ty, then X®z Y is also in ^5.

PROOF, (i) If X and Y satisfy (PI), then X®z Y is a torsion-free group (Fuchs
(1973), Theorem 61.5). Let geG; then (x®y)g = xg®yg. For all xeX, xg = exx
and for all ye Y, yg = e2y, where e1 = ± 1, e2 = ± 1. Thus for all x®yeX® Y,
(x®y)g = e1x®eiy = s1s2(x®y). Hence X® ^satisfies condition (PI).

(ii) If X satisfies (PI) and Y satisfies (P2), then X® Y is a torsion group and
(X® Y)p = X® Yp (Fuchs (1973), Theorem 61.5). If p = 2, then the argument of
(i) shows that G acts trivially or induces the involution automorphism on (X® Y\.
If p is odd, then G/CO(X) is cyclic of order 1 or 2 and G/CG(YP) is cyclic of order n,
where n\(p-l). If 1)(n, then G/Ca(X)nCG(Yp) is cyclic of order In and
2« | (p — 1). So we may assume that 21 n and G induces the involution automorphism
on X. G/CO(YP) contains a unique element g of order 2. If Ca(X)^Ca(Yp) then
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CO(X® Yp) = CG(JP) and we have the required property. Otherwise we may
choose geCa(X) such that gCG{Yp) = g and h e CQ(YP) - CG(X). Then for all
x®yeX® Yp, we have

(x®y)gh = xh®yg = (-x)®(-y) = x®y

and so <gh)(,Co(X)nCo(Yp))^CG(X®Yp). But GKgh>(CG(X)nCG{Yp)) is
cyclic of order dividing p— 1.

(iii) If X and Y both satisfy (P2) then X® Y is a torsion group and
(X® Y)p = Xp® Yp. If p = 2, then the argument of (i) shows that G has the
required action on (X® Y)2. If p is odd, then G/CG((X® Y)p) is abelian with
exponent dividing p— 1. Also each element of Xp® Yp is mapped to a power of
itself by each element of G and so G/CG((X® Y)p) is cyclic, as required.

6. Proof of Theorem A

We begin with a simple lemma which will allow us to reduce to the case in
which G is finitely generated and hence supersoluble.

LEMMA 6.1. Let A be a normal subgroup of E. Suppose EjA has a subgroup HJA
and a local system of subgroups HJA, iel, each containing Ho/A such that CA(H0) = 1
and each Hit ieIu{0}, splits conjugately over A. Then E splits conjugately over A.

PROOF. Let Lo be a complement to A in HQ. If Mt is any complement to A in Hit

then A(HonMt) = Ho and so HociMt is a complement to A in Ho. Thus there is an
element aeA such that Lo = ( ffonMi)

a<M? and so Lo is contained in a comple-
ment Lt (=Mf) to A in Hf. If A'and Fare two complements to A in Hi containing
Z,o, then Y=Xa for some aeA and LQ = XnH^ = XanH0 = (XnH0)

a. Thus
aeNA(L0) = CA(L0) = CA{H^ = 1 and so Y=X. Thus there is a unique
complement Lt to 4̂ in Ht containing Z,o.

Let L = \JieILi. Then L is a complement to A in is. If M is any other comple-
ment, then MnH0 = L%, for some aeA, and so MnHt = L% for all i e / . Hence
M = 1,°, as required.

In proving Theorem A, we let E be any extension of A by G so that E/A is a
hypercyclic group and A is an abelian normal subgroup of E. Using Lemmas 2.3
and 2.5 we can use induction on a series for A and consider the three cases:

(I) A is finite with no cyclic factors.
(II) A is a divisible p-group with each proper submodule finite and A has no

cyclic factors.
(Ill) A is torsion-free rationally irreducible of finite rank and A has no G-preter-

soluble image.
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Case (I) This is included in Theorem 3.1.

Case (II) There is a finitely generated subgroup HJA of E/A such that
HQ C E (Q X ( .4 ) ) = E. By taking a local system of finitely generated subgroups HJA
of E/A containing HJA and using Lemma 6.1 it is sufficient to prove:

(10) if HjA is a finitely generated subgroup of El A such that HCJQ^A)) = E,
then H splits conjugately over A.

Since Cl^A) has no cyclic //-factors, it follows that A has no cyclic //-factors.
By induction and using Theorem 3.1, we may assume that A satisfies condition
(11) as a Z//-module.

If [A,H'] = A, then since H'/A is nilpotent, we may apply Hartley and
Tomkinson (1975), Theorem C to see that H' splits over A mod / (see Hartley
and Tomkinson (1975), p. 226 for notation). Also CA(H') is finite and so, by
Hartley and Tomkinson (1975), Lemma 3.4, H splits over A mod/. Let M/£lm(A)
be a complement to A/Clm(A) and suppose all such complements are conjugate
modulo O.n{A). Clm(A) is finite and has no cyclic Af-factors and so, using Theorem
3.1, we can deduce that H splits over A. Let X and Y be two complements. Then
XQm(A) and Y£lm(A) are conjugate modulo Q.n(A) and so we may assume that
XQ.n(A) = YQJA). X and Y are complements to Q.n(A) in XQ.n(A) and so, by
Theorem 3.1, are conjugate.

If [A,H']<A, then [A,H'] is finite and, using Theorem 3.1 as above, we may
assume that [A,H'] = 1. H'/A is nilpotent and A is contained in the centre of// '
which is therefore nilpotent. Since H/A is supersoluble, we have ///£(// ') is
supersoluble and so, by Theorem 5.1, H" is //-supersoluble. Since A has no cyclic
//-factors it follows that A n H" = 1. Now consider H'/H" as a Z(/////')-module.
AH"/H" has no //-hypercyclic image and H'/AH" is //-hypercyclic. By Theorem
4.4, there is a unique normal subgroup C of H containing H" such that CA = H'
and CnAH" = H". H'/C is a Z(/////')-module with no //-hypercyclic image and
H/H' is abelian. By Hartley and Tomkinson (1975), Theorem B, H/C splits
conjugately over H'/C and hence H/H" splits conjugately over AH"/H". If X/H"
is a complement to AH"/H" in H/H", then A" is a complement to A in H. If Y
is any other complement, then H' s? CH(A) = ACT(A). Thus H"^Y and so 7 / / / "
is a complement to AH"/H" and is therefore conjugate to X/H".

Case (III) (a) [A,E'] = l.

Suppose AnE"=£\. Let xeE—CE(A) and let H/A be a finitely generated
subgroup of E/A such that xeH and AnH"=£l. H/A is supersoluble and so
H'A/A is nilpotent. 4̂ is contained in the centre of H'A which is therefore a
nilpotent normal subgroup of//. Since H/A is supersoluble, we have H/t,{H'A) is
supersoluble and so, by Theorem 5.1, (H'A)' is //-supersoluble. Thus AnH" is
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//-supersoluble and torsion-free. Hence AnH" contains an infinite cyclic sub-
group C which is normal in H. Since x$CB(A), we have CA(x) = CA(E'(x)>) = 0
and so x induces the involution automorphism on C. The mapping a: a^-a2[a, x]
is a Zis-endomorphism of A (since E/CE(A) is abelian) and C^Ker a. A/Ker a is a
torsion group and Imo- is torsion-free, so Kero = A and hence x induces the
involution automorphism on the whole of A. Since this is true for any element of
E not in CE(A) we must have E/Cj^A) = <JCC£(.4)> has order 2. Thus A is an
is-pretersoluble module contrary to hypothesis.

Thus AnE" = 1. The argument of Case II can now be repeated to show that
E splits conjugately over A.

(b) [A,E']*1.

Let K= CE(A). E' K/K is hypercentral and we can choose xKeE/K such that
<x£><i E/K and xKe t,(E'K/K). Since A is rationally irreducible,

and so the CE«x»-homomorphism a->a(x— 1) is a monomorphism. By Fuchs
(1973), p. 153, \ A: [A,x]\ is finite and so E/A contains a finitely generated sub-
group HJA such that xeH'o, [A,Er] = [A,H'0]>[A,x], and -H^C^/^,*]) = E.
By taking a local system of finitely generated subgroups H^A of E/A containing
HJA and using Lemma 6.1 it is sufficient to prove:

(11) ifH/A is a finitely generated subgroup ofE/A such thatxeH', [A,E'] = [A,H']
and HCE(A/[A, x]) = E, then H splits conjugately over A.

Since H covers E/CB(A/[A, x]\ it follows that the finite module A/[A, x] has no
cyclic /J-image. We can therefore apply Case I to deduce that H/[A,x] splits
conjugately over A/[A,x]. Let M/[A,x] be a complement; we may clearly assume
that XGMSO that [M,x]^Mn<»K.

(Kn H)/A is supersoluble and so there is a finite series

A = K0<...<Kr = KnH

with each factor KJK^ cyclic.
If r = 0, then [M, x] < Mn <*> K = Mn <x> A = < » (MnA)^ <x> [^, *] . If

meM, then [m,;c] = xn[a,x] for some ae/4, neZ. Therefore [ma'^x] = x" and
so ma^eN^xy) = L, say. Thus M^AL and so y4L = H. Also

and so L is a complement to A in i/.
If Ly is any other complement, then we may assume that L^IA, x] = L[A, x].

Let y be the element of L^ congruent to x mod [A, x]. Then there is an element be A,
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such that
y = X[b,x] = xb-1^ = xfcb-1 = bxb-1

and so L\ > JVH«j6» = NH«JC» = L and so L\ = L.
Now suppose that r > 0 and that the result holds for smaller values of r. KJA

is centralized by H' and hence by x. Thus [MnK1,x]^MnA = [A,x]. If
( e M n 4 then [t,x] = [a,*] for some aeA and so ( a ^ e C ^ ) = S, say. There-
fore M n ^ < ^ S and so Kx = A x S.

There is a finite central series

We show by induction on n that [H',S] = 1. Suppose [An_1,S]= I; then
S = CKi(An_^ is normalized by An and so [An, S] ^ ̂  n S = 1. Thus [/T, S] = 1
and 5= i{H')nKx^H.

By the induction hypothesis, fl/5 splits conjugately over ÎS'/.S and hence H
splits over y4, since A n S = 1. If 1^ and Z,2

 a re two complements, then for / = 1,2,
we have Kx = A x (Lin A"j) and Z^nJ^-^i y4L4 = if. Therefore

[/f', Li n J^] < A n L< n ̂  = 1.

Thus LinKx = S. By induction, LJS and LJS are conjugate and hence 1^ and
Lj are conjugate.

This completes the proof of (11) and hence that of Theorem A.

7. Proof of Theorem B

Let E be a group containing a normal abelian S^-subgroup A such that E/A is
pretersoluble and A has no £-pretersoluble image. We require finite subgroups
F^F*^A, normal in E and such that E/F splits over A/F, and the complements
to A/F in E/F are conjugate modulo F*.

Let T be the torsion subgroup of A. By Lemma 2.2, !T= Cx C*, where C is
2s-hypercyclic and C* contains no cyclic JE'-factors. Applying Theorem A to the
modules A/T and T/C, we see that E/C splits conjugately over A/C. Therefore we
may assume that A is a divisible torsion group and is 2s-hypercyclic. A simple
induction argument using Lemma 2.4 allows us to assume that A is a divisible
/7-group and contains no proper infinite normal subgroup of E.

If [A,Er] = A, then by Hartley and Tomkinson (1975), Theorem C, E' splits
over A mod / . Also CA(E') is finite and so, by Hartley and Tomkinson (1975),
Lemma 3.4, E splits over A mod/, as required.

We may now assume that [A, E'] < A. Since [A, E'] is finite, we may factor it out
and assume that [A,E'] = 1. It follows that E' is nilpotent. If A^E", then E/E"
is pretersoluble and hence E is pretersoluble by the results of Section 5. Thus we
may assume that AnE" is finite and by factoring out this subgroup we have
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A nE" = 1. By considering E'/E" as a Z(F,/£")-module we may apply Theorem 4.6
to see that E has normal subgroups Fx and F* with E'^F^Ff^AE" and FffE"
finite such that AE"\FX has a complement in E'\F± and the complements are unique
modulo Ff.

E'

AE"

Let C/F1 be a complement to .4£7.Fi in E'/Fv Then £'/C is a Z(F,/F/)-module
with no F,-pretersoluble image. Applying Hartley and Tomkinson (1975), Theorem
C, E has normal subgroups F2 and F£ with C^Fa^^ l < £ ' and F*/C finite such
that E/F2 splits over F'/-^ a nd the complements are conjugate modulo F$.

There is a finite normal subgroup F of E contained in A such that FE" ̂  Fx and
F O F 2 . Let M/FC be a complement to F'/FC in E/FC. Then

and

= AnFC = F(AnC) = F(AnAE"nC) = F(Ar\F^ = F(AnFE") = F.
So Af/F is a complement to A/F in £/F. Let L/F be any other complement; then
E' = A(LnE') = ACL(A) and so F/<L. Therefore L/FE" is a complement to
AE"/FE" in F/FE". (LnE')/FE" and (MnE')/FE" are both complements to
AE"/FE" in E'/FE". Applying Theorem 4.6 to the module E'/FE", there is a
finite submodule FJFE" such that /^(L n E') = ^ ( M n £")• LF-JFX C and MFj/Zi C
are complements to E'/F1C in E/F1C. Applying Hartley and Tomkinson (1975),
Theorem C to the group E\FX C, there is a finite normal subgroup Fi/F1 C and an
element xeE such that (LF^)X = MF2. There is a finite normal subgroup F* of
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E contained in A such that F* E" >F± and F* C> Fa. It follows that

as required.
We conclude by showing that pretersoluble cannot be replaced by parasoluble

in Theorem B. Let A be the direct product of two C2»-groups,

where x\ = y\ = 1, x2
n+1 = xn, y%+1 = yn, and let B = Dr̂ L1<fen>, where <6n> is

cyclic of order 2n. Let H = AxB; then H has automorphisms tk, k= 1,2,...,
defined as follows (writing # additively)

ntk = 2*xn+yn,

Then T= (tltt2, •••> is free abelian of countable rank and A has no infinite
T-invariant subgroups. If is is the split extension ofHby T, then T/A is parasoluble
but not pretersoluble and A has no is-parasoluble image.

If A has a proper supplement in E then there is a proper Z-E-submodule C of H
such that A + C = H and v4 n C is finite. For each k, C contains elements of the
form

ck = oocm+pym+bk.

Now ck tk = {(2k-1) a+2kp}xm+(2kcx+P)ym+xk-bk. Since Cis ZE-parasoluble
ck tk must be equal to some power of ck, say ck tk = sck. By considering the bk

component we see that —bk = sbk and so s= — 1 (mod2*), that is, s = n2k—l.
Considering the x components we have

Therefore xk = 2k{(n—l)oc—^}xm and so m^2k. Thus 2kck is an element of A
outside QJS;_I(/4) and this is contrary to A n C being finite.

In this example, the parasoluble group E/A satisfies no reasonable rank con-
ditions and it seems possible that parasoluble could be used in place of pretersoluble
in Theorem B if we insisted that the whole of E were an ©
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